1
|
Kozaeva E, Nieto-Domínguez M, Tang KKY, Stammnitz M, Nikel PI. Leveraging Engineered Pseudomonas putida Minicells for Bioconversion of Organic Acids into Short-Chain Methyl Ketones. ACS Synth Biol 2025; 14:257-272. [PMID: 39748701 PMCID: PMC11744930 DOI: 10.1021/acssynbio.4c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025]
Abstract
Methyl ketones, key building blocks widely used in diverse industrial applications, largely depend on oil-derived chemical methods for their production. Here, we investigated biobased production alternatives for short-chain ketones, adapting the solvent-tolerant soil bacterium Pseudomonas putida as a host for ketone biosynthesis either by whole-cell biocatalysis or using engineered minicells, chromosome-free bacterial vesicles. Organic acids (acetate, propanoate and butanoate) were selected as the main carbon substrate to drive the biosynthesis of acetone, butanone and 2-pentanone. Pathway optimization identified efficient enzyme variants from Clostridium acetobutylicum and Escherichia coli, tested with both constitutive and inducible expression of the cognate genes. By implementing these optimized pathways in P. putida minicells, which can be prepared through a simple three-step purification protocol, the feedstock was converted into the target short-chain methyl ketones. These results highlight the value of combining morphology and pathway engineering of noncanonical bacterial hosts to establish alternative bioprocesses for toxic chemicals that are difficult to produce by conventional approaches.
Collapse
Affiliation(s)
- Ekaterina Kozaeva
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Manuel Nieto-Domínguez
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Kent Kang Yong Tang
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | | | - Pablo Iván Nikel
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| |
Collapse
|
2
|
Velázquez E, de Lorenzo V. AND Logic Based on Suppressor tRNAs Enables Stringent Control of Sliding Base Editors in Pseudomonas putida. ACS Synth Biol 2024; 13:4191-4201. [PMID: 39660532 DOI: 10.1021/acssynbio.4c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Base editors, e.g., cytosine deaminases, are powerful tools for precise DNA editing in vivo, enabling both targeted nucleotide conversions and segment-specific diversification of bacterial genomes. Yet, regulation of their spatiotemporal activity is crucial to avoid off-target effects and enabling controlled evolution of specific genes and pathways. This work reports a strategy for tight control of base-editing devices through subjecting their expression to a genetic AND logic gate in which two chemical inducer inputs are strictly required for cognate activity. The case study involves an archetypal genetic device consisting of a cytosine deaminase (pmCDA1) fused to a T7 RNA polymerase (RNAPT7), which cause intensive diversification of DNA portions bordered by a T7 promoter and a T7 terminator─but whose activity in vivo has been shown unattainable to govern with standard conditional expression systems. By encoding up to three UAG stop codons into the DNA sequence of the pmCDA1-RNAPT7 fusion, which is transcribed by the 3-methylbenzoate inducible promoter Pm, we first broke the structure of the hybrid protein. Then, to overcome the interruptions caused by UAG codons, we placed transcription of a supF tRNA under the control of a cyclohexanone-dependent system. When tested in the soil bacterium and metabolic engineering chassis Pseudomonas putida KT2440, these modifications changed the performance of the sliding base editor from a flawed YES logic to a precise AND logic. We also showed that such a 2-layer control brings about a minimal background activity as compared to a single-input digitalizer circuit. These results show the ability of suppressor tRNA-based logic gates for achieving stringent expression of otherwise difficult to control devices.
Collapse
Affiliation(s)
- Elena Velázquez
- Systems Biology Department, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid 28049, Spain
| | - Víctor de Lorenzo
- Systems Biology Department, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
3
|
Joshi SHN, Jenkins C, Ulaeto D, Gorochowski TE. Accelerating Genetic Sensor Development, Scale-up, and Deployment Using Synthetic Biology. BIODESIGN RESEARCH 2024; 6:0037. [PMID: 38919711 PMCID: PMC11197468 DOI: 10.34133/bdr.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/23/2024] [Indexed: 06/27/2024] Open
Abstract
Living cells are exquisitely tuned to sense and respond to changes in their environment. Repurposing these systems to create engineered biosensors has seen growing interest in the field of synthetic biology and provides a foundation for many innovative applications spanning environmental monitoring to improved biobased production. In this review, we present a detailed overview of currently available biosensors and the methods that have supported their development, scale-up, and deployment. We focus on genetic sensors in living cells whose outputs affect gene expression. We find that emerging high-throughput experimental assays and evolutionary approaches combined with advanced bioinformatics and machine learning are establishing pipelines to produce genetic sensors for virtually any small molecule, protein, or nucleic acid. However, more complex sensing tasks based on classifying compositions of many stimuli and the reliable deployment of these systems into real-world settings remain challenges. We suggest that recent advances in our ability to precisely modify nonmodel organisms and the integration of proven control engineering principles (e.g., feedback) into the broader design of genetic sensing systems will be necessary to overcome these hurdles and realize the immense potential of the field.
Collapse
Affiliation(s)
| | - Christopher Jenkins
- CBR Division, Defence Science and Technology Laboratory, Porton Down, Wiltshire SP4 0JQ, UK
| | - David Ulaeto
- CBR Division, Defence Science and Technology Laboratory, Porton Down, Wiltshire SP4 0JQ, UK
| | - Thomas E. Gorochowski
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
- BrisEngBio,
School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| |
Collapse
|
4
|
Wu J, Liang C, Li Y, Zeng Y, Sun X, Jiang P, Chen W, Xiong D, Jin J, Tang S. Engineering and application of LacI mutants with stringent expressions. Microb Biotechnol 2024; 17:e14427. [PMID: 38465475 PMCID: PMC10926051 DOI: 10.1111/1751-7915.14427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 03/12/2024] Open
Abstract
Optimal transcriptional regulatory circuits are expected to exhibit stringent control, maintaining silence in the absence of inducers while exhibiting a broad induction dynamic range upon the addition of effectors. In the Plac /LacI pair, the promoter of the lac operon in Escherichia coli is characterized by its leakiness, attributed to the moderate affinity of LacI for its operator target. In response to this limitation, the LacI regulatory protein underwent engineering to enhance its regulatory properties. The M7 mutant, carrying I79T and N246S mutations, resulted in the lac promoter displaying approximately 95% less leaky expression and a broader induction dynamic range compared to the wild-type LacI. An in-depth analysis of each mutation revealed distinct regulatory profiles. In contrast to the wild-type LacI, the M7 mutant exhibited a tighter binding to the operator sequence, as evidenced by surface plasmon resonance studies. Leveraging the capabilities of the M7 mutant, a high-value sugar biosensor was constructed. This biosensor facilitated the selection of mutant galactosidases with approximately a seven-fold improvement in specific activity for transgalactosylation. Consequently, this advancement enabled enhanced biosynthesis of galacto-oligosaccharides (GOS).
Collapse
Affiliation(s)
- Jieyuan Wu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial ResourcesInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Chaoning Liang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial ResourcesInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Yufei Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial ResourcesInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yueting Zeng
- School of Life SciencesHebei UniversityBaodingChina
| | - Xu Sun
- Beijing Key Laboratory of Plant Resources Research and DevelopmentBeijing Technology and Business UniversityBeijingChina
| | - Peixia Jiang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial ResourcesInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Wei Chen
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial ResourcesInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Dandan Xiong
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial ResourcesInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jian‐Ming Jin
- Beijing Key Laboratory of Plant Resources Research and DevelopmentBeijing Technology and Business UniversityBeijingChina
| | - Shuang‐Yan Tang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial ResourcesInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
5
|
Kozaeva E, Nielsen ZS, Nieto-Domínguez M, Nikel P. The pAblo·pCasso self-curing vector toolset for unconstrained cytidine and adenine base-editing in Gram-negative bacteria. Nucleic Acids Res 2024; 52:e19. [PMID: 38180826 PMCID: PMC10899774 DOI: 10.1093/nar/gkad1236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 12/11/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024] Open
Abstract
A synthetic biology toolkit, exploiting clustered regularly interspaced short palindromic repeats (CRISPR) and modified CRISPR-associated protein (Cas) base-editors, was developed for genome engineering in Gram-negative bacteria. Both a cytidine base-editor (CBE) and an adenine base-editor (ABE) have been optimized for precise single-nucleotide modification of plasmid and genome targets. CBE comprises a cytidine deaminase conjugated to a Cas9 nickase from Streptococcus pyogenes (SpnCas9), resulting in C→T (or G→A) substitutions. Conversely, ABE consists of an adenine deaminase fused to SpnCas9 for A→G (or T→C) editing. Several nucleotide substitutions were achieved using these plasmid-borne base-editing systems and a novel protospacer adjacent motif (PAM)-relaxed SpnCas9 (SpRY) variant. Base-editing was validated in Pseudomonas putida and other Gram-negative bacteria by inserting premature STOP codons into target genes, thereby inactivating both fluorescent proteins and metabolic (antibiotic-resistance) functions. The functional knockouts obtained by engineering STOP codons via CBE were reverted to the wild-type genotype using ABE. Additionally, a series of induction-responsive vectors was developed to facilitate the curing of the base-editing platform in a single cultivation step, simplifying complex strain engineering programs without relying on homologous recombination and yielding plasmid-free, modified bacterial cells.
Collapse
Affiliation(s)
- Ekaterina Kozaeva
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Zacharias S Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Manuel Nieto-Domínguez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
6
|
Wirth NT, Rohr K, Danchin A, Nikel PI. Recursive genome engineering decodes the evolutionary origin of an essential thymidylate kinase activity in Pseudomonas putida KT2440. mBio 2023; 14:e0108123. [PMID: 37732760 PMCID: PMC10653934 DOI: 10.1128/mbio.01081-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/27/2023] [Indexed: 09/22/2023] Open
Abstract
IMPORTANCE Investigating fundamental aspects of metabolism is vital for advancing our understanding of the diverse biochemical capabilities and biotechnological applications of bacteria. The origin of the essential thymidylate kinase function in the model bacterium Pseudomonas putida KT2440, seemingly interrupted due to the presence of a large genomic island that disrupts the cognate gene, eluded a satisfactory explanation thus far. This is a first-case example of an essential metabolic function, likely acquired by horizontal gene transfer, which "landed" in a locus encoding the same activity. As such, foreign DNA encoding an essential dNMPK could immediately adjust to the recipient host-instead of long-term accommodation and adaptation. Understanding how these functions evolve is a major biological question, and the work presented here is a decisive step toward this direction. Furthermore, identifying essential and accessory genes facilitates removing those deemed irrelevant in industrial settings-yielding genome-reduced cell factories with enhanced properties and genetic stability.
Collapse
Affiliation(s)
- Nicolas T. Wirth
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens, Lyngby, Denmark
| | - Katja Rohr
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens, Lyngby, Denmark
| | - Antoine Danchin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens, Lyngby, Denmark
| |
Collapse
|
7
|
Carrillo Rincón AF, Farny NG. Unlocking the strength of inducible promoters in Gram-negative bacteria. Microb Biotechnol 2023; 16:961-976. [PMID: 36738130 PMCID: PMC10128130 DOI: 10.1111/1751-7915.14219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 01/02/2023] [Accepted: 01/07/2023] [Indexed: 02/05/2023] Open
Abstract
Inducible bacterial promoters are ubiquitous biotechnology tools that have a consistent architecture including two key elements: the operator region recognized by the transcriptional regulatory proteins, and the -10 and -35 consensus sequences required to recruit the sigma (σ) 70 subunits of RNA polymerase to initiate transcription. Despite their widespread use, leaky transcription in the OFF state remains a challenge. We have updated the architecture of the lac and tet promoters to improve their strength, control and portability by the adaptation of the consensus -10 and -35 sequence boxes strongly targeted by σ70 , incorporation of a strong ribosome binding site recognized broadly by Gram-negative bacteria, and independent control of the transcriptional regulators by constitutive promoters. To test the promoters, we use the far-red fluorescent protein mCardinal, which significantly improves the signal-to-background ratio of promoter measurements over widely utilized green fluorescent proteins. We validate the improvement in OFF state control and inducibility by demonstrating production of the toxic and aggregate-prone cocaine esterase enzyme CocE. We further demonstrate portability of the promoters to additional Gram-negative species Pseudomonas putida and Vibrio natriegens. Our results represent a significant improvement over existing protein expression systems that will enable advances in protein production for various biotechnology applications.
Collapse
Affiliation(s)
| | - Natalie G Farny
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| |
Collapse
|
8
|
Martínez-García E, Fraile S, Algar E, Aparicio T, Velázquez E, Calles B, Tas H, Blázquez B, Martín B, Prieto C, Sánchez-Sampedro L, Nørholm MH, Volke D, Wirth N, Dvořák P, Alejaldre L, Grozinger L, Crowther M, Goñi-Moreno A, Nikel P, Nogales J, de Lorenzo V. SEVA 4.0: an update of the Standard European Vector Architecture database for advanced analysis and programming of bacterial phenotypes. Nucleic Acids Res 2023; 51:D1558-D1567. [PMID: 36420904 PMCID: PMC9825617 DOI: 10.1093/nar/gkac1059] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 11/27/2022] Open
Abstract
The SEVA platform (https://seva-plasmids.com) was launched one decade ago, both as a database (DB) and as a physical repository of plasmid vectors for genetic analysis and engineering of Gram-negative bacteria with a structure and nomenclature that follows a strict, fixed architecture of functional DNA segments. While the current update keeps the basic features of earlier versions, the platform has been upgraded not only with many more ready-to-use plasmids but also with features that expand the range of target species, harmonize DNA assembly methods and enable new applications. In particular, SEVA 4.0 includes (i) a sub-collection of plasmids for easing the composition of multiple DNA segments with MoClo/Golden Gate technology, (ii) vectors for Gram-positive bacteria and yeast and [iii] off-the-shelf constructs with built-in functionalities. A growing collection of plasmids that capture part of the standard-but not its entirety-has been compiled also into the DB and repository as a separate corpus (SEVAsib) because of its value as a resource for constructing and deploying phenotypes of interest. Maintenance and curation of the DB were accompanied by dedicated diffusion and communication channels that make the SEVA platform a popular resource for genetic analyses, genome editing and bioengineering of a large number of microorganisms.
Collapse
Affiliation(s)
- Esteban Martínez-García
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Cantoblanco-Madrid, Spain
| | - Sofía Fraile
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Cantoblanco-Madrid, Spain
| | - Elena Algar
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Cantoblanco-Madrid, Spain
| | - Tomás Aparicio
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Cantoblanco-Madrid, Spain
| | - Elena Velázquez
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Cantoblanco-Madrid, Spain
| | - Belén Calles
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Cantoblanco-Madrid, Spain
| | - Huseyin Tas
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Cantoblanco-Madrid, Spain
| | - Blas Blázquez
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Cantoblanco-Madrid, Spain
| | | | | | | | - Morten H H Nørholm
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Nicolas T Wirth
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Pavel Dvořák
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 62500 Czech Republic
| | - Lorea Alejaldre
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (INIA-CSIC), Pozuelo de Alarcón 28223, Spain
| | - Lewis Grozinger
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (INIA-CSIC), Pozuelo de Alarcón 28223, Spain
- School of Computing, Newcastle University, NE4 5TG, UK
| | - Matthew Crowther
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (INIA-CSIC), Pozuelo de Alarcón 28223, Spain
- School of Computing, Newcastle University, NE4 5TG, UK
| | - Angel Goñi-Moreno
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (INIA-CSIC), Pozuelo de Alarcón 28223, Spain
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Juan Nogales
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Cantoblanco-Madrid, Spain
| | - Víctor de Lorenzo
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Cantoblanco-Madrid, Spain
| |
Collapse
|
9
|
Danchin A, Huang JD. SynBio 2.0, a new era for synthetic life: Neglected essential functions for resilience. Environ Microbiol 2023; 25:64-78. [PMID: 36045561 DOI: 10.1111/1462-2920.16140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 01/21/2023]
Affiliation(s)
- Antoine Danchin
- School of Biomedical Sciences, Li KaShing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Jian Dong Huang
- School of Biomedical Sciences, Li KaShing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|