1
|
Khurana MP, Scheidwasser-Clow N, Penn MJ, Bhatt S, Duchêne DA. The Limits of the Constant-rate Birth-Death Prior for Phylogenetic Tree Topology Inference. Syst Biol 2024; 73:235-246. [PMID: 38153910 PMCID: PMC11129600 DOI: 10.1093/sysbio/syad075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 12/30/2023] Open
Abstract
Birth-death models are stochastic processes describing speciation and extinction through time and across taxa and are widely used in biology for inference of evolutionary timescales. Previous research has highlighted how the expected trees under the constant-rate birth-death (crBD) model tend to differ from empirical trees, for example, with respect to the amount of phylogenetic imbalance. However, our understanding of how trees differ between the crBD model and the signal in empirical data remains incomplete. In this Point of View, we aim to expose the degree to which the crBD model differs from empirically inferred phylogenies and test the limits of the model in practice. Using a wide range of topology indices to compare crBD expectations against a comprehensive dataset of 1189 empirically estimated trees, we confirm that crBD model trees frequently differ topologically compared with empirical trees. To place this in the context of standard practice in the field, we conducted a meta-analysis for a subset of the empirical studies. When comparing studies that used Bayesian methods and crBD priors with those that used other non-crBD priors and non-Bayesian methods (i.e., maximum likelihood methods), we do not find any significant differences in tree topology inferences. To scrutinize this finding for the case of highly imbalanced trees, we selected the 100 trees with the greatest imbalance from our dataset, simulated sequence data for these tree topologies under various evolutionary rates, and re-inferred the trees under maximum likelihood and using the crBD model in a Bayesian setting. We find that when the substitution rate is low, the crBD prior results in overly balanced trees, but the tendency is negligible when substitution rates are sufficiently high. Overall, our findings demonstrate the general robustness of crBD priors across a broad range of phylogenetic inference scenarios but also highlight that empirically observed phylogenetic imbalance is highly improbable under the crBD model, leading to systematic bias in data sets with limited information content.
Collapse
Affiliation(s)
- Mark P Khurana
- Section of Epidemiology, Department of Public Health, University of Copenhagen, 1352 Copenhagen, Denmark
| | - Neil Scheidwasser-Clow
- Section of Epidemiology, Department of Public Health, University of Copenhagen, 1352 Copenhagen, Denmark
| | - Matthew J Penn
- Department of Statistics, University of Oxford, OX1 3LB, Oxford, UK
| | - Samir Bhatt
- Section of Epidemiology, Department of Public Health, University of Copenhagen, 1352 Copenhagen, Denmark
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, SW7 2AZ, London, UK
| | - David A Duchêne
- Centre for Evolutionary Hologenomics, University of Copenhagen, 1352 Copenhagen, Denmark
| |
Collapse
|
2
|
Bastide H, Legout H, Dogbo N, Ogereau D, Prediger C, Carcaud J, Filée J, Garnery L, Gilbert C, Marion-Poll F, Requier F, Sandoz JC, Yassin A. The genome of the blind bee louse fly reveals deep convergences with its social host and illuminates Drosophila origins. Curr Biol 2024; 34:1122-1132.e5. [PMID: 38309271 DOI: 10.1016/j.cub.2024.01.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 10/22/2023] [Accepted: 01/12/2024] [Indexed: 02/05/2024]
Abstract
Social insects' nests harbor intruders known as inquilines,1 which are usually related to their hosts.2,3 However, distant non-social inquilines may also show convergences with their hosts,4,5 although the underlying genomic changes remain unclear. We analyzed the genome of the wingless and blind bee louse fly Braula coeca, an inquiline kleptoparasite of the western honey bee, Apis mellifera.6,7 Using large phylogenomic data, we confirmed recent accounts that the bee louse fly is a drosophilid8,9 and showed that it had likely evolved from a sap-breeder ancestor associated with honeydew and scale insects' wax. Unlike many parasites, the bee louse fly genome did not show significant erosion or strict reliance on an endosymbiont, likely due to a relatively recent age of inquilinism. However, we observed a horizontal transfer of a transposon and a striking parallel evolution in a set of gene families between the honey bee and the bee louse fly. Convergences included genes potentially involved in metabolism and immunity and the loss of nearly all bitter-tasting gustatory receptors, in agreement with life in a protective nest and a diet of honey, pollen, and beeswax. Vision and odorant receptor genes also exhibited rapid losses. Only genes whose orthologs in the closely related Drosophila melanogaster respond to honey bee pheromone components or floral aroma were retained, whereas the losses included orthologous receptors responsive to the anti-ovarian honey bee queen pheromones. Hence, deep genomic convergences can underlie major phenotypic transitions during the evolution of inquilinism between non-social parasites and their social hosts.
Collapse
Affiliation(s)
- Héloïse Bastide
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France.
| | - Hélène Legout
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Noé Dogbo
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - David Ogereau
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Carolina Prediger
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Julie Carcaud
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Jonathan Filée
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Lionel Garnery
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Clément Gilbert
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Frédéric Marion-Poll
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France; Université Paris-Saclay, AgroParisTech, 91123 Palaiseau Cedex, France
| | - Fabrice Requier
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Jean-Christophe Sandoz
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Amir Yassin
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| |
Collapse
|
3
|
Luo A, Zhang C, Zhou QS, Ho SYW, Zhu CD. Impacts of Taxon-Sampling Schemes on Bayesian Tip Dating Under the Fossilized Birth-Death Process. Syst Biol 2023; 72:781-801. [PMID: 36919368 PMCID: PMC10405359 DOI: 10.1093/sysbio/syad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/18/2023] [Accepted: 03/14/2023] [Indexed: 03/16/2023] Open
Abstract
Evolutionary timescales can be inferred by molecular-clock analyses of genetic data and fossil evidence. Bayesian phylogenetic methods such as tip dating provide a powerful framework for inferring evolutionary timescales, but the most widely used priors for tree topologies and node times often assume that present-day taxa have been sampled randomly or exhaustively. In practice, taxon sampling is often carried out so as to include representatives of major lineages, such as orders or families. We examined the impacts of different densities of diversified sampling on Bayesian tip dating on unresolved fossilized birth-death (FBD) trees, in which fossil taxa are topologically constrained but their exact placements are averaged out. We used synthetic data generated by simulations of nucleotide sequence evolution, fossil occurrences, and diversified taxon sampling. Our analyses under the diversified-sampling FBD process show that increasing taxon-sampling density does not necessarily improve divergence-time estimates. However, when informative priors were specified for the root age or when tree topologies were fixed to those used for simulation, the performance of tip dating on unresolved FBD trees maintains its accuracy and precision or improves with taxon-sampling density. By exploring three situations in which models are mismatched, we find that including all relevant fossils, without pruning off those that are incompatible with the diversified-sampling FBD process, can lead to underestimation of divergence times. Our reanalysis of a eutherian mammal data set confirms some of the findings from our simulation study, and reveals the complexity of diversified taxon sampling in phylogenomic data sets. In highlighting the interplay of taxon-sampling density and other factors, the results of our study have practical implications for using Bayesian tip dating to infer evolutionary timescales across the Tree of Life. [Bayesian tip dating; eutherian mammals; fossilized birth-death process; phylogenomics; taxon sampling.].
Collapse
Affiliation(s)
- Arong Luo
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chi Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Qing-Song Zhou
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Chao-Dong Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- International College, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Campos PE, Pruvost O, Boyer K, Chiroleu F, Cao TT, Gaudeul M, Baider C, Utteridge TMA, Becker N, Rieux A, Gagnevin L. Herbarium specimen sequencing allows precise dating of Xanthomonas citri pv. citri diversification history. Nat Commun 2023; 14:4306. [PMID: 37474518 PMCID: PMC10359311 DOI: 10.1038/s41467-023-39950-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/15/2023] [Indexed: 07/22/2023] Open
Abstract
Herbarium collections are an important source of dated, identified and preserved DNA, whose use in comparative genomics and phylogeography can shed light on the emergence and evolutionary history of plant pathogens. Here, we reconstruct 13 historical genomes of the bacterial crop pathogen Xanthomonas citri pv. citri (Xci) from infected Citrus herbarium specimens. Following authentication based on ancient DNA damage patterns, we compare them with a large set of modern genomes to estimate their phylogenetic relationships, pathogenicity-associated gene content and several evolutionary parameters. Our results indicate that Xci originated in Southern Asia ~11,500 years ago (perhaps in relation to Neolithic climate change and the development of agriculture) and diversified during the beginning of the 13th century, after Citrus diversification and before spreading to the rest of the world (probably via human-driven expansion of citriculture through early East-West trade and colonization).
Collapse
Affiliation(s)
- Paola E Campos
- CIRAD, UMR PVBMT, F-97410, St Pierre, La Réunion, France
- Institut de Systématique, Évolution, Biodiversité (ISyEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005, Paris, France
| | | | - Karine Boyer
- CIRAD, UMR PVBMT, F-97410, St Pierre, La Réunion, France
| | | | - Thuy Trang Cao
- CIRAD, UMR PVBMT, F-97410, St Pierre, La Réunion, France
| | - Myriam Gaudeul
- Institut de Systématique, Évolution, Biodiversité (ISyEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005, Paris, France
- Herbier national, Muséum national d'Histoire naturelle, CP39, 57 rue Cuvier, 75005, Paris, France
| | - Cláudia Baider
- The Mauritius Herbarium, Agricultural Services, Ministry of Agro-Industry and Food Security, R.E. Vaughan Building (MSIRI Compound), Reduit, 80835, Mauritius
| | | | - Nathalie Becker
- Institut de Systématique, Évolution, Biodiversité (ISyEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005, Paris, France
| | - Adrien Rieux
- CIRAD, UMR PVBMT, F-97410, St Pierre, La Réunion, France.
| | - Lionel Gagnevin
- PHIM Plant Health Institute, Univ. Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France.
- CIRAD, UMR PHIM, Montpellier, France.
| |
Collapse
|
5
|
Guan H, Gul I, Xiao C, Ma S, Liang Y, Yu D, Liu Y, Liu H, Zhang CY, Li J, Qin P. Emergence, phylogeography, and adaptive evolution of mpox virus. New Microbes New Infect 2023; 52:101102. [PMID: 36815201 PMCID: PMC9937731 DOI: 10.1016/j.nmni.2023.101102] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Mpox (Monkeypox) is a zoonotic disease caused by mpox virus (MPXV). A multi-country MPXV outbreak in non-endemic demographics was identified in May 2022. A systematic evaluation of MPXV evolutionary trajectory and genetic diversity could be a timely addition to the MPXV diagnostics and prophylaxis. Herein, we integrated a systematic evolution analysis including phylogenomic and phylogeographic, followed by an in-depth analysis of the adaptive evolution and amino acid variations in type I interferon binding protein (IFNα/βBP). Mutations in IFNα/βBP protein may impair its binding capacity, affecting the MPXV immune evasion strategy. Based on the equilibrated data, we found an evolutionary rate of 7.75 × 10 - 5 substitutions/site/year, and an earlier original time (2021.25) of the clade IIb. We further discovered significant genetic variations in MPXV genomes from different regions and obtained six plausible spread trajectories from its intricate viral flow network, implying that North America might have acted as a bridge for the spread of MPXV from Africa to other continents. We identified two amino acids under positive selection in the Rifampicin resistance protein and extracellular enveloped virus (EEV) type-I membrane glycoprotein, indicating a role in adaptive evolution. Our research sheds light on the emergence, dispersal, and adaptive evolution of MPXV, providing theoretical support for mitigating and containing its expansion.
Collapse
Affiliation(s)
- Haifei Guan
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Ijaz Gul
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Chufan Xiao
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Shuyue Ma
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yingshan Liang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Dongmei Yu
- School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai, Shandong, 264209, China
| | - Ying Liu
- Food Inspection & Quarantine Center, Shenzhen Custom, Shenzhen, Guangdong, 518060, China
| | - Hong Liu
- Food Inspection & Quarantine Center, Shenzhen Custom, Shenzhen, Guangdong, 518060, China
| | - Can Yang Zhang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Juan Li
- Advanced Research Institute for Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Peiwu Qin
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
6
|
Ritchie AM, Hua X, Bromham L. Investigating the reliability of molecular estimates of evolutionary time when substitution rates and speciation rates vary. BMC Ecol Evol 2022; 22:61. [PMID: 35538412 PMCID: PMC9088092 DOI: 10.1186/s12862-022-02015-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 04/14/2022] [Indexed: 11/17/2022] Open
Abstract
Background An accurate timescale of evolutionary history is essential to testing hypotheses about the influence of historical events and processes, and the timescale for evolution is increasingly derived from analysis of DNA sequences. But variation in the rate of molecular evolution complicates the inference of time from DNA. Evidence is growing for numerous factors, such as life history and habitat, that are linked both to the molecular processes of mutation and fixation and to rates of macroevolutionary diversification. However, the most widely used methods rely on idealised models of rate variation, such as the uncorrelated and autocorrelated clocks, and molecular dating methods are rarely tested against complex models of rate change. One relationship that is not accounted for in molecular dating is the potential for interaction between molecular substitution rates and speciation, a relationship that has been supported by empirical studies in a growing number of taxa. If these relationships are as widespread as current evidence suggests, they may have a significant influence on molecular dates. Results We simulate phylogenies and molecular sequences under three different realistic rate variation models—one in which speciation rates and substitution rates both vary but are unlinked, one in which they covary continuously and one punctuated model in which molecular change is concentrated in speciation events, using empirical case studies to parameterise realistic simulations. We test three commonly used “relaxed clock” molecular dating methods against these realistic simulations to explore the degree of error in molecular dates under each model. We find average divergence time inference errors ranging from 12% of node age for the unlinked model when reconstructed under an uncorrelated rate prior using BEAST 2, to up to 91% when sequences evolved under the punctuated model are reconstructed under an autocorrelated prior using PAML. Conclusions We demonstrate the potential for substantial errors in molecular dates when both speciation rates and substitution rates vary between lineages. This study highlights the need for tests of molecular dating methods against realistic models of rate variation generated from empirical parameters and known relationships. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-02015-8.
Collapse
|
7
|
Mota NM, Gastauer M, Carrión JF, Meira-Neto JAA. Roads as conduits of functional and phylogenetic degradation in Caatinga. Trop Ecol 2022. [DOI: 10.1007/s42965-022-00245-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Uthanumallian K, Iha C, Repetti SI, Chan CX, Bhattacharya D, Duchene S, Verbruggen H. Tightly Constrained Genome Reduction and Relaxation of Purifying Selection during Secondary Plastid Endosymbiosis. Mol Biol Evol 2022; 39:msab295. [PMID: 34613411 PMCID: PMC8763093 DOI: 10.1093/molbev/msab295] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Endosymbiosis, the establishment of a former free-living prokaryotic or eukaryotic cell as an organelle inside a host cell, can dramatically alter the genomic architecture of the endosymbiont. Plastids or chloroplasts, the light-harvesting organelle of photosynthetic eukaryotes, are excellent models to study this phenomenon because plastid origin has occurred multiple times in evolution. Here, we investigate the genomic signature of molecular processes acting through secondary plastid endosymbiosis-the origination of a new plastid from a free-living eukaryotic alga. We used phylogenetic comparative methods to study gene loss and changes in selective regimes on plastid genomes, focusing on green algae that have given rise to three independent lineages with secondary plastids (euglenophytes, chlorarachniophytes, and Lepidodinium). Our results show an overall increase in gene loss associated with secondary endosymbiosis, but this loss is tightly constrained by the retention of genes essential for plastid function. The data show that secondary plastids have experienced temporary relaxation of purifying selection during secondary endosymbiosis. However, this process is tightly constrained, with selection relaxed only relative to the background in primary plastids. Purifying selection remains strong in absolute terms even during the endosymbiosis events. Selection intensity rebounds to pre-endosymbiosis levels following endosymbiosis events, demonstrating the changes in selection efficiency during different origin phases of secondary plastids. Independent endosymbiosis events in the euglenophytes, chlorarachniophytes, and Lepidodinium differ in their degree of relaxation of selection, highlighting the different evolutionary contexts of these events. This study reveals the selection-drift interplay during secondary endosymbiosis and evolutionary parallels during organellogenesis.
Collapse
Affiliation(s)
| | - Cintia Iha
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Sonja I Repetti
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Cheong Xin Chan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | | | - Sebastian Duchene
- Deptartment of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
9
|
Gutierrez B, Márquez S, Prado-Vivar B, Becerra-Wong M, Guadalupe JJ, da Silva Candido D, Fernandez-Cadena JC, Morey-Leon G, Armas-Gonzalez R, Andrade-Molina DM, Bruno A, de Mora D, Olmedo M, Portugal D, Gonzalez M, Orlando A, Drexler JF, Moreira-Soto A, Sander AL, Brünink S, Kühne A, Patiño L, Carrazco-Montalvo A, Mestanza O, Zurita J, Sevillano G, du Plessis L, McCrone JT, Coloma J, Trueba G, Barragán V, Rojas-Silva P, Grunauer M, Kraemer MU, Faria NR, Escalera-Zamudio M, Pybus OG, Cárdenas P. Genomic epidemiology of SARS-CoV-2 transmission lineages in Ecuador. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.03.31.21254685. [PMID: 33851177 PMCID: PMC8043474 DOI: 10.1101/2021.03.31.21254685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Characterisation of SARS-CoV-2 genetic diversity through space and time can reveal trends in virus importation and domestic circulation, and permit the exploration of questions regarding the early transmission dynamics. Here we present a detailed description of SARS-CoV-2 genomic epidemiology in Ecuador, one of the hardest hit countries during the early stages of the COVID-19 pandemic. We generate and analyse 160 whole genome sequences sampled from all provinces of Ecuador in 2020. Molecular clock and phylgeographic analysis of these sequences in the context of global SARS-CoV-2 diversity enable us to identify and characterise individual transmission lineages within Ecuador, explore their spatiotemporal distributions, and consider their introduction and domestic circulation. Our results reveal a pattern of multiple international importations across the country, with apparent differences between key provinces. Transmission lineages were mostly introduced before the implementation of non-pharmaceutical interventions (NPIs), with differential degrees of persistence and national dissemination.
Collapse
Affiliation(s)
- Bernardo Gutierrez
- Department of Zoology, University of Oxford, Oxford, UK
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Sully Márquez
- Instituto de Microbiología, Universidad San Francisco de Quito, Quito, Ecuador
| | - Belén Prado-Vivar
- Instituto de Microbiología, Universidad San Francisco de Quito, Quito, Ecuador
| | - Mónica Becerra-Wong
- Instituto de Microbiología, Universidad San Francisco de Quito, Quito, Ecuador
| | - Juan José Guadalupe
- Laboratorio de Biotecnología Vegetal, Universidad San Francisco de Quito, Quito, Ecuador
| | | | - Juan Carlos Fernandez-Cadena
- Omics Sciences Laboratory, Faculty of Medical Sciences, Universidad de Especialidades Espíritu Santo, Samborondón, Ecuador
| | - Gabriel Morey-Leon
- Faculty of Medical Sciences, Universidad de Guayaquil, Guayaquil, Ecuador
| | - Rubén Armas-Gonzalez
- Faculty of Sciences, Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| | - Derly Madeleiny Andrade-Molina
- Omics Sciences Laboratory, Faculty of Medical Sciences, Universidad de Especialidades Espíritu Santo, Samborondón, Ecuador
| | - Alfredo Bruno
- Instituto Nacional de Investigación en Salud Pública, Guayaquil, Ecuador
- Universidad Agraria del Ecuador
| | - Domenica de Mora
- Instituto Nacional de Investigación en Salud Pública, Guayaquil, Ecuador
| | - Maritza Olmedo
- Instituto Nacional de Investigación en Salud Pública, Guayaquil, Ecuador
| | - Denisse Portugal
- Instituto Nacional de Investigación en Salud Pública, Guayaquil, Ecuador
| | - Manuel Gonzalez
- Instituto Nacional de Investigación en Salud Pública, Guayaquil, Ecuador
| | - Alberto Orlando
- Instituto Nacional de Investigación en Salud Pública, Guayaquil, Ecuador
| | - Jan Felix Drexler
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany
| | - Andres Moreira-Soto
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany
| | - Anna-Lena Sander
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany
| | - Sebastian Brünink
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany
| | - Arne Kühne
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany
| | - Leandro Patiño
- Instituto Nacional de Investigación en Salud Pública, Guayaquil, Ecuador
| | | | - Orson Mestanza
- Instituto Nacional de Investigación en Salud Pública, Guayaquil, Ecuador
| | - Jeannete Zurita
- Facultad de Medicina, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
- Unidad de Investigaciones en Biomedicina, Zurita & Zurita Laboratorios, Quito, Ecuador
| | - Gabriela Sevillano
- Unidad de Investigaciones en Biomedicina, Zurita & Zurita Laboratorios, Quito, Ecuador
| | | | - John T. McCrone
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Josefina Coloma
- School of Public Health, University of California, Berkeley, USA
| | - Gabriel Trueba
- Instituto de Microbiología, Universidad San Francisco de Quito, Quito, Ecuador
| | - Verónica Barragán
- Instituto de Microbiología, Universidad San Francisco de Quito, Quito, Ecuador
| | | | - Michelle Grunauer
- Escuela de Medicina, Universidad San Francisco de Quito, Quito, Ecuador
| | | | - Nuno R. Faria
- Department of Zoology, University of Oxford, Oxford, UK
- MRC Centre for Global Infectious Disease Analysis, J-IDEA, Imperial College London, London, UK
| | | | - Oliver G. Pybus
- Department of Zoology, University of Oxford, Oxford, UK
- Department of Pathobiology and Population Sciences, Royal Veterinary College London, London, UK
| | - Paúl Cárdenas
- Instituto de Microbiología, Universidad San Francisco de Quito, Quito, Ecuador
| |
Collapse
|
10
|
Spasojevic T, Broad GR, Sääksjärvi IE, Schwarz M, Ito M, Korenko S, Klopfstein S. Mind the Outgroup and Bare Branches in Total-Evidence Dating: a Case Study of Pimpliform Darwin Wasps (Hymenoptera, Ichneumonidae). Syst Biol 2021; 70:322-339. [PMID: 33057674 PMCID: PMC7875445 DOI: 10.1093/sysbio/syaa079] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 01/16/2023] Open
Abstract
Taxon sampling is a central aspect of phylogenetic study design, but it has received limited attention in the context of total-evidence dating, a widely used dating approach that directly integrates molecular and morphological information from extant and fossil taxa. We here assess the impact of commonly employed outgroup sampling schemes and missing morphological data in extant taxa on age estimates in a total-evidence dating analysis under the uniform tree prior. Our study group is Pimpliformes, a highly diverse, rapidly radiating group of parasitoid wasps of the family Ichneumonidae. We analyze a data set comprising 201 extant and 79 fossil taxa, including the oldest fossils of the family from the Early Cretaceous and the first unequivocal representatives of extant subfamilies from the mid-Paleogene. Based on newly compiled molecular data from ten nuclear genes and a morphological matrix that includes 222 characters, we show that age estimates become both older and less precise with the inclusion of more distant and more poorly sampled outgroups. These outgroups not only lack morphological and temporal information but also sit on long terminal branches and considerably increase the evolutionary rate heterogeneity. In addition, we discover an artifact that might be detrimental for total-evidence dating: "bare-branch attraction," namely high attachment probabilities of certain fossils to terminal branches for which morphological data are missing. Using computer simulations, we confirm the generality of this phenomenon and show that a large phylogenetic distance to any of the extant taxa, rather than just older age, increases the risk of a fossil being misplaced due to bare-branch attraction. After restricting outgroup sampling and adding morphological data for the previously attracting, bare branches, we recover a Jurassic origin for Pimpliformes and Ichneumonidae. This first age estimate for the group not only suggests an older origin than previously thought but also that diversification of the crown group happened well before the Cretaceous-Paleogene boundary. Our case study demonstrates that in order to obtain robust age estimates, total-evidence dating studies need to be based on a thorough and balanced sampling of both extant and fossil taxa, with the aim of minimizing evolutionary rate heterogeneity and missing morphological information. [Bare-branch attraction; ichneumonids; fossils; morphological matrix; phylogeny; RoguePlots.].
Collapse
Affiliation(s)
- Tamara Spasojevic
- Abteilung Wirbellose Tiere Invertebrates, Naturhistorisches Museum der Burgergemeinde Bern, Bernastrasse 15, 3005 Bern, Switzerland
- Institute of Ecology and Evolution, Department of Biology, University of Bern, 3012 Bern, Switzerland
- Department of Entomology, National Museum of Natural History, Washington, DC 20560, USA
| | - Gavin R Broad
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
| | | | | | - Masato Ito
- Graduate School of Agricultural Science, Department of Agrobioscience, Kobe University, 657-8501 Japan
| | - Stanislav Korenko
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 21 Prague 6, Suchdol, Czech Republic
| | - Seraina Klopfstein
- Abteilung Wirbellose Tiere Invertebrates, Naturhistorisches Museum der Burgergemeinde Bern, Bernastrasse 15, 3005 Bern, Switzerland
- Institute of Ecology and Evolution, Department of Biology, University of Bern, 3012 Bern, Switzerland
- Abteilung für Biowissenschaften, Naturhistorisches Museum Basel, 4051 Basel, Switzerland
| |
Collapse
|
11
|
Gutierrez B, Márquez S, Prado-Vivar B, Becerra-Wong M, Guadalupe JJ, Candido DDS, Fernandez-Cadena JC, Morey-Leon G, Armas-Gonzalez R, Andrade-Molina DM, Bruno A, De Mora D, Olmedo M, Portugal D, Gonzalez M, Orlando A, Drexler JF, Moreira-Soto A, Sander AL, Brünink S, Kühne A, Patiño L, Carrazco-Montalvo A, Mestanza O, Zurita J, Sevillano G, Du Plessis L, McCrone JT, Coloma J, Trueba G, Barragán V, Rojas-Silva P, Grunauer M, Kraemer MUG, Faria NR, Escalera-Zamudio M, Pybus OG, Cárdenas P. Genomic epidemiology of SARS-CoV-2 transmission lineages in Ecuador. Virus Evol 2021; 7:veab051. [PMID: 34527281 PMCID: PMC8244811 DOI: 10.1093/ve/veab051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/12/2021] [Accepted: 06/03/2021] [Indexed: 12/23/2022] Open
Abstract
Characterisation of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genetic diversity through space and time can reveal trends in virus importation and domestic circulation and permit the exploration of questions regarding the early transmission dynamics. Here, we present a detailed description of SARS-CoV-2 genomic epidemiology in Ecuador, one of the hardest hit countries during the early stages of the coronavirus-19 pandemic. We generated and analysed 160 whole genome sequences sampled from all provinces of Ecuador in 2020. Molecular clock and phylogeographic analysis of these sequences in the context of global SARS-CoV-2 diversity enable us to identify and characterise individual transmission lineages within Ecuador, explore their spatiotemporal distributions, and consider their introduction and domestic circulation. Our results reveal a pattern of multiple international importations across the country, with apparent differences between key provinces. Transmission lineages were mostly introduced before the implementation of non-pharmaceutical interventions, with differential degrees of persistence and national dissemination.
Collapse
Affiliation(s)
- Bernardo Gutierrez
- Department of Zoology, University of Oxford, Oxford, Oxfordshire OX1 3SY, UK
| | - Sully Márquez
- Instituto de Microbiología, Universidad San Francisco de Quito, Quito 170901, Ecuador
| | - Belén Prado-Vivar
- Instituto de Microbiología, Universidad San Francisco de Quito, Quito 170901, Ecuador
| | - Mónica Becerra-Wong
- Instituto de Microbiología, Universidad San Francisco de Quito, Quito 170901, Ecuador
| | - Juan José Guadalupe
- Laboratorio de Biotecnología Vegetal, Universidad San Francisco de Quito, Quito 170901, Ecuador
| | | | - Juan Carlos Fernandez-Cadena
- Omics Sciences Laboratory, Faculty of Medical Sciences, Universidad de Especialidades Espíritu Santo, Samborondón 092301, Ecuador
| | - Gabriel Morey-Leon
- Faculty of Medical Sciences, Universidad de Guayaquil, Guayaquil 090613, Ecuador
| | - Rubén Armas-Gonzalez
- Faculty of Sciences, Escuela Superior Politécnica del Litoral, Guayaquil 090112, Ecuador
| | - Derly Madeleiny Andrade-Molina
- Omics Sciences Laboratory, Faculty of Medical Sciences, Universidad de Especialidades Espíritu Santo, Samborondón 092301, Ecuador
| | - Alfredo Bruno
- Instituto Nacional de Investigación en Salud Pública, Guayaquil 3961, Ecuador
| | - Domenica De Mora
- Instituto Nacional de Investigación en Salud Pública, Guayaquil 3961, Ecuador
| | - Maritza Olmedo
- Instituto Nacional de Investigación en Salud Pública, Guayaquil 3961, Ecuador
| | - Denisse Portugal
- Instituto Nacional de Investigación en Salud Pública, Guayaquil 3961, Ecuador
| | - Manuel Gonzalez
- Instituto Nacional de Investigación en Salud Pública, Guayaquil 3961, Ecuador
| | - Alberto Orlando
- Instituto Nacional de Investigación en Salud Pública, Guayaquil 3961, Ecuador
| | - Jan Felix Drexler
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin 10117, Germany
| | - Andres Moreira-Soto
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin 10117, Germany
| | - Anna-Lena Sander
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin 10117, Germany
| | - Sebastian Brünink
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin 10117, Germany
| | - Arne Kühne
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin 10117, Germany
| | - Leandro Patiño
- Instituto Nacional de Investigación en Salud Pública, Guayaquil 3961, Ecuador
| | | | - Orson Mestanza
- Servicio de Genética, Instituto Nacional de Salud del Niño San Borja, Lima 15037, Perú
| | - Jeannete Zurita
- Facultad de Medicina, Pontificia Universidad Católica del Ecuador, Quito 170143, Ecuador
| | - Gabriela Sevillano
- Unidad de Investigaciones en Biomedicina, Zurita & Zurita Laboratorios, Quito 170104, Ecuador
| | - Louis Du Plessis
- Department of Zoology, University of Oxford, Oxford, Oxfordshire OX1 3SY, UK
| | - John T McCrone
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JW, UK
| | - Josefina Coloma
- School of Public Health, University of California, Berkeley CA 94704, USA
| | - Gabriel Trueba
- Instituto de Microbiología, Universidad San Francisco de Quito, Quito 170901, Ecuador
| | - Verónica Barragán
- Instituto de Microbiología, Universidad San Francisco de Quito, Quito 170901, Ecuador
| | - Patricio Rojas-Silva
- Instituto de Microbiología, Universidad San Francisco de Quito, Quito 170901, Ecuador
| | - Michelle Grunauer
- Escuela de Medicina, Universidad San Francisco de Quito, Quito 170901, Ecuador
| | - Moritz U G Kraemer
- Department of Zoology, University of Oxford, Oxford, Oxfordshire OX1 3SY, UK
| | - Nuno R Faria
- Department of Zoology, University of Oxford, Oxford, Oxfordshire OX1 3SY, UK
| | | | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford, Oxfordshire OX1 3SY, UK
| | - Paúl Cárdenas
- Instituto de Microbiología, Universidad San Francisco de Quito, Quito 170901, Ecuador
| |
Collapse
|
12
|
Maestri R, Duarte L. Evoregions: Mapping shifts in phylogenetic turnover across biogeographic regions. Methods Ecol Evol 2020. [DOI: 10.1111/2041-210x.13492] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Renan Maestri
- Departamento de Ecologia Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Leandro Duarte
- Departamento de Ecologia Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| |
Collapse
|
13
|
Budd GE, Mann RP. Survival and selection biases in early animal evolution and a source of systematic overestimation in molecular clocks. Interface Focus 2020; 10:20190110. [PMID: 32637066 PMCID: PMC7333906 DOI: 10.1098/rsfs.2019.0110] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2020] [Indexed: 12/21/2022] Open
Abstract
Important evolutionary events such as the Cambrian Explosion have inspired many attempts at explanation: why do they happen when they do? What shapes them, and why do they eventually come to an end? However, much less attention has been paid to the idea of a 'null hypothesis'-that certain features of such diversifications arise simply through their statistical structure. Such statistical features also appear to influence our perception of the timing of these events. Here, we show in particular that study of unusually large clades leads to systematic overestimates of clade ages from some types of molecular clocks, and that the size of this effect may be enough to account for the puzzling mismatches seen between these molecular clocks and the fossil record. Our analysis of the fossil record of the late Ediacaran to Cambrian suggests that it is likely to be recording a true evolutionary radiation of the bilaterians at this time, and that explanations involving various sorts of cryptic origins for the bilaterians do not seem to be necessary.
Collapse
Affiliation(s)
- Graham E. Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala 752 36, Sweden
| | - Richard P. Mann
- Department of Statistics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
- The Alan Turing Institute, London NW1 2DB, UK
| |
Collapse
|
14
|
Kamau E, Otieno JR, Murunga N, Oketch JW, Ngoi JM, de Laurent ZR, Mwema A, Nyiro JU, Agoti CN, Nokes DJ. Genomic epidemiology and evolutionary dynamics of respiratory syncytial virus group B in Kilifi, Kenya, 2015-17. Virus Evol 2020; 6:veaa050. [PMID: 32913665 PMCID: PMC7474930 DOI: 10.1093/ve/veaa050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Respiratory syncytial virus (RSV) circulates worldwide, occurring seasonally in communities, and is a leading cause of acute respiratory illness in young children. There is paucity of genomic data from purposively sampled populations by which to investigate evolutionary dynamics and transmission patterns of RSV. Here we present an analysis of 295 RSV group B (RSVB) genomes from Kilifi, coastal Kenya, sampled from individuals seeking outpatient care in nine health facilities across a defined geographical area (∼890 km2), over two RSV epidemics between 2015 and 2017. RSVB diversity was characterized by multiple virus introductions into the area and co-circulation of distinct genetic clusters, which transmitted and diversified locally with varying frequency. Increase in relative genetic diversity paralleled seasonal virus incidence. Importantly, we identified a cluster of viruses that emerged in the 2016/17 epidemic, carrying distinct amino-acid signatures including a novel nonsynonymous change (K68Q) in antigenic site ∅ in the Fusion protein. RSVB diversity was additionally marked by signature nonsynonymous substitutions that were unique to particular genomic clusters, some under diversifying selection. Our findings provide insights into recent evolutionary and epidemiological behaviors of RSVB, and highlight possible emergence of a novel antigenic variant, which has implications on current prophylactic strategies in development.
Collapse
Affiliation(s)
- Everlyn Kamau
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - James R Otieno
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Nickson Murunga
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - John W Oketch
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Joyce M Ngoi
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Zaydah R de Laurent
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Anthony Mwema
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Joyce U Nyiro
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Charles N Agoti
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.,School of Health and Human Sciences, Pwani University, Kilifi, Kenya
| | - D James Nokes
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.,School of Life Sciences and Zeeman Institute (SBIDER), University of Warwick, Coventry, UK
| |
Collapse
|
15
|
Luo A, Duchêne DA, Zhang C, Zhu CD, Ho SYW. A Simulation-Based Evaluation of Tip-Dating Under the Fossilized Birth-Death Process. Syst Biol 2020; 69:325-344. [PMID: 31132125 PMCID: PMC7175741 DOI: 10.1093/sysbio/syz038] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 05/13/2019] [Accepted: 05/17/2019] [Indexed: 11/25/2022] Open
Abstract
Bayesian molecular dating is widely used to study evolutionary timescales. This procedure usually involves phylogenetic analysis of nucleotide sequence data, with fossil-based calibrations applied as age constraints on internal nodes of the tree. An alternative approach is tip-dating, which explicitly includes fossil data in the analysis. This can be done, for example, through the joint analysis of molecular data from present-day taxa and morphological data from both extant and fossil taxa. In the context of tip-dating, an important development has been the fossilized birth-death process, which allows non-contemporaneous tips and sampled ancestors while providing a model of lineage diversification for the prior on the tree topology and internal node times. However, tip-dating with fossils faces a number of considerable challenges, especially, those associated with fossil sampling and evolutionary models for morphological characters. We conducted a simulation study to evaluate the performance of tip-dating using the fossilized birth-death model. We simulated fossil occurrences and the evolution of nucleotide sequences and morphological characters under a wide range of conditions. Our analyses of these data show that the number and the maximum age of fossil occurrences have a greater influence than the degree of among-lineage rate variation or the number of morphological characters on estimates of node times and the tree topology. Tip-dating with the fossilized birth-death model generally performs well in recovering the relationships among extant taxa but has difficulties in correctly placing fossil taxa in the tree and identifying the number of sampled ancestors. The method yields accurate estimates of the ages of the root and crown group, although the precision of these estimates varies with the probability of fossil occurrence. The exclusion of morphological characters results in a slight overestimation of node times, whereas the exclusion of nucleotide sequences has a negative impact on inference of the tree topology. Our results provide an overview of the performance of tip-dating using the fossilized birth-death model, which will inform further development of the method and its application to key questions in evolutionary biology.
Collapse
Affiliation(s)
- Arong Luo
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - David A Duchêne
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Chi Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Chao-Dong Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
16
|
Ali A, Melcher U. Modeling of Mutational Events in the Evolution of Viruses. Viruses 2019; 11:v11050418. [PMID: 31060293 PMCID: PMC6563203 DOI: 10.3390/v11050418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/27/2019] [Accepted: 05/02/2019] [Indexed: 11/24/2022] Open
Abstract
Diverse studies of viral evolution have led to the recognition that the evolutionary rates of viral taxa observed are dependent on the time scale being investigated—with short-term studies giving fast substitution rates, and orders of magnitude lower rates for deep calibrations. Although each of these factors may contribute to this time dependent rate phenomenon, a more fundamental cause should be considered. We sought to test computationally whether the basic phenomena of virus evolution (mutation, replication, and selection) can explain the relationships between the evolutionary and phylogenetic distances. We tested, by computational inference, the hypothesis that the phylogenetic distances between the pairs of sequences are functions of the evolutionary path lengths between them. A Basic simulation revealed that the relationship between simulated genetic and mutational distances is non-linear, and can be consistent with different rates of nucleotide substitution at different depths of branches in phylogenetic trees.
Collapse
Affiliation(s)
- Akhtar Ali
- Department of Biological Sciences, University of Tulsa, Tulsa, OK 74104, USA.
| | - Ulrich Melcher
- Department of Biochemistry & Molecular Biology, Oklahoma State University, Stillwater, OK 74078-3035, USA.
| |
Collapse
|
17
|
Tong KJ, Duchêne DA, Duchêne S, Geoghegan JL, Ho SYW. A comparison of methods for estimating substitution rates from ancient DNA sequence data. BMC Evol Biol 2018; 18:70. [PMID: 29769015 PMCID: PMC5956955 DOI: 10.1186/s12862-018-1192-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 05/04/2018] [Indexed: 12/02/2022] Open
Abstract
Background Phylogenetic analysis of DNA from modern and ancient samples allows the reconstruction of important demographic and evolutionary processes. A critical component of these analyses is the estimation of evolutionary rates, which can be calibrated using information about the ages of the samples. However, the reliability of these rate estimates can be negatively affected by among-lineage rate variation and non-random sampling. Using a simulation study, we compared the performance of three phylogenetic methods for inferring evolutionary rates from time-structured data sets: regression of root-to-tip distances, least-squares dating, and Bayesian inference. We also applied these three methods to time-structured mitogenomic data sets from six vertebrate species. Results Our results from 12 simulation scenarios show that the three methods produce reliable estimates when the substitution rate is high, rate variation is low, and samples of similar ages are not all grouped together in the tree (i.e., low phylo-temporal clustering). The interaction of these factors is particularly important for least-squares dating and Bayesian estimation of evolutionary rates. The three estimation methods produced consistent estimates of rates across most of the six mitogenomic data sets, with sequence data from horses being an exception. Conclusions We recommend that phylogenetic studies of ancient DNA sequences should use multiple methods of inference and test for the presence of temporal signal, among-lineage rate variation, and phylo-temporal clustering in the data. Electronic supplementary material The online version of this article (10.1186/s12862-018-1192-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- K Jun Tong
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - David A Duchêne
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Sebastián Duchêne
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia
| | - Jemma L Geoghegan
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia.
| |
Collapse
|
18
|
Cissé OH, Ma L, Wei Huang D, Khil PP, Dekker JP, Kutty G, Bishop L, Liu Y, Deng X, Hauser PM, Pagni M, Hirsch V, Lempicki RA, Stajich JE, Cuomo CA, Kovacs JA. Comparative Population Genomics Analysis of the Mammalian Fungal Pathogen Pneumocystis. mBio 2018; 9:e00381-18. [PMID: 29739910 PMCID: PMC5941068 DOI: 10.1128/mbio.00381-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/19/2018] [Indexed: 01/14/2023] Open
Abstract
Pneumocystis species are opportunistic mammalian pathogens that cause severe pneumonia in immunocompromised individuals. These fungi are highly host specific and uncultivable in vitro Human Pneumocystis infections present major challenges because of a limited therapeutic arsenal and the rise of drug resistance. To investigate the diversity and demographic history of natural populations of Pneumocystis infecting humans, rats, and mice, we performed whole-genome and large-scale multilocus sequencing of infected tissues collected in various geographic locations. Here, we detected reduced levels of recombination and variations in historical demography, which shape the global population structures. We report estimates of evolutionary rates, levels of genetic diversity, and population sizes. Molecular clock estimates indicate that Pneumocystis species diverged before their hosts, while the asynchronous timing of population declines suggests host shifts. Our results have uncovered complex patterns of genetic variation influenced by multiple factors that shaped the adaptation of Pneumocystis populations during their spread across mammals.IMPORTANCE Understanding how natural pathogen populations evolve and identifying the determinants of genetic variation are central issues in evolutionary biology. Pneumocystis, a fungal pathogen which infects mammals exclusively, provides opportunities to explore these issues. In humans, Pneumocystis can cause a life-threatening pneumonia in immunosuppressed individuals. In analysis of different Pneumocystis species infecting humans, rats, and mice, we found that there are high infection rates and that natural populations maintain a high level of genetic variation despite low levels of recombination. We found no evidence of population structuring by geography. Our comparisons of the times of divergence of these species to their respective hosts suggest that Pneumocystis may have undergone recent host shifts. The results demonstrate that Pneumocystis strains are widely disseminated geographically and provide a new understanding of the evolution of these pathogens.
Collapse
Affiliation(s)
- Ousmane H Cissé
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Liang Ma
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Da Wei Huang
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Pavel P Khil
- Department of Laboratory Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - John P Dekker
- Department of Laboratory Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Geetha Kutty
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Lisa Bishop
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Yueqin Liu
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Xilong Deng
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Philippe M Hauser
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Marco Pagni
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Vanessa Hirsch
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Richard A Lempicki
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jason E Stajich
- Department of Plant Pathology and Microbiology and Institute for Integrative Genome Biology, University of California, Riverside, Riverside, California, USA
| | - Christina A Cuomo
- Infectious Disease and Microbiome Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Joseph A Kovacs
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
19
|
Duchêne DA, Duchêne S, Ho SYW. PhyloMAd: efficient assessment of phylogenomic model adequacy. Bioinformatics 2018; 34:2300-2301. [DOI: 10.1093/bioinformatics/bty103] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 02/20/2018] [Indexed: 11/12/2022] Open
Affiliation(s)
- David A Duchêne
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Sebastian Duchêne
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| |
Collapse
|
20
|
Warnock RCM, Yang Z, Donoghue PCJ. Testing the molecular clock using mechanistic models of fossil preservation and molecular evolution. Proc Biol Sci 2018. [PMID: 28637852 PMCID: PMC5489717 DOI: 10.1098/rspb.2017.0227] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Molecular sequence data provide information about relative times only, and fossil-based age constraints are the ultimate source of information about absolute times in molecular clock dating analyses. Thus, fossil calibrations are critical to molecular clock dating, but competing methods are difficult to evaluate empirically because the true evolutionary time scale is never known. Here, we combine mechanistic models of fossil preservation and sequence evolution in simulations to evaluate different approaches to constructing fossil calibrations and their impact on Bayesian molecular clock dating, and the relative impact of fossil versus molecular sampling. We show that divergence time estimation is impacted by the model of fossil preservation, sampling intensity and tree shape. The addition of sequence data may improve molecular clock estimates, but accuracy and precision is dominated by the quality of the fossil calibrations. Posterior means and medians are poor representatives of true divergence times; posterior intervals provide a much more accurate estimate of divergence times, though they may be wide and often do not have high coverage probability. Our results highlight the importance of increased fossil sampling and improved statistical approaches to generating calibrations, which should incorporate the non-uniform nature of ecological and temporal fossil species distributions.
Collapse
Affiliation(s)
- Rachel C M Warnock
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK .,Department of Paleobiology, National Museum of Natural History, The Smithsonian Institution, Washington, DC 20560, USA.,Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Ziheng Yang
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Philip C J Donoghue
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
21
|
Iraola G, Forster SC, Kumar N, Lehours P, Bekal S, García-Peña FJ, Paolicchi F, Morsella C, Hotzel H, Hsueh PR, Vidal A, Lévesque S, Yamazaki W, Balzan C, Vargas A, Piccirillo A, Chaban B, Hill JE, Betancor L, Collado L, Truyers I, Midwinter AC, Dagi HT, Mégraud F, Calleros L, Pérez R, Naya H, Lawley TD. Distinct Campylobacter fetus lineages adapted as livestock pathogens and human pathobionts in the intestinal microbiota. Nat Commun 2017; 8:1367. [PMID: 29118316 PMCID: PMC5678084 DOI: 10.1038/s41467-017-01449-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 09/15/2017] [Indexed: 12/31/2022] Open
Abstract
Campylobacter fetus is a venereal pathogen of cattle and sheep, and an opportunistic human pathogen. It is often assumed that C. fetus infection occurs in humans as a zoonosis through food chain transmission. Here we show that mammalian C. fetus consists of distinct evolutionary lineages, primarily associated with either human or bovine hosts. We use whole-genome phylogenetics on 182 strains from 17 countries to provide evidence that C. fetus may have originated in humans around 10,500 years ago and may have "jumped" into cattle during the livestock domestication period. We detect C. fetus genomes in 8% of healthy human fecal metagenomes, where the human-associated lineages are the dominant type (78%). Thus, our work suggests that C. fetus is an unappreciated human intestinal pathobiont likely spread by human to human transmission. This genome-based evolutionary framework will facilitate C. fetus epidemiology research and the development of improved molecular diagnostics and prevention schemes for this neglected pathogen.
Collapse
Affiliation(s)
- Gregorio Iraola
- Unidad de Bioinformática, Institut Pasteur Montevideo, 11400, Montevideo, Uruguay. .,Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República, 11400, Montevideo, Uruguay. .,Host-Microbiota Interactions Laboratory, Wellcome Trust Sanger Institute, CB10 1SA, Hinxton, UK.
| | - Samuel C Forster
- Host-Microbiota Interactions Laboratory, Wellcome Trust Sanger Institute, CB10 1SA, Hinxton, UK.,Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - Nitin Kumar
- Host-Microbiota Interactions Laboratory, Wellcome Trust Sanger Institute, CB10 1SA, Hinxton, UK
| | - Philippe Lehours
- Bordeaux Research in Translational Oncology, INSERM UMR1053, University of Bordeaux, 33076, Bordeaux, France.,French National Reference Center for Campylobacters and Helicobacters, University of Bordeaux, 33076, Bordeaux, France
| | - Sadjia Bekal
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, QC, Canada, H9X 3Y3.,Départment de Microbiologie, Immunologie et Infectiologie, Université de Montréal, Montreal, QC, Canada, H3T 1J4
| | - Francisco J García-Peña
- Departamento de Bacteriología, Laboratorio Central de Veterinaria de Algete (MAGRAMA), 28110, Algete, Spain
| | - Fernando Paolicchi
- Laboratorio de Bacteriología, EEA-INTA Balcarce, Balcarce, 7620, Argentina
| | - Claudia Morsella
- Laboratorio de Bacteriología, EEA-INTA Balcarce, Balcarce, 7620, Argentina
| | - Helmut Hotzel
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, 07743, Jena, Germany
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, Taipei, 10617, Taiwan
| | - Ana Vidal
- Animal and Plant Health Association (APHA), Addlestone, KT15 3NB, UK
| | - Simon Lévesque
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, QC, Canada, H9X 3Y3
| | - Wataru Yamazaki
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Claudia Balzan
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Santa Maria, 97105-900, Brazil
| | - Agueda Vargas
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Santa Maria, 97105-900, Brazil
| | - Alessandra Piccirillo
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, 35122, Italy
| | - Bonnie Chaban
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Janet E Hill
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatchewan, SK, Canada, S7N 5A2
| | - Laura Betancor
- Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, 11600, Uruguay
| | - Luis Collado
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, 5090000, Valdivia, Chile
| | - Isabelle Truyers
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Anne C Midwinter
- EpiLab, Infectious Disease Research Centre, Massey University, Palmerston North, 4442, New Zealand
| | - Hatice T Dagi
- Department of Microbiology, Faculty of Medicine, Selçuk University, Selçuklu, 42250, Turkey
| | - Francis Mégraud
- Bordeaux Research in Translational Oncology, INSERM UMR1053, University of Bordeaux, 33076, Bordeaux, France.,French National Reference Center for Campylobacters and Helicobacters, University of Bordeaux, 33076, Bordeaux, France
| | - Lucía Calleros
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República, 11400, Montevideo, Uruguay
| | - Ruben Pérez
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República, 11400, Montevideo, Uruguay
| | - Hugo Naya
- Unidad de Bioinformática, Institut Pasteur Montevideo, 11400, Montevideo, Uruguay.,Departamento de Producción Animal y Pasturas, Facultad de Agronomía, Universidad de la República, 12900, Montevideo, Uruguay
| | - Trevor D Lawley
- Host-Microbiota Interactions Laboratory, Wellcome Trust Sanger Institute, CB10 1SA, Hinxton, UK.
| |
Collapse
|
22
|
Bouchenak-Khelladi Y, Linder HP. Frequent and parallel habitat transitions as driver of unbounded radiations in the Cape flora. Evolution 2017; 71:2548-2561. [PMID: 28884804 DOI: 10.1111/evo.13364] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 08/25/2017] [Accepted: 08/29/2017] [Indexed: 01/20/2023]
Abstract
The enormous species richness in the Cape Floristic Region (CFR) of Southern Africa is the result of numerous radiations, but the temporal progression and possible mechanisms of these radiations are still poorly understood. Here, we explore the macroevolutionary dynamics of the Restionaceae, which include 340 species that are found in all vegetation types in the Cape flora and are ecologically dominant in fynbos. Using an almost complete (i.e., 98%) species-level time calibrated phylogeny and models of diversification dynamics, we show that species diversification is constant through the Cenozoic, with no evidence of an acceleration with the onset of the modern winter-wet climate, or a recent density-dependent slowdown. Contrary to expectation, species inhabiting the oldest (montane) and most extensive (drylands) habitats did not undergo higher diversification rates than species in the younger (lowlands) and more restricted (wetland) habitats. We show that the rate of habitat transitions is more closely related to the speciation rate than to time, and that more than a quarter of all speciation events are associated with habitat transitions. This suggests that the unbounded Restionaceae diversification resulted from numerous, parallel, habitat shifts, rather than persistence in a habitat stimulating speciation. We speculate that this could be one of the mechanisms resulting in the hyperdiverse Cape flora.
Collapse
Affiliation(s)
- Yanis Bouchenak-Khelladi
- Department of Systematic and Evolutionary Botany, University of Zurich, CH 8008 Zurich, Switzerland
| | - H Peter Linder
- Department of Systematic and Evolutionary Botany, University of Zurich, CH 8008 Zurich, Switzerland
| |
Collapse
|
23
|
Duchêne DA, Hua X, Bromham L. Phylogenetic estimates of diversification rate are affected by molecular rate variation. J Evol Biol 2017; 30:1884-1897. [PMID: 28758282 DOI: 10.1111/jeb.13148] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/16/2017] [Accepted: 07/18/2017] [Indexed: 01/14/2023]
Abstract
Molecular phylogenies are increasingly being used to investigate the patterns and mechanisms of macroevolution. In particular, node heights in a phylogeny can be used to detect changes in rates of diversification over time. Such analyses rest on the assumption that node heights in a phylogeny represent the timing of diversification events, which in turn rests on the assumption that evolutionary time can be accurately predicted from DNA sequence divergence. But there are many influences on the rate of molecular evolution, which might also influence node heights in molecular phylogenies, and thus affect estimates of diversification rate. In particular, a growing number of studies have revealed an association between the net diversification rate estimated from phylogenies and the rate of molecular evolution. Such an association might, by influencing the relative position of node heights, systematically bias estimates of diversification time. We simulated the evolution of DNA sequences under several scenarios where rates of diversification and molecular evolution vary through time, including models where diversification and molecular evolutionary rates are linked. We show that commonly used methods, including metric-based, likelihood and Bayesian approaches, can have a low power to identify changes in diversification rate when molecular substitution rates vary. Furthermore, the association between the rates of speciation and molecular evolution rate can cause the signature of a slowdown or speedup in speciation rates to be lost or misidentified. These results suggest that the multiple sources of variation in molecular evolutionary rates need to be considered when inferring macroevolutionary processes from phylogenies.
Collapse
Affiliation(s)
- D A Duchêne
- Macroevolution & Macroecology, Research School of Biology, Australian National University, Canberra, ACT, Australia.,School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - X Hua
- Macroevolution & Macroecology, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - L Bromham
- Macroevolution & Macroecology, Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
24
|
Yang GD, Agapow PM, Yedid G. The tree balance signature of mass extinction is erased by continued evolution in clades of constrained size with trait-dependent speciation. PLoS One 2017. [PMID: 28644846 PMCID: PMC5482465 DOI: 10.1371/journal.pone.0179553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The kind and duration of phylogenetic topological “signatures” left in the wake of macroevolutionary events remain poorly understood. To this end, we examined a broad range of simulated phylogenies generated using trait-biased, heritable speciation probabilities and mass extinction that could be either random or selective on trait value, but also using background extinction and diversity-dependence to constrain clade sizes. In keeping with prior results, random mass extinction increased imbalance of clades that recovered to pre-extinction size, but was a relatively weak effect. Mass extinction that was selective on trait values tended to produce clades of similar or greater balance compared to random extinction or controls. Allowing evolution to continue past the point of clade-size recovery resulted in erosion and eventual erasure of this signal, with all treatments converging on similar values of imbalance, except for very intense extinction regimes targeted at taxa with high speciation rates. Return to a more balanced state with extended post-extinction evolution was also associated with loss of the previous phylogenetic root in most treatments. These results further demonstrate that while a mass extinction event can produce a recognizable phylogenetic signal, its effects become increasingly obscured the further an evolving clade gets from that event, with any sharp imbalance due to unrelated evolutionary factors.
Collapse
Affiliation(s)
- Guan-Dong Yang
- Department of Zoology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Paul-Michael Agapow
- Data Science Institute, William Penney Laboratory, Imperial College, South Kensington, London, United Kingdom
| | - Gabriel Yedid
- Department of Zoology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
- * E-mail:
| |
Collapse
|
25
|
Rieux A, Balloux F. Inferences from tip-calibrated phylogenies: a review and a practical guide. Mol Ecol 2016; 25:1911-24. [PMID: 26880113 PMCID: PMC4949988 DOI: 10.1111/mec.13586] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 02/01/2016] [Accepted: 02/04/2016] [Indexed: 12/25/2022]
Abstract
Molecular dating of phylogenetic trees is a growing discipline using sequence data to co‐estimate the timing of evolutionary events and rates of molecular evolution. All molecular‐dating methods require converting genetic divergence between sequences into absolute time. Historically, this could only be achieved by associating externally derived dates obtained from fossil or biogeographical evidence to internal nodes of the tree. In some cases, notably for fast‐evolving genomes such as viruses and some bacteria, the time span over which samples were collected may cover a significant proportion of the time since they last shared a common ancestor. This situation allows phylogenetic trees to be calibrated by associating sampling dates directly to the sequences representing the tips (terminal nodes) of the tree. The increasing availability of genomic data from ancient DNA extends the applicability of such tip‐based calibration to a variety of taxa including humans, extinct megafauna and various microorganisms which typically have a scarce fossil record. The development of statistical models accounting for heterogeneity in different aspects of the evolutionary process while accommodating very large data sets (e.g. whole genomes) has allowed using tip‐dating methods to reach inferences on divergence times, substitution rates, past demography or the age of specific mutations on a variety of spatiotemporal scales. In this review, we summarize the current state of the art of tip dating, discuss some recent applications, highlight common pitfalls and provide a ‘how to’ guide to thoroughly perform such analyses.
Collapse
Affiliation(s)
- Adrien Rieux
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, Gower Street, London, WC1E 6BT, UK
| | - François Balloux
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
26
|
Duchêne S, Di Giallonardo F, Holmes EC. Substitution Model Adequacy and Assessing the Reliability of Estimates of Virus Evolutionary Rates and Time Scales. Mol Biol Evol 2015; 33:255-67. [PMID: 26416981 DOI: 10.1093/molbev/msv207] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Determining the time scale of virus evolution is central to understanding their origins and emergence. The phylogenetic methods commonly used for this purpose can be misleading if the substitution model makes incorrect assumptions about the data. Empirical studies consider a pool of models and select that with the highest statistical fit. However, this does not allow the rejection of all models, even if they poorly describe the data. An alternative is to use model adequacy methods that evaluate the ability of a model to predict hypothetical future observations. This can be done by comparing the empirical data with data generated under the model in question. We conducted simulations to evaluate the sensitivity of such methods with nucleotide, amino acid, and codon data. These effectively detected underparameterized models, but failed to detect mutational saturation and some instances of nonstationary base composition, which can lead to biases in estimates of tree topology and length. To test the applicability of these methods with real data, we analyzed nucleotide and amino acid data sets from the genus Flavivirus of RNA viruses. In most cases these models were inadequate, with the exception of a data set of relatively closely related sequences of Dengue virus, for which the GTR+Γ nucleotide and LG+Γ amino acid substitution models were adequate. Our results partly explain the lack of consensus over estimates of the long-term evolutionary time scale of these viruses, and indicate that assessing the adequacy of substitution models should be routinely used to determine whether estimates are reliable.
Collapse
Affiliation(s)
- Sebastián Duchêne
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Biological Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Francesca Di Giallonardo
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Biological Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Biological Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
27
|
Murray GGR, Wang F, Harrison EM, Paterson GK, Mather AE, Harris SR, Holmes MA, Rambaut A, Welch JJ. The effect of genetic structure on molecular dating and tests for temporal signal. Methods Ecol Evol 2015; 7:80-89. [PMID: 27110344 PMCID: PMC4832290 DOI: 10.1111/2041-210x.12466] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/23/2015] [Indexed: 12/23/2022]
Abstract
‘Dated‐tip’ methods of molecular dating use DNA sequences sampled at different times, to estimate the age of their most recent common ancestor. Several tests of ‘temporal signal’ are available to determine whether data sets are suitable for such analysis. However, it remains unclear whether these tests are reliable. We investigate the performance of several tests of temporal signal, including some recently suggested modifications. We use simulated data (where the true evolutionary history is known), and whole genomes of methicillin‐resistant Staphylococcus aureus (to show how particular problems arise with real‐world data sets). We show that all of the standard tests of temporal signal are seriously misleading for data where temporal and genetic structures are confounded (i.e. where closely related sequences are more likely to have been sampled at similar times). This is not an artefact of genetic structure or tree shape per se, and can arise even when sequences have measurably evolved during the sampling period. More positively, we show that a ‘clustered permutation’ approach introduced by Duchêne et al. (Molecular Biology and Evolution, 32, 2015, 1895) can successfully correct for this artefact in all cases and introduce techniques for implementing this method with real data sets. The confounding of temporal and genetic structures may be difficult to avoid in practice, particularly for outbreaks of infectious disease, or when using ancient DNA. Therefore, we recommend the use of ‘clustered permutation’ for all analyses. The failure of the standard tests may explain why different methods of dating pathogen origins have reached such wildly different conclusions.
Collapse
Affiliation(s)
- Gemma G R Murray
- Department of Genetics University of Cambridge Downing Street Cambridge CB2 3EH UK
| | - Fang Wang
- Department of Genetics University of Cambridge Downing Street Cambridge CB2 3EH UK
| | - Ewan M Harrison
- Department of Veterinary Medicine University of Cambridge Madingley Road Cambridge CB3 0ES UK
| | - Gavin K Paterson
- Department of Veterinary Medicine University of Cambridge Madingley Road Cambridge CB3 0ESUK; School of Biological, Biomedical and Environmental Sciences University of Hull Cottingham Road Hull HU6 7RX UK
| | - Alison E Mather
- Department of Veterinary Medicine University of Cambridge Madingley Road Cambridge CB3 0ESUK; Wellcome Trust Sanger Institute Hinxton CB10 1SA UK
| | | | - Mark A Holmes
- Department of Veterinary Medicine University of Cambridge Madingley Road Cambridge CB3 0ES UK
| | - Andrew Rambaut
- Institute of Evolutionary Biology University of Edinburgh King's Buildings Edinburgh EH9 3FL UK
| | - John J Welch
- Department of Genetics University of Cambridge Downing Street Cambridge CB2 3EH UK
| |
Collapse
|
28
|
Duchêne S, Duchêne D, Holmes EC, Ho SYW. The Performance of the Date-Randomization Test in Phylogenetic Analyses of Time-Structured Virus Data. Mol Biol Evol 2015; 32:1895-906. [PMID: 25771196 DOI: 10.1093/molbev/msv056] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Rates and timescales of viral evolution can be estimated using phylogenetic analyses of time-structured molecular sequences. This involves the use of molecular-clock methods, calibrated by the sampling times of the viral sequences. However, the spread of these sampling times is not always sufficient to allow the substitution rate to be estimated accurately. We conducted Bayesian phylogenetic analyses of simulated virus data to evaluate the performance of the date-randomization test, which is sometimes used to investigate whether time-structured data sets have temporal signal. An estimate of the substitution rate passes this test if its mean does not fall within the 95% credible intervals of rate estimates obtained using replicate data sets in which the sampling times have been randomized. We find that the test sometimes fails to detect rate estimates from data with no temporal signal. This error can be minimized by using a more conservative criterion, whereby the 95% credible interval of the estimate with correct sampling times should not overlap with those obtained with randomized sampling times. We also investigated the behavior of the test when the sampling times are not uniformly distributed throughout the tree, which sometimes occurs in empirical data sets. The test performs poorly in these circumstances, such that a modification to the randomization scheme is needed. Finally, we illustrate the behavior of the test in analyses of nucleotide sequences of cereal yellow dwarf virus. Our results validate the use of the date-randomization test and allow us to propose guidelines for interpretation of its results.
Collapse
Affiliation(s)
- Sebastián Duchêne
- School of Biological Sciences, University of Sydney, Sydney, NSW, Australia
| | - David Duchêne
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Edward C Holmes
- School of Biological Sciences, University of Sydney, Sydney, NSW, Australia Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Simon Y W Ho
- School of Biological Sciences, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|