1
|
Bhowmick T, Sarkar A, Islam KH, Karmakar S, Mukherjee J, Das R. Molecular insights into cobalt homeostasis in estuarine microphytobenthos: A meta-transcriptomics and biogeochemical approach. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137716. [PMID: 40024116 DOI: 10.1016/j.jhazmat.2025.137716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/09/2025] [Accepted: 02/21/2025] [Indexed: 03/04/2025]
Abstract
Meta-transcriptomics data supported by biofilm physico-chemical parameters unravelled the molecular and biochemical processes utilized by multicomponent intertidal biofilms to endure cobalt toxicity. Findings indicated activation of influx (BtuB, ABC-type transporters) and efflux pumps (RND, CZC) to maintain metal ion homeostasis. Enhanced specific activity of antioxidant enzymes namely catalases and peroxidases (KatG, SodA) mitigated oxidative damage. Heightened synthesis of capsular polysaccharide components, specifically uronic acid and carbohydrate via PEP-CTERM sorting system, wzy pathway and glycosyltransferases protected biofilms against cobalt exposure. Despite chlorophyll biosynthesis genes being upregulated, metal toxicity impeded chlorophyll replenishment. Principal pathways associated with iron acquisition (AfuA), energy metabolism (AtpG), general metabolic activities (FruK, NifD, coABC) and central dogma regulation (DPS, AsrR, RRM) were activated to combat cobalt toxicity. This investigation offered novel insights into the regulatory network employed by intertidal microphytobenthic communities for maintaining cobalt homeostasis and underlined the basis for their application as biomarkers for estuarine cobalt pollution.
Collapse
Affiliation(s)
- Tanaya Bhowmick
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India
| | - Arnab Sarkar
- Department of Pharmaceutical Technology. Jadavpur University, Kolkata 700032, India
| | - Kazi Hamidul Islam
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India
| | - Sanmoy Karmakar
- Department of Pharmaceutical Technology. Jadavpur University, Kolkata 700032, India
| | - Joydeep Mukherjee
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India.
| | - Reshmi Das
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India; Earth Observatory of Singapore, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
2
|
Ogwu MC, Patterson ME, Senchak PA. Phosphorus mining and bioavailability for plant acquisition: environmental sustainability perspectives. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:572. [PMID: 40259044 PMCID: PMC12011931 DOI: 10.1007/s10661-025-14012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 04/10/2025] [Indexed: 04/23/2025]
Abstract
This review aims to examine microbial mechanisms for phosphorus (P) solubilization, assess the impacts of P mining and scarcity, and advocate for sustainable recycling strategies to enhance agricultural and environmental resilience. Phosphorus is an indispensable macronutrient for plant growth and agricultural productivity, yet its bioavailability in cultivation systems is often constrained. This scarcity has led to a heavy reliance on fertilizers derived from mined phosphate rock (PR), which is a finite resource usually contaminated with hazardous elements such as uranium, radium, and thorium. Plants absorb only about 10-20% of P from applied fertilizers, leading to significant inefficiencies and negative environmental consequences. Additionally, the uneven geographic distribution of PR reserves exacerbates global socioeconomic and geopolitical vulnerabilities. Healthy soils enriched with diverse microbial communities provide a sustainable avenue to address these growing challenges. Rhizospheric organisms, including phosphorus-solubilizing and phosphorus-mineralizing bacteria and arbuscular mycorrhizal fungi, are capable and pivotal in the sustainable conversion of inorganic and organic P into bioavailable forms, reducing reliance on synthetic fertilizers. The mechanisms used by these microbes often include releasing organic acids to lower soil pH and solubilize insoluble inorganic phosphorus compounds and the production of enzymes, such as phosphatases and phytases, to break down organic phosphorus compounds, including phytates, into bioavailable inorganic phosphate. Some microbes secrete chelating agents, such as siderophores, to bind metal ions and free phosphorus from insoluble complexes and use biofilms for P exchange. This review also advocates for the recycling second-generation P from organic waste as a sustainable and socially equitable alternative to conventional phosphate mining.
Collapse
Affiliation(s)
- Matthew Chidozie Ogwu
- Goodnight Family Department of Sustainable Development, Living Learning Center, Appalachian State University, 212, 305 Bodenheimer Drive, Boone, NC, 28608, USA.
| | - Micaela Elizabeth Patterson
- Department of Geological and Environmental Sciences, Appalachian State University, Rankin Science West, Boone, NC, 28608 - 2067, USA
| | - Pia Angelina Senchak
- Department of Geological and Environmental Sciences, Appalachian State University, Rankin Science West, Boone, NC, 28608 - 2067, USA
| |
Collapse
|
3
|
Feng Z, Gao H, Ding L, Qin Y, Zhou Y, Feng G, Yao Q, Zhu H. Temporal shifts in the phosphate mobilising bacterial community reveal contrasting succession patterns in response to different phosphorus sources. ENVIRONMENTAL RESEARCH 2025; 266:120599. [PMID: 39672498 DOI: 10.1016/j.envres.2024.120599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND Phosphate mobilising bacteria (PMB), such as phoD- and pqqC-harbouring bacteria, play a crucial role in mobilising insoluble phosphorus (P) in soil through the secretion of alkaline phosphatase and organic acids. OBJECTIVES To evaluate the succession pattern of PMB communities in response to different insoluble P sources. METHODS Five P source treatments, including the addition of KH2PO4 (PDP), FePO4 (FEP), Ca3(PO4)2 (TCP), lecithin (LEC), and a negative control, were established in the soil in a microcosmic system. Subsequently, phoD- and pqqC-harbouring bacterial communities were investigated by sequential sampling and high-throughput sequencing. In addition, PMB strains were isolated from these five treatments, and their phosphate mobilising activity was further analysed. RESULTS The effect of the insoluble organic P source (LEC) on the succession of PMB communities consistently exceeded that of insoluble inorganic P (Pi) sources (FEP and TCP). A successively enhanced succession and a successively diminishing succession were observed in PMB communities in FEP and TCP, respectively. Furthermore, the soil AP content significantly increased with incubation time in LEC and FEP. Most of the variation in phoD- and pqqC-harbouring bacterial communities was explained by all P fractions, respectively, while Fe-P and stable organic P fractions determined the PMB communities. Insoluble Pi sources, particularly FEP, tended to enrich more high-performance PMB strains for Fe-P. CONCLUSION This study firstly reveals the dynamic response of PMB communities to different insoluble P sources at the community level in a short time scale and identifies key PMB taxa that respond to different insoluble P sources, particularly Fe-P. It is also the first to provide community evidence and a feasible method for obtaining high-performance PMB strains for Fe-P in subtropical acidic red soils through directed enrichment culture.
Collapse
Affiliation(s)
- Zengwei Feng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Hong Gao
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China; Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Ling Ding
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yongqiang Qin
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yang Zhou
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Guangda Feng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Qing Yao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| |
Collapse
|
4
|
Zhao Z, Xie B, Wang X, Wang Q, Guo C, Zhang F, Wang H, Zhang R, Zhang C. Adaptive growth strategies of Quercus dentata to drought and nitrogen enrichment: a physiological and biochemical perspective. FRONTIERS IN PLANT SCIENCE 2024; 15:1479563. [PMID: 39649803 PMCID: PMC11620892 DOI: 10.3389/fpls.2024.1479563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/06/2024] [Indexed: 12/11/2024]
Abstract
Nitrogen deposition and drought significantly influence plant growth and soil physicochemical properties. This study investigates the effects of nitrogen deposition and water stress on the growth and physiological responses of Quercus dentata, and how these factors interact to influence the overall productivity. Two-year-old potted seedlings were selected to simulate nitrogen deposition and water stress. Nitrogen was applied at rates of 0 kg·ha-1·year-1 (N0) and 150 kg·ha-1·year-1 (N150). The levels of water stress corresponded to 80% (W80), 50% (W50), and 20% (W20) of soil saturation moisture content. High nitrogen (N150) significantly increased stem elongation and stem diameter by enhancing photosynthetic parameters, including P n (W80) and G s (W50), and maintained higher water use efficiency. Under drought conditions, nitrogen enhanced leaf water content, stabilized electrical conductivity, regulated antioxidant enzyme activity, and increased the accumulation of proline. However, under severe drought, nitrogen did not significantly improve biomass, highlighting the critical role of water availability. Additionally, increased nitrogen levels enhanced soil enzyme activity, facilitated the uptake of crucial nutrients like K and Zn. Mantel tests indicated significant correlations between soil enzyme activity, water use efficiency, and leaf Fe content, suggesting that nitrogen deposition altered nutrient uptake strategies in Q. dentata to sustain normal photosynthetic capacity under water stress. This study demonstrates that nitrogen deposition substantially enhances the growth and physiological resilience of Q. dentata under W50 by optimizing photosynthetic efficiency, water use efficiency, and nutrient uptake. However, the efficacy of nitrogen is highly dependent on water availability, highlighting the necessity of integrated nutrient and water management for plant growth.
Collapse
Affiliation(s)
| | | | - Xiaona Wang
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | | | | | | | | | | | | |
Collapse
|
5
|
Qu M, Cheng X, Xu Q, Hu Y, Liu X, Mei Y. How do glyphosate and AMPA alter the microbial community structure and phosphorus cycle in rice-crayfish systems? ENVIRONMENTAL RESEARCH 2024; 260:119679. [PMID: 39059622 DOI: 10.1016/j.envres.2024.119679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Glyphosate, a commonly used organophosphorus herbicide in rice-crayfish cropping regions, may alter regional phosphorus cycle processes while affecting the structure of microbial communities. However, the effects of glyphosate residues on rice-crayfish systems remain unclear. In this study, we assessed the spatial and temporal distribution characteristics of glyphosate and its primary degradation products, as well as the impact mechanisms of glyphosate on microbial communities and the phosphorus cycle in rice-crayfish systems such as paddy fields, breeding ditches and recharge rivers. The detection rates of glyphosate and aminomethylphosphonic acid (AMPA) were 100% in rice-crayfish systems. Concentrations of glyphosate in the water phase and soil/sediment were as high as 0.012 μg/L and 7.480 μg/kg, respectively, and concentrations of AMPA were as high as 17.435 μg/L and 13.200 μg/kg, respectively. Glyphosate concentrations were not affected by rainfall or sampling site, but concentrations of AMPA in the water phase of recharge rivers were affected by rainfall. The glyphosate concentration was significantly and positively correlated with RBG-16-58-14 abundance, and the AMPA concentration was significantly and positively correlated with Actinobacteria and Lysobacter abundance, and negatively correlated with Cyanobacteria abundance (P < 0.05). The highest abundances of phoD, phnK, and ppx genes were found in all soils/sediments. Glyphosate concentration in soil/sediment was significantly and positively correlated with the abundance of phoD gene encoding an organophosphorus-degrading enzyme and ppx gene encoding poly inorganic phosphate (Pi) hydrolase (P < 0.05). In addition, the glyphosate concentration was significantly and positively correlated with the Ca-bonded Pi content (P < 0.05). This implies that glyphosate may promote the production of stable Pi in rice-crayfish systems by increasing the abundance of phoD and ppx genes. The results of this study reveal the impact mechanism of glyphosate on the phosphorus cycle in rice-crayfish systems and provide a basis for the risk assessment of glyphosate.
Collapse
Affiliation(s)
- Mengjie Qu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Xuan Cheng
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Qiang Xu
- School of Management and Economics, Beijing Institute of Technology, Beijing, 100081, China
| | - Yang Hu
- School of Civil Engineering and Architecture, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Xingyu Liu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yunjun Mei
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| |
Collapse
|
6
|
Zhu Y, Xing Y, Li Y, Jia J, Ying Y, Shi W. The Role of Phosphate-Solubilizing Microbial Interactions in Phosphorus Activation and Utilization in Plant-Soil Systems: A Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:2686. [PMID: 39409556 PMCID: PMC11478493 DOI: 10.3390/plants13192686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024]
Abstract
To address the issue of phosphorus limitation in agricultural and forestry production and to identify green and economical alternatives to chemical phosphorus fertilizers, this paper reviews the utilization of phosphorus in plant-soil systems and explores the considerable potential for exploiting endogenous phosphorus resources. The application of phosphate-solubilizing microorganisms (PSMs) is emphasized for their role in phosphorus activation and plant growth promotion. A focus is placed on microbial interactions as an entry point to regulate the functional rhizosphere microbiome, introducing the concept of synthetic communities. This approach aims to deepen the understanding of PSM interactions across plant root, soil, and microbial interfaces, providing a theoretical foundation for the development and application of biological regulation technologies to enhance phosphorus utilization efficiency.
Collapse
Affiliation(s)
- Ying Zhu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China (J.J.)
| | - Yijing Xing
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China (J.J.)
| | - Yue Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China (J.J.)
| | - Jingyi Jia
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China (J.J.)
| | - Yeqing Ying
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China (J.J.)
- Key Laboratory of Bamboo Science and Technology, Zhejiang A&F University, Hangzhou 311300, China
| | - Wenhui Shi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China (J.J.)
- Key Laboratory of Bamboo Science and Technology, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
7
|
Deng P, Zhou Y, Chen W, Tang F, Wang Y. Microbial mechanisms for improved soil phosphorus mobilization in monoculture conifer plantations by mixing with broadleaved trees. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:120955. [PMID: 38678896 DOI: 10.1016/j.jenvman.2024.120955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/12/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
Replanting broadleaved trees in monoculture conifer plantations has been shown to improve the ecological environment. However, not much is known about the distribution properties of soil phosphate-mobilizing bacteria (PMB) under different mixed plantings or how PMB affects biometabolism-driven phosphorus (P) bioavailability. The phoD and pqqC genes serve as molecular markers of PMB because they regulate the mobilization of organic (Po) and inorganic (Pi) P. Differences in soil bioavailable P concentration, phoD- and pqqC-harboring PMB communities, and their main regulators were analyzed using biologically-based P (BBP) and high-throughput sequencing approaches after combining coniferous trees (Pinus massoniana) and five individual broadleaved trees (Bretschneidera sinensis, Michelia maudiae, Cercidiphyllum japonicum, Manglietia conifera, and Camellia oleifera). The findings revealed that the contents of litter P, soil organic carbon (SOC), available Pi (CaCl2-P), and labile Po (Enzyme-P) were significantly higher in conifer-broadleaf mixed plantations than those in the monospecific Pinus massoniana plantations (PM), especially in the mixed stands with the introduction of Cercidiphyllum japonicum, Michelia maudiae, and Camellia oleifera. Conifer-broadleaf mixing had little effect on the abundance of phoD and pqqC genes but significantly altered species composition within the communities. Conifer-broadleaf mixing improved soil microbial habitat mainly by increasing the pH, increasing carbon source availability and nutrient content, decreasing exchangeable Fe3+ and Al3+ content, and decreasing the activation degrees of Fe and Al oxides in acidic soils. A small group of taxa (phoD: Bradyrhizobium, Tardiphaga, Nitratireductor, Mesorhizobium, Herbaspirillum, and Ralstonia; pqqC: Burkholderia, Variovorax, Bradyrhizobium, and Leptothrix) played a key role in the synthesis of P-related enzymes (e.g., alkaline phosphomonoesterase, ALP) and in lowering the levels of mineral-occluded (HCl-P) and chelated (Citrate-P) Pi. Overall, our findings highlight that mixing conifers and broadleaves could change the PMB communities that produce ALP and dissolve Pi to make P more bioavailable.
Collapse
Affiliation(s)
- Piaoyun Deng
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, PR China
| | - Yunchao Zhou
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, PR China.
| | - Wensha Chen
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, PR China
| | - Fenghua Tang
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, PR China
| | - Yaoxiong Wang
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, PR China
| |
Collapse
|
8
|
Sun Y, Cheng Y, Li H, Liu X, Zhang Y, Ren X, Wu D, Wang F. Organic phosphorus levels change the hyphosphere phoD-harboring bacterial community of Funneliformis mosseae. MYCORRHIZA 2024; 34:131-143. [PMID: 38129688 DOI: 10.1007/s00572-023-01132-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
The phoD-harboring bacterial community is responsible for organic phosphorus (P) mineralization in soil and is important for understanding the interactions between arbuscular mycorrhizal (AM) fungi and phosphate-solubilizing bacteria (PSB) at the community level for organic P turnover. However, current understanding of the phoD-harboring bacterial community associated with AM fungal hyphae responses to organic P levels remains incomplete. Here, two-compartment microcosms were used to explore the response of the phoD-harboring bacterial community in the hyphosphere to organic P levels by high-throughput sequencing. Extraradical hyphae of Funneliformis mosseae enriched the phoD-harboring bacterial community and organic P levels significantly altered the composition of the phoD-harboring bacterial community in the Funneliformis mosseae hyphosphere. The relative abundance of dominant families Pseudomonadaceae and Burkholderiaceae was significantly different among organic P treatments and were positively correlated with alkaline phosphatase activity and available P concentration in the hyphosphere. Furthermore, phytin addition significantly decreased the abundance of the phoD gene, and the latter was significantly and negatively correlated with available P concentration. These findings not only improve the understanding of how organic P influences the phoD-harboring bacterial community but also provide a new insight into AM fungus-PSB interactions at the community level to drive organic P turnover in soil.
Collapse
Affiliation(s)
- Yaqin Sun
- School of Resource and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yanan Cheng
- School of Resource and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Hang Li
- School of Resource and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xing Liu
- School of Resource and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Ying Zhang
- School of Resource and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xiujuan Ren
- School of Resource and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Dafu Wu
- School of Resource and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Fei Wang
- School of Resource and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| |
Collapse
|
9
|
Recio MI, de la Torre J, Daddaoua A, Udaondo Z, Duque E, Gavira JA, López-Sánchez C, Ramos JL. Characterization of an extremophile bacterial acid phosphatase derived from metagenomics analysis. Microb Biotechnol 2024; 17:e14404. [PMID: 38588312 PMCID: PMC11001196 DOI: 10.1111/1751-7915.14404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 04/10/2024] Open
Abstract
Acid phosphatases are enzymes that play a crucial role in the hydrolysis of various organophosphorous molecules. A putative acid phosphatase called FS6 was identified using genetic profiles and sequences from different environments. FS6 showed high sequence similarity to type C acid phosphatases and retained more than 30% of consensus residues in its protein sequence. A histidine-tagged recombinant FS6 produced in Escherichia coli exhibited extremophile properties, functioning effectively in a broad pH range between 3.5 and 8.5. The enzyme demonstrated optimal activity at temperatures between 25 and 50°C, with a melting temperature of 51.6°C. Kinetic parameters were determined using various substrates, and the reaction catalysed by FS6 with physiological substrates was at least 100-fold more efficient than with p-nitrophenyl phosphate. Furthermore, FS6 was found to be a decamer in solution, unlike the dimeric forms of crystallized proteins in its family.
Collapse
Affiliation(s)
- Maria-Isabel Recio
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Department of Environmental Protection, Granada, Spain
| | - Jesús de la Torre
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Department of Environmental Protection, Granada, Spain
| | - Abdelali Daddaoua
- Department of Biochemistry and Molecular Biology II, Pharmacy School, Granada University, Granada, Spain
| | - Zulema Udaondo
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Estrella Duque
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Department of Environmental Protection, Granada, Spain
| | - José Antonio Gavira
- Consejo Superior de Investigaciones Científicas, Instituto de Ciencias de la Tierra, Granada, Spain
| | - Carmen López-Sánchez
- Consejo Superior de Investigaciones Científicas, Instituto de Ciencias de la Tierra, Granada, Spain
| | - Juan L Ramos
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Department of Environmental Protection, Granada, Spain
| |
Collapse
|
10
|
Pan L, Cai B. Phosphate-Solubilizing Bacteria: Advances in Their Physiology, Molecular Mechanisms and Microbial Community Effects. Microorganisms 2023; 11:2904. [PMID: 38138048 PMCID: PMC10745930 DOI: 10.3390/microorganisms11122904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Phosphorus is an essential nutrient for all life on earth and has a major impact on plant growth and crop yield. The forms of phosphorus that can be directly absorbed and utilized by plants are mainly HPO42- and H2PO4-, which are known as usable phosphorus. At present, the total phosphorus content of soils worldwide is 400-1000 mg/kg, of which only 1.00-2.50% is plant-available, which seriously affects the growth of plants and the development of agriculture, resulting in a high level of total phosphorus in soils and a scarcity of available phosphorus. Traditional methods of applying phosphorus fertilizer cannot address phosphorus deficiency problems; they harm the environment and the ore material is a nonrenewable natural resource. Therefore, it is imperative to find alternative environmentally compatible and economically viable strategies to address phosphorus scarcity. Phosphorus-solubilizing bacteria (PSB) can convert insoluble phosphorus in the soil into usable phosphorus that can be directly absorbed by plants, thus improving the uptake and utilization of phosphorus by plants. However, there is no clear and systematic report on the mechanism of action of PSB. Therefore, this paper summarizes the discovery process, species, and distribution of PSB, focusing on the physiological mechanisms outlining the processes of acidolysis, enzymolysis, chelation and complexation reactions of PSB. The related genes regulating PSB acidolysis and enzymatic action as well as genes related to phosphate transport and the molecular direction mechanism of its pathway are examined. The effects of PSB on the structure and abundance of microbial communities in soil are also described, illustrating the mechanism of how PSB interact with microorganisms in soil and indirectly increase the amount of available phosphorus in soil. And three perspectives are considered in further exploring the PSB mechanism in utilizing a synergistic multi-omics approach, exploring PSB-related regulatory genes in different phosphorus levels and investigating the application of PSB as a microbial fungicide. This paper aims to provide theoretical support for improving the utilization of soil insoluble phosphorus and providing optimal management of elemental phosphorus in the future.
Collapse
Affiliation(s)
- Lin Pan
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Key Laboratory of Molecular Biology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China;
| | - Baiyan Cai
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Key Laboratory of Molecular Biology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China;
- Hebei Key Laboratory of Agroecological Safety, Hebei University of Environmental Engineering, Qinhuangdao 066102, China
| |
Collapse
|
11
|
Wang L, Zhang H, Xu C, Yuan J, Xu X, Wang J, Zhang Y. Long-term nitrogen fertilization and sweetpotato cultivation in the wheat-sweetpotato rotation system decrease alkaline phosphomonoesterase activity by regulating soil phoD-harboring bacteria communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165916. [PMID: 37524185 DOI: 10.1016/j.scitotenv.2023.165916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
The alkaline phosphomonoesterase (ALP)-harboring community (phoD-harboring community) plays a crucial role in the conversion of organic phosphorus (P) into available P (AP). However, the response mechanisms of phoD-harboring communities to fertilization strategies, crop types, and their interactions within the wheat-sweetpotato rotation are poorly understood. A nine-year field experiment of different fertilization strategies was established under the wheat-sweetpotato rotation. After harvesting the crop, we collected soil samples without fertilization (CK), inorganic NK fertilization (NK), inorganic NPK fertilization (NPK), and a combined application of inorganic NPK and organic fertilizer (NPKM). We employed high-throughput sequencing and enzymology techniques to analyze the composition and functional activity of phoD-harboring bacterial communities as well as their correlation with soil physicochemical properties. The results showed that long-term nitrogen (N) fertilization, especially inorganic N, significantly reduced soil pH and ALP activity while increasing AP compared with CK. The AP content in sweetpotato season was significantly higher than that in wheat season. Inorganic N fertilization dramatically reshaped the communities of phoD-harboring bacteria and decreased diversity. The phoD-harboring bacterial communities in sweetpotato season were significantly different from those in wheat season. The N fertilization significantly reduced the relative abundance of Acuticoccus, Methylibium, Rhizobacter, and Roseivivax, which was positively correlated with ALP activity. These groups in sweetpotato season decreased significantly compared with wheat season. A structural equation model indicates that pH and AP play a significant role in regulating the phoD-harboring bacteria communities, ALP activity, and their interactions. We demonstrate that fertilization strategies and crop types have a substantial impact on the phoD-harboring bacteria communities and functions, which are closely linked to soil pH and AP levels. Our study highlights the detrimental effects of soil acidification resulting from inorganic N fertilization on P-cycling bacterial communities and functions. However, the combination of inorganic and organic fertilizer can mitigate these adverse effects.
Collapse
Affiliation(s)
- Lei Wang
- National Agricultural Experimental Station for Agricultural Environment, Luhe, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Hui Zhang
- National Agricultural Experimental Station for Agricultural Environment, Luhe, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu University, Zhenjiang 212023, China
| | - Cong Xu
- National Agricultural Experimental Station for Agricultural Environment, Luhe, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu University, Zhenjiang 212023, China
| | - Jie Yuan
- National Agricultural Experimental Station for Agricultural Environment, Luhe, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xianjü Xu
- National Agricultural Experimental Station for Agricultural Environment, Luhe, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jidong Wang
- National Agricultural Experimental Station for Agricultural Environment, Luhe, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu University, Zhenjiang 212023, China.
| | - Yongchun Zhang
- National Agricultural Experimental Station for Agricultural Environment, Luhe, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu University, Zhenjiang 212023, China.
| |
Collapse
|
12
|
Wang L, Wang J, Yuan J, Tang Z, Wang J, Zhang Y. Long-Term Organic Fertilization Strengthens the Soil Phosphorus Cycle and Phosphorus Availability by Regulating the pqqC- and phoD-Harboring Bacterial Communities. MICROBIAL ECOLOGY 2023; 86:2716-2732. [PMID: 37528183 DOI: 10.1007/s00248-023-02279-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023]
Abstract
The pqqC and phoD genes encode pyrroloquinoline quinone synthase and alkaline phosphomonoesterase (ALP), respectively. These genes play a crucial role in regulating the solubilization of inorganic phosphorus (Pi) and the mineralization of organic phosphorus (Po), making them valuable markers for P-mobilizing bacterial. However, there is limited understanding of how the interplay between soil P-mobilizing bacterial communities and abiotic factors influences P transformation and availability in the context of long-term fertilization scenarios. We used real-time polymerase chain reaction and high-throughput sequencing to explore the characteristics of soil P-mobilizing bacterial communities and their relationships with key physicochemical properties and P fractions under long-term fertilization scenarios. In a 38-year fertilization experiment, six fertilization treatments were selected. These treatments were sorted into three groups: the non-P-amended group, including no fertilization and mineral NK fertilizer; the sole mineral-P-amended group, including mineral NP and NPK fertilizer; and the organically amended group, including sole organic fertilizer and organic fertilizer plus mineral NPK fertilizer. The organically amended group significantly increased soil labile P (Ca2-P and enzyme-P) and Olsen-P content and proportion but decreased non-labile P (Ca10-P) proportion compared with the sole mineral-P-amended group, indicating enhanced P availability in the soil. Meanwhile, the organically amended group significantly increased soil ALP activity and pqqC and phoD gene abundances, indicating that organic fertilization promotes the activity and abundance of microorganisms involved in P mobilization processes. Interestingly, the organically amended group dramatically reshaped the community structure of P-mobilizing bacteria and increased the relative abundance of Acidiphilium, Panacagrimonas, Hansschlegelia, and Beijerinckia. These changes had a greater positive impact on ALP activity, labile P, and Olsen-P content compared to the abundance of P-mobilizing genes alone, indicating their importance in driving P mobilization processes. Structural equation modeling indicated that soil organic carbon and Po modulated the relationship between P-mobilizing bacterial communities and labile P and Olsen-P, highlighting the influence of SOC and Po on the functioning of P-mobilizing bacteria and their impact on P availability. Overall, our study demonstrates that organic fertilization has the potential to reshape the structure of P-mobilizing bacterial communities, leading to increased P mobilization and availability in the soil. These findings contribute to our understanding of the mechanisms underlying P cycling in agricultural systems and provide valuable insights for enhancing microbial P mobilization through organic fertilization.
Collapse
Affiliation(s)
- Lei Wang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences/National Agricultural Experimental Station for Agricultural Environment, Luhe, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jing Wang
- Xuzhou Institute of Agricultural Sciences of Xuhuai District of Jiangsu Province, Xuzhou, 221131, China
| | - Jie Yuan
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences/National Agricultural Experimental Station for Agricultural Environment, Luhe, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Zhonghou Tang
- Xuzhou Institute of Agricultural Sciences of Xuhuai District of Jiangsu Province, Xuzhou, 221131, China
| | - Jidong Wang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences/National Agricultural Experimental Station for Agricultural Environment, Luhe, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Yongchun Zhang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences/National Agricultural Experimental Station for Agricultural Environment, Luhe, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| |
Collapse
|
13
|
Jiang Y, Yang X, Ni K, Ma L, Shi Y, Wang Y, Cai Y, Ma Q, Ruan J. Nitrogen addition reduces phosphorus availability and induces a shift in soil phosphorus cycling microbial community in a tea (Camellia sinensis L.) plantation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118207. [PMID: 37263035 DOI: 10.1016/j.jenvman.2023.118207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/21/2023] [Accepted: 05/17/2023] [Indexed: 06/03/2023]
Abstract
Nitrogen (N) and phosphorus (P) are two important nutrient elements that limit the growth of plants and microorganisms. The effect of the N supply on soil P cycling and its mechanism remain poorly known. Here, we characterized the effects of different N application rates on soil P availability, the abundances of P-cycling functional genes, and microbial communities involved in P-cycling following the application of N for 13 years in a tea plantation. Soil available P (AP) decreased significantly under N application. The opposite pattern was observed for the activity of soil phosphatases including alkaline (ALP) and acid phosphatase (ACP). Furthermore, N addition increased the abundance of ppa but decreased the abundance of phoD in soil. Both ppa- and phoD-harboring communities varied with N application levels. Redundancy analysis (RDA) showed that soil pH was a key variable modulating ppa-harboring and phoD-harboring microbial communities. Partial least squares path modeling (PLS-PM) revealed that long-term N application indirectly reduced soil P availability by altering the abundances of phoD-harboring biomarker taxa. Overall, our findings indicated that N-induced reductions in AP increased microbial competition for P by selecting microbes with P uptake and starvation response genes or those with phosphatases in tea plantation system. This suggests that tea plantations should be periodically supplemented with P under N application, especially under high N application levels.
Collapse
Affiliation(s)
- Yanyan Jiang
- Tea Research Institute, Chinese Academy of Agriculture Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China; College of Food Science, Southwest University, Chongqing, 400715, China; Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Xiangde Yang
- Tea Research Institute, Chinese Academy of Agriculture Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China.
| | - Kang Ni
- Tea Research Institute, Chinese Academy of Agriculture Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
| | - Lifeng Ma
- Tea Research Institute, Chinese Academy of Agriculture Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China; Xihu National Agricultural Experimental Station for Soil Quality, Hangzhou, 310008, China
| | - Yuanzhi Shi
- Tea Research Institute, Chinese Academy of Agriculture Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
| | - Yu Wang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yanjiang Cai
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Qingxu Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jianyun Ruan
- Tea Research Institute, Chinese Academy of Agriculture Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China.
| |
Collapse
|
14
|
Marghoob MU, Rodriguez-Sanchez A, Imran A, Mubeen F, Hoagland L. Diversity and functional traits of indigenous soil microbial flora associated with salinity and heavy metal concentrations in agricultural fields within the Indus Basin region, Pakistan. Front Microbiol 2022; 13:1020175. [PMID: 36419426 PMCID: PMC9676371 DOI: 10.3389/fmicb.2022.1020175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/10/2022] [Indexed: 08/27/2023] Open
Abstract
Soil salinization and heavy metal (HM) contamination are major challenges facing agricultural systems worldwide. Determining how soil microbial communities respond to these stress factors and identifying individual phylotypes with potential to tolerate these conditions while promoting plant growth could help prevent negative impacts on crop productivity. This study used amplicon sequencing and several bioinformatic programs to characterize differences in the composition and potential functional capabilities of soil bacterial, fungal, and archaeal communities in five agricultural fields that varied in salinity and HM concentrations within the Indus basin region of Pakistan. The composition of bacteria with the potential to fix atmospheric nitrogen (N) and produce the enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase were also determined. Microbial communities were dominated by: Euryarchaeota (archaea), Actinobacteria, Proteobacteria, Planctomycetota, Firimicutes, Patescibacteria and Acidobacteria (bacteria), and Ascomycota (fungi), and all soils contained phylotypes capable of N-fixation and ACC-deaminase production. Salinity influenced bacterial, but not archaeal or fungal communities. Both salinity and HM altered the relative abundance of many phylotypes that could potentially promote or harm plant growth. These stress factors also appeared to influence the potential functional capabilities of the microbial communities, especially in their capacity to cycle phosphorous, produce siderophores, and act as symbiotrophs or pathotrophs. Results of this study confirm that farms in this region are at risk due to salinization and excessive levels of some toxic heavy metals, which could negatively impact crop and human health. Changes in soil microbial communities and their potential functional capabilities are also likely to affect several critical agroecosystem services related to nutrient cycling, pathogen suppression, and plant stress tolerance. Many potentially beneficial phylotypes were identified that appear to be salt and HM tolerant and could possibly be exploited to promote these services within this agroecosystem. Future efforts to isolate these phylotypes and determine whether they can indeed promote plant growth and/or carry out other important soil processes are recommended. At the same time, identifying ways to promote the abundance of these unique phylotypes either through modifying soil and crop management practices, or developing and applying them as inoculants, would be helpful for improving crop productivity in this region.
Collapse
Affiliation(s)
- Muhammad Usama Marghoob
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | | | - Asma Imran
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Fathia Mubeen
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Lori Hoagland
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
15
|
Zhang J, Wang P, Tao Z, Tian H, Guo T. Phosphate-solubilizing bacteria abate cadmium absorption and restore the rhizospheric bacterial community composition of grafted watermelon plants. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129563. [PMID: 35999731 DOI: 10.1016/j.jhazmat.2022.129563] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/21/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
The grafting of watermelon plants to rootstocks is common due to the strong capacity of rootstocks to adapt to abiotic and biotic stresses. However, the effect of phosphate-solubilizing bacteria (PSB) on grafted watermelon plant growth and bacterial structures in root soil is unclear. In this study, the growth and hormone levels of grafted plants were measured, and the bacterial communities under cadmium (Cd) stress and inoculation with PSB were sequenced in three treatments (S1, control; S2, 50 μmol Cd [CdCl2]; and S3, 50 μmol Cd plus inoculation with the Cd-resistant PSB strain 'N3'). The results showed that inoculation with PSB significantly (P < 0.05) improved the total dry weight of the grafted plants. Typically, inoculation with PSB significantly (P < 0.05) reduced Cd content in scions and roots. The level of the phytohormone jasmonic acid increased in treatment S2, but decreased in treatment S3 under inoculation with PSB. The functional annotation of prokaryotic taxa showed that Cd decreased the abundance of nitrogen respiration and chloroplast functional groups. Nevertheless, inoculation with PSB helped restore bacterial community structures. These findings provide a new understanding of the effect of PSB on the promotion of seedling growth and bacterial communities in grafted watermelon plants under Cd stress.
Collapse
Affiliation(s)
- Jian Zhang
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031 Anhui Province, PR China; Key Laboratory of Intelligent Seedling Breeding in Vegetable Factory, Ma-an-shan 238200, Anhui Province, PR China; Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei 230031 Anhui Province, PR China.
| | - Pengcheng Wang
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031 Anhui Province, PR China; Key Laboratory of Intelligent Seedling Breeding in Vegetable Factory, Ma-an-shan 238200, Anhui Province, PR China; Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei 230031 Anhui Province, PR China
| | - Zhen Tao
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031 Anhui Province, PR China
| | - Hongmei Tian
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031 Anhui Province, PR China; Key Laboratory of Intelligent Seedling Breeding in Vegetable Factory, Ma-an-shan 238200, Anhui Province, PR China; Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei 230031 Anhui Province, PR China
| | - Tingting Guo
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031 Anhui Province, PR China; School of Life Sciences, Anhui Agricultural University, Hefei 230036 Anhui Province, PR China
| |
Collapse
|