1
|
Rebollar-Ramos D, Ovalle-Magallanes B, Raja HA, Jacome-Rebollo M, Figueroa M, Tovar-Palacio C, Noriega LG, Madariaga-Mazón A, Mata R. Antidiabetic Potential of a Trimeric Anthranilic Acid Peptide Isolated from Malbranchea flocciformis. Chem Biodivers 2024; 21:e202301602. [PMID: 38102075 DOI: 10.1002/cbdv.202301602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 12/17/2023]
Abstract
Compound 3, a trimeric anthranilic acid peptide, and another three metabolites were isolated from an organic extract from the culture medium of Malbranchea flocciformis ATCC 34530. The chemical structure proposed previously for 3 was unequivocally assigned via synthesis and X-ray diffraction analysis. Tripeptide 3 showed insulinotropic properties by decreasing the postprandial peak in healthy and hyperglycemic mice. It also increased glucose-induced insulin secretion in INS-1E at 5 μM, specifically at higher glucose concentrations. These results revealed that 3 might act as an insulin sensitizer and a non-classical insulin secretagogue. Altogether, these findings are in harmony with the in vivo oral glucose tolerance test and acute oral hypoglycemic assay. Finally, the chemical composition of the extract was established by the Global Natural Products Social Molecular Network platform. Phylogenetic analysis using the internal transcribed spacer region revealed that M. flocciformis ATCC 34530 is related to the Malbrancheaceae.
Collapse
Affiliation(s)
- Daniela Rebollar-Ramos
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | | | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC-27412, USA
| | - Mariano Jacome-Rebollo
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | - Mario Figueroa
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | - Claudia Tovar-Palacio
- Dirección de Nutrición, Instituto Nacional Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, 14080, México
| | - Lilia G Noriega
- Departamento de Fisiología de la Nutrición, Instituto Nacional Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, 14080, México
| | - Abraham Madariaga-Mazón
- Instituto de Química Unidad Mérida and f Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas Unidad Mérida, Universidad Nacional Autónoma de México, Mérida, Yucatán, México
| | - Rachel Mata
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| |
Collapse
|
2
|
Liu L, Fang X, Ren S, Jia R, Liu Q, Liu H, Xiu L, Yaqoob S, Cai D, Liu J. Targeted metabolic reveals different part of maize in polyphenolic metabolites during germination and hypoglycemic activity analysis. Food Chem X 2023; 19:100848. [PMID: 37780325 PMCID: PMC10534241 DOI: 10.1016/j.fochx.2023.100848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023] Open
Abstract
In this study, qualitative and quantitative analyses of phenolic compounds in the maize germinating seed embryo, radicle, and germ were performed at 0, 48, and 96 h post-germination, followed by the evaluation of their hypoglycemic activity. The results revealed the accumulation of 80 phenolics in different parts of germinated maize, of which 47, 48, and 53 were present in the seed embryo, radicle, and germ. After germination 22, 26, and 34 polyphenols were found to differential accumulate in the seed embryo, radicle, and germ. At 96 h post-germination, the content of monomeric phenols in the germ was higher than that in the radicle and seed embryo. Moreover, the inhibitory activity of polyphenols in the germ towards α-glucosidase and α-amylase was higher than that in the radicle and seed embryo. These results indicate that germination can effectively improve the type and content of phenolic compounds in different parts of maize.
Collapse
Affiliation(s)
- Lipeng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| | - Xiaomin Fang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| | - Shida Ren
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| | - Rui Jia
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| | - Qiannan Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| | - Huimin Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| | - Lin Xiu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| | - Sanabil Yaqoob
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| | - Dan Cai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| |
Collapse
|
3
|
Aguila-Muñoz DG, Vázquez-Lira G, Sarmiento-Tlale E, Cruz-López MC, Jiménez-Montejo FE, López Y López VE, Escalante CH, Andrade-Pavón D, Gómez-García O, Tamariz J, Mendieta-Moctezuma A. Synthesis and Molecular Docking Studies of Alkoxy- and Imidazole-Substituted Xanthones as α-Amylase and α-Glucosidase Inhibitors. Molecules 2023; 28:molecules28104180. [PMID: 37241920 DOI: 10.3390/molecules28104180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Current antidiabetic drugs have severe side effects, which may be minimized by new selective molecules that strongly inhibit α-glucosidase and weakly inhibit α-amylase. We have synthesized novel alkoxy-substituted xanthones and imidazole-substituted xanthones and have evaluated them for their in silico and in vitro α-glucosidase and α-amylase inhibition activity. Compounds 6c, 6e, and 9b promoted higher α-glucosidase inhibition (IC50 = 16.0, 12.8, and 4.0 µM, respectively) and lower α-amylase inhibition (IC50 = 76.7, 68.1, and >200 µM, respectively) compared to acarbose (IC50 = 306.7 µM for α-glucosidase and 20.0 µM for α-amylase). Contrarily, derivatives 10c and 10f showed higher α-amylase inhibition (IC50 = 5.4 and 8.7 µM, respectively) and lower α-glucosidase inhibition (IC50 = 232.7 and 145.2 µM, respectively). According to the structure-activity relationship, attaching 4-bromobutoxy or 4'-chlorophenylacetophenone moieties to the 2-hydroxy group of xanthone provides higher α-glucosidase inhibition and lower α-amylase inhibition. In silico studies suggest that these scaffolds are key in the activity and interaction of xanthone derivatives. Enzymatic kinetics studies showed that 6c, 9b, and 10c are mainly mixed inhibitors on α-glucosidase and α-amylase. In addition, drug prediction and ADMET studies support that compounds 6c, 9b, and 10c are candidates with antidiabetic potential.
Collapse
Affiliation(s)
- Dolores G Aguila-Muñoz
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Carretera Estatal Santa Inés Tecuexcomax-Tepetitla, Km 1.5, Tepetitla de Lardizábal, Tlaxcala 90700, Mexico
| | - Gabriel Vázquez-Lira
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Carretera Estatal Santa Inés Tecuexcomax-Tepetitla, Km 1.5, Tepetitla de Lardizábal, Tlaxcala 90700, Mexico
| | - Erika Sarmiento-Tlale
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Carretera Estatal Santa Inés Tecuexcomax-Tepetitla, Km 1.5, Tepetitla de Lardizábal, Tlaxcala 90700, Mexico
| | - María C Cruz-López
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Carretera Estatal Santa Inés Tecuexcomax-Tepetitla, Km 1.5, Tepetitla de Lardizábal, Tlaxcala 90700, Mexico
| | - Fabiola E Jiménez-Montejo
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Carretera Estatal Santa Inés Tecuexcomax-Tepetitla, Km 1.5, Tepetitla de Lardizábal, Tlaxcala 90700, Mexico
| | - Víctor E López Y López
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Carretera Estatal Santa Inés Tecuexcomax-Tepetitla, Km 1.5, Tepetitla de Lardizábal, Tlaxcala 90700, Mexico
| | - Carlos H Escalante
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. Carpio y Plan de Ayala S/N, Mexico City 11340, Mexico
| | - Dulce Andrade-Pavón
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu S/N, Mexico City 11340, Mexico
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. Carpio y Plan de Ayala S/N, Mexico City 11340, Mexico
| | - Omar Gómez-García
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. Carpio y Plan de Ayala S/N, Mexico City 11340, Mexico
| | - Joaquín Tamariz
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. Carpio y Plan de Ayala S/N, Mexico City 11340, Mexico
| | - Aarón Mendieta-Moctezuma
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Carretera Estatal Santa Inés Tecuexcomax-Tepetitla, Km 1.5, Tepetitla de Lardizábal, Tlaxcala 90700, Mexico
| |
Collapse
|
4
|
Ou-Yang JR, Wang QF, Li MM, Yue HL, He HP. Chemical constituents isolated from the fruits of Terminalia chebula Retz and their α-glucosidase inhibitory activities. BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2022.104424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Jia W, Bi Q, Jiang S, Tao J, Liu L, Yue H, Zhao X. Hypoglycemic activity of Codonopsis pilosula (Franch.) Nannf. in vitro and in vivo and its chemical composition identification by UPLC-Triple-TOF-MS/MS. Food Funct 2022; 13:2456-2464. [PMID: 35147627 DOI: 10.1039/d1fo03761g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Codonopsis pilosula (Franch.) Nannf. (CPN), mainly planted in the northwest region, is a traditional Chinese medicine/good health food for nourishing qi and promoting blood circulation. This study firstly evaluated the inhibitory effects of the CPN extraction (CPNE) on α-glucosidase in vitro and in vivo, and tentatively confirmed its chemical ingredients by employing UHPLC-Triple-TOF-MS/MS. The CPNE had strong inhibitory activities against mammalian α-glucosidase (sucrase and maltase) and yeast α-glycosidase with semi-inhibitory concentrations (IC50) of 0.241 mg mL-1, 0.326 mg mL-1 and 1.167 mg mL-1, respectively. In addition, the CPNE could significantly decrease the postprandial blood glucose (PBG) levels in the sucrose/maltose/starch tolerance assays of diabetic mice. Furthermore, a total of 29 compounds, including 3 alkaloids, 13 phenolic acids, 8 alcohol glycosides and 5 alkynosides, were assigned based on comparison with the standards and references, as well as the analysis of main fragments. These results demonstrated that CPN could be used as an adjuvant therapy or dietary supplements to effectively control the occurrence and development of diabetes.
Collapse
Affiliation(s)
- Wenjing Jia
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology Chinese Academy of Sciences, Qinghai 810008, China. .,University of Chinese Academy of Sciences, Beijing, China
| | - Qimao Bi
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology Chinese Academy of Sciences, Qinghai 810008, China. .,University of Chinese Academy of Sciences, Beijing, China
| | - Sirong Jiang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology Chinese Academy of Sciences, Qinghai 810008, China. .,University of Chinese Academy of Sciences, Beijing, China
| | - Jihong Tao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology Chinese Academy of Sciences, Qinghai 810008, China.
| | - Liying Liu
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology Chinese Academy of Sciences, Qinghai 810008, China.
| | - Huilan Yue
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology Chinese Academy of Sciences, Qinghai 810008, China.
| | - Xiaohui Zhao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology Chinese Academy of Sciences, Qinghai 810008, China.
| |
Collapse
|
6
|
Yue H, Wang L, Jiang S, Banma C, Jia W, Tao Y, Zhao X. Hypoglycemic effects of Rhodiola crenulata (HK. f. et. Thoms) H. Ohba in vitro and in vivo and its ingredient identification by UPLC-triple-TOF/MS. Food Funct 2022; 13:1659-1667. [PMID: 35080557 DOI: 10.1039/d1fo03436g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rhodiola crenulata (HK. f. et. Thoms) H. Ohba (RC), mainly distributed in the highly cold region of China, has long been used as a medicine/healthy food for eliminating fatigue and increasing blood circulation. This study aimed to evaluate the inhibitory effects of the RCRS extract on α-amylase and α-glucosidase (sucrase and maltase) in vitro and in vivo, and tentatively analyze and identify its chemical ingredients using UPLC-Triple-TOF/MS. The Rhodiola crenulata RCRS extract had strong inhibitory activities against α-amylase, sucrase and maltase with an IC50 of 0.031 mg mL-1, 0.142 mg mL-1 and 0.214 mg mL-1, respectively. Furthermore, the RCRS extract could significantly decrease the postprandial blood glucose (PBG) level of normal mice in a starch tolerance test, and reduce the PBG levels of diabetic mice in a starch/maltose/sucrose tolerance test. UHPLC-Triple-TOF-MS/MS analysis indicated that hydroxybenzoic acids, hydroxycinnamic acids, alcohol glycosides, flavonols and their derivatives were the main active ingredients in the RCRS extract. The results demonstrate that the RCRS extract of Rhodiola crenulata could be employed as a healthy food or medicine for controlling postprandial blood glucose levels.
Collapse
Affiliation(s)
- Huilan Yue
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China.
| | - Luya Wang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China. .,University of Chinese Academy of Sciences, Beijing, China
| | - Sirong Jiang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China. .,University of Chinese Academy of Sciences, Beijing, China
| | - Cailang Banma
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China.
| | - Wenjing Jia
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China. .,University of Chinese Academy of Sciences, Beijing, China
| | - Yanduo Tao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China.
| | - Xiaohui Zhao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China.
| |
Collapse
|
7
|
Wang W, Liu Z, Kong F, He L, Fang L, Shu Q. Quantitative analysis of resveratrol derivatives in the seed coats of tree peonies and their hypoglycemic activities in vitro/ vivo. Food Funct 2022; 13:846-856. [PMID: 34989366 DOI: 10.1039/d1fo03412j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Tree peonies are well-known horticultural and medicinal plants. The tree peony seeds, as emerging woody oil crops, recently have attracted great attention for their metabolites and bioactivities. In this study, the phytochemicals isolated from tree peony seed coats were systematically investigated. Seven polyphenolics were separated and prepared, mainly belonging to resveratrol derivatives. There was a great variation in the seed coat polyphenolic content among eight Paeonia species, and the contents of the resveratrol trimers and dimers were significantly higher in the seed coats of Paeonia ostii than other species. Based on the HPLC fingerprint characteristics and chemometric analysis, a clear discrimination among Paeonia plants was found, including the composition patterns and contents of the constituents. Moreover, the characteristic phytochemicals (vateriferol and trans-ε-viniferin) could significantly reduce the starch-mediated levels of postprandial blood glucose in diabetic/normal mice. In addition, in vitro enzyme tests showed that the two compounds could effectively and competitively inhibit α-glucosidase, with the IC50 values of 3.01 and 7.75 μM, respectively, indicating that vateriferol and trans-ε-viniferin could be therapeutic potential agents for hyperglycemia and diabetes mellitus.
Collapse
Affiliation(s)
- Weidong Wang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, CAS, Xining 810001, China.
| | - Zenggen Liu
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, CAS, Xining 810001, China.
| | - Fan Kong
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, CAS, Beijing 100093, China.
| | - Lixia He
- Forestry Sci-tech Extension Station of Gansu Province, Lanzhou 730046, China
| | - Linghao Fang
- Ruilaiyin (Beijing) Biotechnology Co., Ltd, Beijing 100094, China
| | - Qingyan Shu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, CAS, Beijing 100093, China.
| |
Collapse
|
8
|
Jiang S, Chen C, Dong Q, Shao Y, Zhao X, Tao Y, Yue H. Alkaloids and phenolics identification in fruit of Nitraria tangutorum Bobr. by UPLC-Q-TOF-MS/MS and their a-glucosidase inhibitory effects in vivo and in vitro. Food Chem 2021; 364:130412. [PMID: 34174646 DOI: 10.1016/j.foodchem.2021.130412] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 10/21/2022]
Abstract
Nitraria tangutorum Bobr. (NTB), mainly distributed in the Qaidam Basin of Tibetan Plateau, have high economic, ecological and medicinal value. The chemical compositions in the NTB fruits were tentatively analyzed and characterized by applying UPLC-Q-TOF-MS/MS. Total 45 constituents, including 9 hydroxycinnamic acids derivatives, 12 flavonols, 4 flavonoids, 1 trolox derivative, 8 β-carboline alkaloids, 4 tryptophan derivatives, and 7 other amino acid derivatives were identified by comparing with standard products, and analyzing their retention times, characteristic fragment ions and deprotonated molecule ions. The activity studies in vitro indicated that NTB-Z and NTB-C extracts had marked inhibitory effects against sucrase and maltase. Further sucrose/maltose/starch tolerance experiment demonstrated that both NTB-Z and NTB-C extracts at 400 mg/kg could markedly lower the postprandial blood glucose (PBG) level in diabetic animals. All these results indicated that the NTB fruits could be used as the functional health food or medicine for controlling postprandial blood glucose level.
Collapse
Affiliation(s)
- Sirong Jiang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chen Chen
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China
| | - Qi Dong
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China
| | - Yun Shao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China
| | - Xiaohui Zhao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China.
| | - Yanduo Tao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China
| | - Huilan Yue
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China.
| |
Collapse
|
9
|
Matos FMD, Castro RJSD. Insetos comestíveis como potenciais fontes de proteínas para obtenção de peptídeos bioativos. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2021. [DOI: 10.1590/1981-6723.04420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Resumo O consumo de insetos como uma fonte alternativa de proteínas é considerado uma tendência futura e uma estratégia viável, com potencial notório para garantia do fornecimento de alimentos em nível global. Os insetos são uma fonte não convencional de proteínas, seja para consumo humano direto ou indiretamente, como ingredientes em alimentos formulados. Além disso, estudos científicos têm demonstrado que a hidrólise enzimática destas proteínas resulta na produção de peptídeos com atividades biológicas de grande interesse, como atividade antioxidante, antidiabética, anti-hipertensiva e antimicrobiana. O uso desses peptídeos com fim nutracêutico pode substituir ou reduzir o uso de drogas sintéticas, as quais estão associadas a efeitos colaterais indesejáveis. O presente trabalho teve como objetivo abordar o uso de insetos na alimentação humana, destacando sua aplicação como substrato proteico na hidrólise enzimática para produção de peptídeos bioativos. As principais propriedades bioativas dos peptídeos foram relatadas.
Collapse
|
10
|
Identification of phenolic compounds in fruits of Ribes stenocarpum Maxim. By UHPLC-QTOF/MS and their hypoglycemic effects in vitro and in vivo. Food Chem 2020; 344:128568. [PMID: 33246687 DOI: 10.1016/j.foodchem.2020.128568] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023]
Abstract
The gooseberry (Ribes stenocarpum Maxim. (CBZ)) is a wild and noncommercially cultivated berry fruit widely distributed in the Tibetan Plateau. The phenolic constituents from the berry fruit of CBZ were firstly identified by employing UPLC-QTOF MS. A total of 41 compounds, including hydroxycinnamic acids, hydroxybenzoic acids, flavonols and dihydroflavonol, were identified in view of their molecular weight, characteristic fragment ions and retention times. Further in vitro enzyme assay indicated that CBZ fruit extract could strongly and effectively inhibited a-glucosidase and α-amylase, with the IC50 values of 0.013 mg/mL and 0.005 mg/mL, respectively. In addition, the starch/maltose/sucrose tolerance experiment demonstrated that the CBZ fruit extract could reduce the sucrose mediated postprandial blood glucose (PBG) levels in normal mice, and significantly lower starch/maltose/ sucrose mediated PBG levels in diabetic mice. These results suggested that this berry fruit could be used as a dietary supplement, or drug for the control of hyperglycemia.
Collapse
|
11
|
Hameed A, Galli M, Adamska-Patruno E, Krętowski A, Ciborowski M. Select Polyphenol-Rich Berry Consumption to Defer or Deter Diabetes and Diabetes-Related Complications. Nutrients 2020; 12:E2538. [PMID: 32825710 PMCID: PMC7551116 DOI: 10.3390/nu12092538] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022] Open
Abstract
Berries are considered "promising functional fruits" due to their distinct and ubiquitous therapeutic contents of anthocyanins, proanthocyanidins, phenolic acids, flavonoids, flavanols, alkaloids, polysaccharides, hydroxycinnamic, ellagic acid derivatives, and organic acids. These polyphenols are part of berries and the human diet, and evidence suggests that their intake is associated with a reduced risk or the reversal of metabolic pathophysiologies related to diabetes, obesity, oxidative stress, inflammation, and hypertension. This work reviewed and summarized both clinical and non-clinical findings that the consumption of berries, berry extracts, purified compounds, juices, jams, jellies, and other berry byproducts aided in the prevention and or otherwise management of type 2 diabetes mellitus (T2DM) and related complications. The integration of berries and berries-derived byproducts into high-carbohydrate (HCD) and high-fat (HFD) diets, also reversed/reduced the HCD/HFD-induced alterations in glucose metabolism-related pathways, and markers of oxidative stress, inflammation, and lipid oxidation in healthy/obese/diabetic subjects. The berry polyphenols also modulate the intestinal microflora ecology by opposing the diabetic and obesity rendered symbolic reduction of Bacteroidetes/Firmicutes ratio, intestinal mucosal barrier dysfunction-restoring bacteria, short-chain fatty acids, and organic acid producing microflora. All studies proposed a number of potential mechanisms of action of respective berry bioactive compounds, although further mechanistic and molecular studies are warranted. The metabolic profiling of each berry is also included to provide up-to-date information regarding the potential anti-oxidative/antidiabetic constituents of each berry.
Collapse
Affiliation(s)
- Ahsan Hameed
- Clinical Research Center, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.H.); (E.A.-P.); (A.K.)
| | - Mauro Galli
- Department of Medical Biology, Medical University of Bialystok, 15-222 Bialystok, Poland;
| | - Edyta Adamska-Patruno
- Clinical Research Center, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.H.); (E.A.-P.); (A.K.)
| | - Adam Krętowski
- Clinical Research Center, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.H.); (E.A.-P.); (A.K.)
- Department of Endocrinology, Diabetology, and Internal Medicine, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Michal Ciborowski
- Clinical Research Center, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.H.); (E.A.-P.); (A.K.)
| |
Collapse
|
12
|
Evaluation of ACE, α-glucosidase, and lipase inhibitory activities of peptides obtained by in vitro digestion of selected species of edible insects. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03495-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractThe objective of this study was to examine the inhibition of the activity of enzymes associated with development of the metabolic syndrome by peptide fractions received from simulated gastrointestinal digestion and absorption of heat-treated edible insects. The inhibitory activities of insect-derived peptides were determined against key enzymes relevant to the metabolic syndrome such as the angiotensin-converting enzyme (ACE), pancreatic lipase, and α-glucosidase. After the in vitro absorption process, all hydrolysates showed high inhibitory activity; however, the most effective metabolic syndrome-inhibitory peptides were received after separation on Sephadex G10. The best results were found for peptide fractions obtained from Schistocerca gregaria. The highest enzymes inhibitory activities were obtained for peptide fractions from S. gregaria: boiled for ACE (IC50 3.95 µg mL−1), baked for lipase (IC50 9.84 µg mL−1), and raw for α-glucosiadase (IC50 1.89 µg mL−1) S. gregaria, respectively. Twelve sequences of peptides from the edible insects were identified and their chemical synthesis was carried out as well. Among the synthesized peptides, the KVEGDLK, YETGNGIK, AIGVGAIR, IIAPPER, and FDPFPK sequences of peptides exhibited the highest inhibitory activity. Generally, the heat treatment process applied to edible insects has a positive effect on the properties of the peptide fractions studied.
Collapse
|
13
|
Li LJ, Liu XQ, Du XP, Wu L, Jiang ZD, Ni H, Li QB, Chen F. Preparation of isoquercitrin by biotransformation of rutin using α-L-rhamnosidase from Aspergillus niger JMU-TS528 and HSCCC purification. Prep Biochem Biotechnol 2019; 50:1-9. [PMID: 31441715 DOI: 10.1080/10826068.2019.1655763] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Isoquercitrin is a flavonoid with important applications in the pharmaceutical and nutraceutical industries. However, a low yield and high production cost hinders the industrial preparation of isoquercitrin. In the present study, isoquercitrin was prepared by biotransformation of rutin using α-L-rhamnosidase from Aspergillus niger JMU-TS528 combined with high-speed countercurrent chromatography (HSCCC) purification. As a result, the optimum transformation pH, temperature, and time were pH 4.0, 60 °C, and 60 min, respectively. The Km and Vmax were 0.36 mM and 0.460 mmol/min, respectively. For isoquercitrin production, the optimal rutin concentration and transformation time were approximately 1000 mg/L and 60 min. The rutin transformation rate reached 96.44%. The isoquercitrin was purified to a purity of 97.83% using one-step purification with HSCCC. The isoquercitrin was identified using UPLC-Q-TOF-MS. The comprehensive results indicated that the biotransformation procedure using the α-L-rhamnosidase from A. niger JMU-TS528 combined with HSCCC was a simple and effective process to prepare isoquercitrin, which might facilitate the production of isoquercitrin for industrial use.
Collapse
Affiliation(s)
- Li Jun Li
- College of Food and Biological Engineering, Jimei University, Xiamen, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - Xiao Qing Liu
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Xi Ping Du
- College of Food and Biological Engineering, Jimei University, Xiamen, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - Ling Wu
- College of Food and Biological Engineering, Jimei University, Xiamen, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - Ze Dong Jiang
- College of Food and Biological Engineering, Jimei University, Xiamen, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - Hui Ni
- College of Food and Biological Engineering, Jimei University, Xiamen, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - Qing Biao Li
- College of Food and Biological Engineering, Jimei University, Xiamen, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - Feng Chen
- College of Food and Biological Engineering, Jimei University, Xiamen, China.,Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC, USA
| |
Collapse
|
14
|
de Bem GF, Costa CA, Santos IB, Cristino Cordeiro VDS, de Carvalho LCRM, de Souza MAV, Soares RDA, Sousa PJDC, Ognibene DT, Resende AC, de Moura RS. Antidiabetic effect of Euterpe oleracea Mart. (açaí) extract and exercise training on high-fat diet and streptozotocin-induced diabetic rats: A positive interaction. PLoS One 2018; 13:e0199207. [PMID: 29920546 PMCID: PMC6007924 DOI: 10.1371/journal.pone.0199207] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/04/2018] [Indexed: 12/17/2022] Open
Abstract
A growing body of evidence suggests a protective role of polyphenols and exercise training on the disorders of type 2 diabetes mellitus (T2DM). We aimed to assess the effect of the açaí seed extract (ASE) associated with exercise training on diabetic complications induced by high-fat (HF) diet plus streptozotocin (STZ) in rats. Type 2 diabetes was induced by feeding rats with HF diet (55% fat) for 5 weeks and a single dose of STZ (35 mg/kg i.p.). Control (C) and Diabetic (D) animals were subdivided into four groups each: Sedentary, Training, ASE Sedentary, and ASE Training. ASE (200 mg/kg/day) was administered by gavage and the exercise training was performed on a treadmill (30min/day; 5 days/week) for 4 weeks after the diabetes induction. In type 2 diabetic rats, the treatment with ASE reduced blood glucose, insulin resistance, leptin and IL-6 levels, lipid profile, and vascular dysfunction. ASE increased the expression of insulin signaling proteins in skeletal muscle and adipose tissue and plasma GLP-1 levels. ASE associated with exercise training potentiated the reduction of glycemia by decreasing TNF-α levels, increasing pAKT and adiponectin expressions in adipose tissue, and IR and pAMPK expressions in skeletal muscle of type 2 diabetic rats. In conclusion, ASE treatment has an antidiabetic effect in type 2 diabetic rats by activating the insulin-signaling pathway in muscle and adipose tissue, increasing GLP-1 levels, and an anti-inflammatory action. Exercise training potentiates the glucose-lowering effect of ASE by activating adiponectin-AMPK pathway and increasing IR expression.
Collapse
Affiliation(s)
- Graziele Freitas de Bem
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Cristiane Aguiar Costa
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Izabelle Barcellos Santos
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | | | | | | | - Ricardo de Andrade Soares
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | | | - Dayane Teixeira Ognibene
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Angela Castro Resende
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
- * E-mail: ,
| | - Roberto Soares de Moura
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
15
|
Ahmed AM, Khabour OF, Awadalla AH, Waggiallah HA. Serum trace elements in insulin-dependent and non-insulin-dependent diabetes: a comparative study. Diabetes Metab Syndr Obes 2018; 11:887-892. [PMID: 30584343 PMCID: PMC6287528 DOI: 10.2147/dmso.s186602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Diabetes mellitus is associated with imbalance in body trace elements. The aim of the current investigation was to compare the levels of trace elements (Zn, Mg, Mn, Cu, Na, K, Fe, Ca, Cr, and Se) in insulin dependent (IDDM) and non-insulin dependent (NIDDM) diabetes. METHODS A total of 100 patients with diabetes (40 IDDM and 60 NIDDM) and 50 healthy subjects were recruited in the study from both genders. Biochemical measures include glucose, lipids, and HbA1C. RESULTS The results showed that Zn, Mg, Cu and Cr were significant lower in patients with diabetes compared to the control group (P<0.01). In addition, Zn and Cr were significantly lower in IDDM than NIDDM (P<0.05). Moreover, Zn and Mg levels were inversely correlated with HbA1c in IDDM and NIDDM (P<0.05). Zn was inversely correlated with fasting blood glucose in IDDM (P<0.05). Finally, no correlation between trace element levels with BMI was found (P>0.05). CONCLUSION Disturbance in trace element profile among IDDM and NIDDM is similar.
Collapse
Affiliation(s)
- Ahmed M Ahmed
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia,
| | - Omar F Khabour
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia,
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Akram H Awadalla
- Department of Clinical Chemistry, College of Medical Laboratory Sciences, Kordofan University, Alobayid, Sudan
| | - Hisham A Waggiallah
- Department of Medical Laboratory Sciences, Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| |
Collapse
|
16
|
Nongonierma AB, FitzGerald RJ. Unlocking the biological potential of proteins from edible insects through enzymatic hydrolysis: A review. INNOV FOOD SCI EMERG 2017. [DOI: 10.1016/j.ifset.2017.08.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|