1
|
Herou E, Mörtsell E, Grubb A, Nozohoor S, Zindovic I, Ederoth P, Dardashti A, Bjursten H. Shrunken pore syndrome in heart transplantation: a pore ready to close? SCAND CARDIOVASC J 2025; 59:2481173. [PMID: 40094887 DOI: 10.1080/14017431.2025.2481173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 02/14/2025] [Accepted: 03/13/2025] [Indexed: 03/19/2025]
Abstract
Background: A newly discovered renal syndrome, shrunken pore syndrome (SPS), has been shown to increase mortality regardless of renal function. SPS is defined as an estimated glomerular filtration rate (eGFR) of cystatin C ≤ 60% than eGFRcreatinine. We set out to study SPS in relation to the survival of heart transplantation patients with a follow-up of up to 12 years. Methods. This was a single-center cohort study including 253 consecutive patients undergoing heart transplantation. The prevalence of SPS at different time points post-transplantation and its effect on survival was evaluated using Kaplan-Meier's analysis and multivariable Cox proportional hazards regression. Results. The prevalence of SPS was 7.5% the day after transplantation (D1), which rose to 71% week 4 after surgery. There was no difference in survival for patients with SPS D1 compared to patients without SPS D1. Patients with SPS 4 weeks compared to patients without SPS 4 weeks after transplantation showed a 5- and 10-year survival of 73% vs. 93% (p = .02) and 63% vs. 90% (p = .005), respectively. SPS developed during the postoperative period was also found to be an independent predictor of mortality (HR 4.65; 95% CI 1.36-15.8). Discussion. SPS that developed in the postoperative course after heart transplantation was found to be an independent predictor of mortality with a severe negative impact on 5- and 10-year survival.
Collapse
Affiliation(s)
- Erik Herou
- Pediatric Cardiac Surgery, Skåne University Hospital, Lund University, Lund, Sweden
| | - Emilie Mörtsell
- Department of Cardiothoracic Surgery, Skåne University Hospital, Lund University, Lund, Sweden
| | - Anders Grubb
- Department of Clinical Chemistry, Skåne University Hospital, Lund University, Lund, Sweden
| | - Shahab Nozohoor
- Department of Cardiothoracic Surgery, Skåne University Hospital, Lund University, Lund, Sweden
| | - Igor Zindovic
- Department of Cardiothoracic Surgery, Skåne University Hospital, Lund University, Lund, Sweden
| | - Per Ederoth
- Department of Cardiothoracic Surgery, Skåne University Hospital, Lund University, Lund, Sweden
| | - Alain Dardashti
- Department of Cardiothoracic Surgery, Skåne University Hospital, Lund University, Lund, Sweden
| | - Henrik Bjursten
- Department of Cardiothoracic Surgery, Skåne University Hospital, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Hammad FT, Lubbad L, Al-Salam S, Yasin J, Meeran MFN, Ojha S, Hammad WF. The Effect of Hypertension on the Recovery of Renal Dysfunction following Reversal of Unilateral Ureteral Obstruction in the Rat. Int J Mol Sci 2023; 24:ijms24087365. [PMID: 37108528 PMCID: PMC10138964 DOI: 10.3390/ijms24087365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/29/2023] Open
Abstract
Both ureteral obstruction (UO) and hypertension are common conditions that affect kidney functions. Hypertension and chronic kidney disease are closely associated with an overlapping and intermingled cause-and-effect relationship. The effect of hypertension on the renal dysfunction following reversible UO has not been studied previously. To study this effect, spontaneously hypertensive (G-HT, n = 10) and normotensive Wistar (G-NT, n = 10) rats underwent 48-h reversible left unilateral UO (UUO), and the effect of UUO was studied 96 h following UUO reversal. The glomerular filtration rate, renal blood flow, and renal tubular functions such as the fractional excretion of sodium in the post-obstructed left kidney (POK) in both groups were significantly altered compared with the non-obstructed right kidney (NOK). However, the alterations in the G-HT were significantly more exaggerated when compared with the G-NT. Similar findings were observed with the histological features, gene expression of kidney injury markers, pro-inflammatory, pro-fibrotic and pro-apoptotic cytokines, and pro-collagen, as well as tissue levels of apoptotic markers. We conclude that hypertension has significantly exaggerated the alterations in renal functions and other parameters of renal injury associated with UUO.
Collapse
Affiliation(s)
- Fayez T Hammad
- Department of Surgery, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Loay Lubbad
- Department of Surgery, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Suhail Al-Salam
- Department of Pathology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Javed Yasin
- Department of Internal Medicine, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Mohamed Fizur Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Waheed F Hammad
- School of Medicine, University of Jordan, Amman 11942, Jordan
| |
Collapse
|
4
|
Malmgren L, Öberg C, den Bakker E, Leion F, Siódmiak J, Åkesson A, Lindström V, Herou E, Dardashti A, Xhakollari L, Grubb G, Strevens H, Abrahamson M, Helmersson-Karlqvist J, Magnusson M, Björk J, Nyman U, Ärnlöv J, Ridefelt P, Åkerfeldt T, Hansson M, Sjöström A, Mårtensson J, Itoh Y, Grubb D, Tenstad O, Hansson LO, Olafsson I, Campos AJ, Risch M, Risch L, Larsson A, Nordin G, Pottel H, Christensson A, Bjursten H, Bökenkamp A, Grubb A. The complexity of kidney disease and diagnosing it - cystatin C, selective glomerular hypofiltration syndromes and proteome regulation. J Intern Med 2023; 293:293-308. [PMID: 36385445 PMCID: PMC10107454 DOI: 10.1111/joim.13589] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Estimation of kidney function is often part of daily clinical practice, mostly done by using the endogenous glomerular filtration rate (GFR)-markers creatinine or cystatin C. A recommendation to use both markers in parallel in 2010 has resulted in new knowledge concerning the pathophysiology of kidney disorders by the identification of a new set of kidney disorders, selective glomerular hypofiltration syndromes. These syndromes, connected to strong increases in mortality and morbidity, are characterized by a selective reduction in the glomerular filtration of 5-30 kDa molecules, such as cystatin C, compared to the filtration of small molecules <1 kDa dominating the glomerular filtrate, for example water, urea and creatinine. At least two types of such disorders, shrunken or elongated pore syndrome, are possible according to the pore model for glomerular filtration. Selective glomerular hypofiltration syndromes are prevalent in investigated populations, and patients with these syndromes often display normal measured GFR or creatinine-based GFR-estimates. The syndromes are characterized by proteomic changes promoting the development of atherosclerosis, indicating antibodies and specific receptor-blocking substances as possible new treatment modalities. Presently, the KDIGO guidelines for diagnosing kidney disorders do not recommend cystatin C as a general marker of kidney function and will therefore not allow the identification of a considerable number of patients with selective glomerular hypofiltration syndromes. Furthermore, as cystatin C is uninfluenced by muscle mass, diet or variations in tubular secretion and cystatin C-based GFR-estimation equations do not require controversial race or sex terms, it is obvious that cystatin C should be a part of future KDIGO guidelines.
Collapse
Affiliation(s)
- Linnea Malmgren
- Department of Clinical Sciences Malmö, Clinical and Molecular Osteoporosis Research Unit, Lund University, Malmö, Sweden.,Department of Geriatrics, Skåne University Hospital, Malmö, Sweden
| | - Carl Öberg
- Department of Clinical Sciences Lund, Division of Nephrology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Emil den Bakker
- Department of Pediatrics, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Felicia Leion
- Department of Clinical Chemistry, Skåne University Hospital, Lund University, Lund, Sweden
| | - Joanna Siódmiak
- Department of Laboratory Medicine, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum (Nicolaus Copernicus University in Torun), Bydgoszcz, Poland
| | - Anna Åkesson
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden.,Clinical Studies Sweden, Forum South, Skåne University Hospital, Lund, Sweden
| | - Veronica Lindström
- Department of Clinical Chemistry, Skåne University Hospital, Lund University, Lund, Sweden
| | - Erik Herou
- Department of Cardiothoracic Surgery, Skåne University Hospital, Lund University, Lund, Sweden
| | - Alain Dardashti
- Department of Cardiothoracic Surgery, Skåne University Hospital, Lund University, Lund, Sweden
| | - Liana Xhakollari
- Department of Clinical Sciences, Lund University, Malmö, Sweden.,Department of Nephrology, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Gabriel Grubb
- Department of Radiology, Skåne University Hospital, Lund, Sweden
| | - Helena Strevens
- Department of Clinical Sciences Lund, Department of Obstetrics and Gynaecology, Lund University, Lund, Sweden
| | - Magnus Abrahamson
- Department of Clinical Chemistry, Skåne University Hospital, Lund University, Lund, Sweden
| | | | - Martin Magnusson
- Department of Clinical Sciences, Lund University, Malmö, Sweden.,Department of Cardiology, Skåne University Hospital, Malmö, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Hypertension in Africa Research Team (HART), North West University, Potchefstroom, South Africa
| | - Jonas Björk
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden.,Clinical Studies Sweden, Forum South, Skåne University Hospital, Lund, Sweden
| | - Ulf Nyman
- Department of Translational Medicine, Division of Medical Radiology, University of Lund, Malmö, Sweden
| | - Johan Ärnlöv
- Department of Neurobiology, Care Sciences and Society (NVS), Family Medicine and Primary Care Unit, Karolinska Institute, Huddinge, Sweden.,School of Health and Social Studies, Dalarna University, Falun, Sweden
| | - Peter Ridefelt
- Department of Medical Sciences, Clinical Chemistry, Uppsala University Hospital, Uppsala, Sweden
| | - Torbjörn Åkerfeldt
- Department of Medical Sciences, Clinical Chemistry, Uppsala University Hospital, Uppsala, Sweden
| | - Magnus Hansson
- Department of Clinical Chemistry, Karolinska University Hospital, Huddinge, Sweden
| | - Anna Sjöström
- Department of Clinical Chemistry, Karolinska University Hospital, Huddinge, Sweden
| | - Johan Mårtensson
- Department of Physiology and Pharmacology, Section of Anaesthesia and Intensive Care, Karolinska Institute, Stockholm, Sweden
| | - Yoshihisa Itoh
- Clinical Laboratory, Eiju General Hospital, Life Extension Research Institute, Tokyo, Japan
| | - David Grubb
- Department of Cardiothoracic Surgery, Skåne University Hospital, Lund University, Lund, Sweden
| | - Olav Tenstad
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Lars-Olov Hansson
- Department of Clinical Chemistry, Karolinska University Hospital, Huddinge, Sweden
| | - Isleifur Olafsson
- Department of Clinical Biochemistry, Landspitali - National University Hospital of Iceland, Reykjavik, Iceland
| | - Araceli Jarquin Campos
- Faculty of Medical Sciences, Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Martin Risch
- Central Laboratory, Cantonal Hospital Graubünden, Chur, Switzerland
| | - Lorenz Risch
- Faculty of Medical Sciences, Private University in the Principality of Liechtenstein, Triesen, Liechtenstein.,University Institute of Clinical Chemistry, University Hospital and University of Bern, Inselspital, Bern, Switzerland
| | - Anders Larsson
- Department of Medical Sciences, Clinical Chemistry, Uppsala University Hospital, Uppsala, Sweden
| | | | - Hans Pottel
- Department of Public Health and Primary Care, Katholieke Universiteit Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Anders Christensson
- Department of Nephrology, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Henrik Bjursten
- Department of Cardiothoracic Surgery, Skåne University Hospital, Lund University, Lund, Sweden
| | - Arend Bökenkamp
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Anders Grubb
- Department of Clinical Chemistry, Skåne University Hospital, Lund University, Lund, Sweden
| |
Collapse
|
5
|
Nalin N, Al Dhanhani A, AlBawardi A, Sharma C, Chandran S, Yasin J, Bakoush O. Effect of angiotensin II on diabetic glomerular hyperpermeability: an in vivo permeability study in rats. Am J Physiol Renal Physiol 2020; 319:F833-F838. [PMID: 33017190 DOI: 10.1152/ajprenal.00259.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Angiotensin II drives the pathogenesis of diabetic kidney disease, and its systemic administration induces glomerular hyperpermeability in normal rats. However, the response of diabetic glomerular permeability to angiotensin II is largely unknown. In the present study, we investigated the impact of extended systemic administration of angiotensin II on the glomerular permeability of streptozotocin (STZ)-induced late diabetes in rats. We examined the changes in the glomerular permeability after subcutaneous infusion of angiotensin II at 200 ng·kg-1·min-1 for 7 days in male Wistar diabetic rats with 3 mo of STZ-induced diabetes (i.e., blood glucose of ∼20 mmol/L). We also compared these changes with the effects on nondiabetic rats. The sieving coefficients (θ) for inert polydisperse Ficoll molecules, which had a radius of 10-90 Å (Ficoll70-90 Å), were measured in vivo. The θ for large Ficoll molecules was selectively enhanced after infusion of extended angiotensin II in both diabetic (θ for Ficoll70-90 Å = 0.00244 vs. 0.00079, P < 0.001) and nondiabetic animals (θ for Ficoll70-90 Å = 0.00029 vs. 0.00006, P < 0.001). These changes were compatible with the more than twofold increase in the macromolecular glomerular transport through the large-pore pathways after infusion of angiotensin II in both diabetic and nondiabetic animals. Angiotensin II infusion enhanced the large shunt-like glomerular transport pathway of STZ-induced late diabetes. Such defects can account for the large-molecular-weight IgM-uria that is observed in severe diabetic kidney disease.
Collapse
Affiliation(s)
- Nima Nalin
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ali Al Dhanhani
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Alia AlBawardi
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sanjana Chandran
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Javed Yasin
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Omran Bakoush
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
6
|
Hammad FT, Al-Salam S, Hammad WF, Yasin J, Lubbad L. Despite initial recovery of GFR, long-term renal functions deteriorate following short periods of unilateral ureteral obstruction. Am J Physiol Renal Physiol 2020; 319:F523-F533. [PMID: 32744088 DOI: 10.1152/ajprenal.00096.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Following the release of short periods of unilateral ureteral obstruction (UUO), glomerular filtration rate (GFR) recovers by time. However, research in experimental animal models has demonstrated the presence of an ongoing element of renal interstitial fibrosis a few weeks following UUO reversal. Interstitial fibrosis can cause deterioration in GFR, and it is not known whether it leads to an ongoing slow deterioration in other renal functions despite the apparent initial recovery postreversal. To investigate this, rats underwent a 72-h reversible UUO. Renal functions of nonobstructed and previously obstructed kidneys were measured 1, 4, and 18 mo postreversal. GFR in nonobstructed and previously obstructed kidneys was similar up to 18 mo postreversal. However, there was ongoing tubulointerstitial fibrosis, and the degree of tubular atrophy and dilatation deteriorated by time. This was associated with an increase in urinary albumin leakage and alterations in renal injury markers, proinflammatory and profibrotic cytokines, and p53 from 4 mo onward despite the recovery in GFR. In conclusion, several aspects of renal functions continue to deteriorate following reversal of relatively short periods of UUO despite the initial recovery in GFR. This might stimulate further research in this area and might have clinical implications in terms of determining the best time for intervention following acute ureteral obstruction and long-term monitoring of these individuals.
Collapse
Affiliation(s)
- Fayez T Hammad
- Department of Surgery, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Suhail Al-Salam
- Department of Pathology College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | - Javed Yasin
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Loay Lubbad
- Department of Surgery, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|