1
|
Fonseca-Ferreira R, Derkarabetian S, Morales MJA, Opatova V, Belintani T, Lyle R, Guadanucci JPL. Disconnecting trapdoors: Phylogenomic analyses reveal evolutionary contrasts in trapdoor spiders with intercontinental distribution (Idiopidae, Idiopinae). Mol Phylogenet Evol 2025; 206:108323. [PMID: 40064408 DOI: 10.1016/j.ympev.2025.108323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/21/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
Among Mygalomorphae spiders, the family Idiopidae is the second most diverse, consisting exclusively of trapdoor spiders and is divided into three subfamilies: Arbanitinae, Genysinae, and Idiopinae. The subfamily Idiopinae, distinguished mainly by anterior lateral eyes that project forward, includes 153 species across seven genera, distributed throughout South America, Africa, and parts of Asia. Within this subfamily, the genus Idiops includes the greatest diversity and is the only genus recorded in both the New and Old Worlds. Utilizing a taxon set from the Neotropical and Afrotropical regions, with specimens collected from 1947 to 2021, our study provides the first phylogenomic analysis of the family based on Ultraconserved Elements (UCEs). To assess the monophyly of Idiopinae and Idiops, as well as the relationships among genera within the subfamily, we conducted phylogenetic analyses employing maximum likelihood, Bayesian inference, and coalescent-based methods. The phylogenetic trees reveal that Idiopinae forms a monophyletic lineage, split into two geographically distinct groups: one with African species and the other with Neotropical species. We did not recover monophyly of the genus Idiops; Neotropical Idiops form a monophyletic lineage, while African Idiops species group with Titanidiops, forming a sister lineage to the remaining African Idiopinae. The relationship between the phylogenetic results obtained and the main morphological differences observed among the genera is discussed. Finally, our study challenges the monophyly of Idiopidae by including Neocteniza, which is found to be an independent lineage sister to Ctenizidae and the rest of Idiopidae.
Collapse
Affiliation(s)
- R Fonseca-Ferreira
- Laboratório de Coleções Zoológicas, Instituto Butantan, São Paulo, Brazil; Laboratório de Aracnologia de Rio Claro, Departamento de Biodiversidade, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, Brazil.
| | - S Derkarabetian
- Department of Entomology, San Diego Natural History Museum, San Diego, CA, USA
| | - M J A Morales
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Universidade de Campinas, São Paulo, Brazil
| | - V Opatova
- Department of Zoology, Faculty of Sciences, Charles University, Prague, Czech Republic
| | - T Belintani
- Laboratório de Aracnologia de Rio Claro, Departamento de Biodiversidade, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, Brazil
| | - R Lyle
- Agricultural Research Council, Pretoria, South Africa
| | - J P L Guadanucci
- Laboratório de Aracnologia de Rio Claro, Departamento de Biodiversidade, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, Brazil
| |
Collapse
|
2
|
Wang BC, Jeng ML, Tsai JF, Wu LW. Genome skimming for improved phylogenetics of Taiwanese phasmids (Insecta: Phasmatodea). Mol Phylogenet Evol 2025; 205:108292. [PMID: 39864640 DOI: 10.1016/j.ympev.2025.108292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/28/2024] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
Taiwan, a relatively young continental island, harbors a high proportion of endemic phasmids, reflecting its unique evolutionary history. However, a comprehensive phylogenetic framework to clarify these phasmids is still lacking. In this study, we sequenced ten of eleven valid genera and two undescribed species of Taiwanese phasmids (total 16 species) using the genome-skimming approach. We also integrated these sequences with public databases to create two aligned datasets: one comprising 92 taxa (mitogenomes) and the other 606 taxa (seven nuclear and mitochondrial genes), enabling us to examine their phylogenetic relationships using longer sequences and more samples. Our analyses show that Taiwanese phasmids should be categorized into six families, with a revised number of genera to 13. Furthermore, four species require taxonomic treatments: namely Micadina honei (Günther, 1940) comb. nov., Micadina truncatum (Shiraki, 1935) comb. nov., Otraleus okunii (Shiraki, 1935) comb. nov., and Ramulus granulatus (Shiraki, 1935) syn. nov. now recognized as Ramulus artemis (Westwood, 1859). While some Taiwanese genera exhibit polyphyletic relationships, our findings highlight the importance of taxon sampling, particularly for type species in resolving these systematic issues. The genome-skimming approach has proven to be an excellent method for producing comparable sequence datasets, facilitating the investigation of highly diverse insects, even when samples are old, small, or have highly fragmented DNAs.
Collapse
Affiliation(s)
- Bo-Cheng Wang
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Ming-Luen Jeng
- Department of Biology, National Museum of Natural Science, Taichung, Taiwan
| | - Jing-Fu Tsai
- Department of Biology, National Museum of Natural Science, Taichung, Taiwan
| | - Li-Wei Wu
- Department of Life Science, Tunghai University, Taichung, Taiwan; Center for Ecology and Environment, Tunghai University, Taichung, Taiwan.
| |
Collapse
|
3
|
Zhao M, Oswald JA, Allen JM, Owens HL, Hosner PA, Guralnick RP, Braun EL, Kimball RT. A phylogenomic tree of wood-warblers (Aves: Parulidae): Dealing with good, bad, and ugly samples. Mol Phylogenet Evol 2025; 202:108235. [PMID: 39542406 DOI: 10.1016/j.ympev.2024.108235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/26/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
The New World warblers (Parulidae) are a model group for ecological and evolutionary analyses. However, current phylogenetic relationships across this family are based upon few loci. Here we use ultraconserved elements (UCEs) to estimate a rigorous species-level phylogeny for the family. As is true for many groups, high-quality tissues were unavailable for some taxa. Thus, we explored methods for incorporating sequences derived from historical (toe pad) samples to expand the phylogenetic datasets. We recovered an average of 4,186 UCE loci and mitochondrial bycatch data (supplemented with published mitochondrial data) from 96% of all currently recognized species. We found that the UCE phylogeny built with alignments with less than 70% of gaps and ambiguities recovered the most robust phylogenetic relationships for this family, representing 101 species. Using this phylogeny as a topological backbone and adding ten fair quality "bad" samples effectively generated an overall well supported phylogeny, representing 108 species (∼90% of all species). Based on this tree, we then added in seven poor quality "ugly" samples and six of those were placed within their expected genera. We also explored the phylogenetic positions of the likely extinct Leucopeza semperi and the endangered Catharopeza bishopi where limited data was obtained. Overall, taxonomic placements in our UCE trees largely correspond to previously published studies with the recovery of all currently recognized genera as monophyletic except for Basileuterus which was rendered paraphyletic by B. lachrymosus. Our study provides insights in understanding the phylogenetic relationships of a model Passeriformes family and outlines effective practices for managing sparse genomic data sourced from historical museum specimens. Variable topological arrangements across datasets and analyses reflect the evolutionary complexity of this group and provide future topics for in-depth studies.
Collapse
Affiliation(s)
- Min Zhao
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Jessica A Oswald
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA; U.S. Fish and Wildlife Service, National Fish and Wildlife Forensic Laboratory, Ashland, OR 97520, USA
| | - Julie M Allen
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | - Hannah L Owens
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA; Center for Global Mountain Biodiversity, Section for Biodiversity, Globe Institute, University of Copenhagen, København Ø, Denmark
| | - Peter A Hosner
- Center for Global Mountain Biodiversity, Section for Biodiversity, Globe Institute, University of Copenhagen, København Ø, Denmark; Natural History Museum Denmark, University of Copenhagen, København Ø, Denmark
| | - Robert P Guralnick
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Edward L Braun
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Rebecca T Kimball
- Department of Biology, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
4
|
Derkarabetian S, Benavides LR, Giribet G. Reassessing the phylogeny of Cyphophthalmi with phylogenomics: A UCE-based phylogeny of mite harvesters (Opiliones). Mol Phylogenet Evol 2024; 199:108143. [PMID: 38977042 DOI: 10.1016/j.ympev.2024.108143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/23/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
Cyphophthalmi (the mite harvesters) are a group of Opiliones with broad interest due to their species being classic examples of short-range endemics and displaying model biogeographical patterns for poor dispersers. Cyphophthalmi phylogeny has received attention using morphology, Sanger-based sequencing data, or transcriptomics. Here we turn to a new type of data, ultraconserved elements (UCEs) and provide a first phylogeny for the entire suborder Cyphophthalmi using such data and including representatives from 36 of the 46 currently recognized genera. Phylogenetic analysis of four occupancy matrices (50%, 75%, 90% and 95%), for a total of 840, 567, 129, and 23 loci, respectively, yielded a well resolved phylogeny with monophyly of Pettalidae, Parasironidae, Stylocellidae and Troglosironidae. However, Neogoveidae appeared paraphyletic with respect to Ogoveidae in all datasets and to Troglosironidae in some, and the traditional Sironidae, which was monophyletic, now appeared paraphyletic with respect to the recently erected family Parasironidae. Our phylogenomic results using UCE data resolve the position of several problematic genera (e.g., Pettalus) and add support to other parts of the tree that received low support in Sanger-based phylogenies. Our work also stresses the possibility to add museum samples to phylogenies although methods for optimizing DNA yield from such small-bodied specimens need further improvement. Finally, this backbone phylogeny demonstrates the feasibility of an all-species phylogeny using UCEs for Cyphophthalmi, and by extension, for all Opiliones.
Collapse
Affiliation(s)
- Shahan Derkarabetian
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA; San Diego Natural History Museum, Department of Entomology, San Diego, CA, USA
| | - Ligia R Benavides
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
5
|
Zeng F, Chen X, Zhong W, Chen T, Sa J, Wang G, Zhang S, Peng S. Recombinase-aid amplification combined with lateral flow detection assay for sex identification of the great white pelican (Pelecanus onocrotalus). Sci Rep 2024; 14:21332. [PMID: 39266713 PMCID: PMC11393076 DOI: 10.1038/s41598-024-72743-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 09/10/2024] [Indexed: 09/14/2024] Open
Abstract
Sex identification in avian species is essential for biodiversity conservation and ecological studies. However, the sex of nearly half of the birds could not be identified based on their external appearance. It is difficult to visually identify sex to monitor the ecology and conservation of wild populations. In this study, we designed primer pairs for large white pelican using recombinase-based isothermal amplification combined with a lateral flow dipstick (RAA-LFD) assay for chromo-helicase-DNA binding protein (CHD) genes mapped to W chromosomes and an ultra-conserved element (UCE) located on chromosome 6, respectively. Our result showed that the raaW4-RAA-LFD can detect up to 0.1 ng of genomic DNA (gDNA) templates of female pelicans in 30 min at 39 ℃ and accurately distinguish female from male without any cross reactivity. RaaUCE2-RAA-LFD can amplify both male and female pelicans with a detection limit of 25 pg. To further evaluate the assay, 15 white pelicans of unknown sex were tested using the RAA-LFD assay and conventional polymerase chain reaction (PCR). The results of the raaW4-RAA-LFD assay were consistent with those of the conventional PCR. The developed RAA-LFD assay is equipped with field-deployable instruments and offers a field platform for rapid and reliable sex identification in pelicans.
Collapse
Affiliation(s)
- Fanwen Zeng
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510075, China.
| | - Xuanjiao Chen
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510075, China
| | - Wanhuan Zhong
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Tanzipeng Chen
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510075, China
| | - Jiaqi Sa
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510075, China
| | - Guoqian Wang
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510075, China
| | - Shouquan Zhang
- College of Animal Science of South, China Agricultural University, Guangzhou, 510642, China.
| | - Shiming Peng
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510075, China.
| |
Collapse
|
6
|
González-Delgado S, Rodríguez-Flores PC, Giribet G. Testing ultraconserved elements (UCEs) for phylogenetic inference across bivalves (Mollusca: Bivalvia). Mol Phylogenet Evol 2024; 198:108129. [PMID: 38878989 DOI: 10.1016/j.ympev.2024.108129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/15/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
Bivalves constitute an important resource for fisheries and as cultural objects. Bivalve phylogenetics has had a long tradition using both morphological and molecular characters, and genomic resources are available for a good number of commercially important species. However, relationships among bivalve families have been unstable and major conflicting results exist between mitogenomics and results based on Sanger-based amplicon sequencing or phylotranscriptomics. Here we design and test an ultraconserved elements probe set for the class Bivalvia with the aim to use hundreds of loci without the need to sequence full genomes or transcriptomes, which are expensive and complex to analyze, and to open bivalve phylogenetics to museum specimens. Our probe set successfully captured 1,513 UCEs for a total of 263,800 bp with an average length of 174.59 ± 3.44 per UCE (ranging from 28 to 842 bp). Phylogenetic testing of this UCE probe set across Bivalvia and within the family Donacidae using different data matrices and methods for phylogenetic inference shows promising results at multiple taxonomic levels. In addition, our probe set was able to capture large numbers of UCEs for museum specimens collected before 1900 and from DNAs properly stored, of which many museums and laboratories are well stocked. Overall, this constitutes a novel and useful resource for bivalve phylogenetics.
Collapse
Affiliation(s)
- Sara González-Delgado
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, Santa Cruz de Tenerife, Canary Islands, Spain; Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Paula C Rodríguez-Flores
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Gonzalo Giribet
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
7
|
Schield DR, Brown CE, Shakya SB, Calabrese GM, Safran RJ, Sheldon FH. Phylogeny and historical biogeography of the swallow family (Hirundinidae) inferred from comparisons of thousands of UCE loci. Mol Phylogenet Evol 2024; 197:108111. [PMID: 38801965 DOI: 10.1016/j.ympev.2024.108111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/13/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
Swallows (Hirundinidae) are a globally distributed family of passerine birds that exhibit remarkable similarity in body shape but tremendous variation in plumage, sociality, nesting behavior, and migratory strategies. As a result, swallow species have become models for empirical behavioral ecology and evolutionary studies, and variation across the Hirundinidae presents an excellent opportunity for comparative analyses of trait evolution. Exploiting this potential requires a comprehensive and well-resolved phylogenetic tree of the family. To address this need, we estimated swallow phylogeny using genetic data from thousands of ultraconserved element (UCE) loci sampled from nearly all recognized swallow species. Maximum likelihood, coalescent-based, and Bayesian approaches yielded a well-resolved phylogenetic tree to the generic level, with minor disagreement among inferences at the species level, which likely reflect ongoing population genetic processes. The UCE data were particularly useful in helping to resolve deep nodes, which previously confounded phylogenetic reconstruction efforts. Divergence time estimates from the improved swallow tree support a Miocene origin of the family, roughly 13 million years ago, with subsequent diversification of major groups in the late Miocene and Pliocene. Our estimates of historical biogeography support the hypothesis that swallows originated in the Afrotropics and have subsequently expanded across the globe, with major in situ diversification in Africa and a secondary major radiation following colonization of the Neotropics. Initial examination of nesting and sociality indicates that the origin of mud nesting - a relatively rare nest construction phenotype in birds - was a major innovation coincident with the origin of a clade giving rise to over 40% of extant swallow diversity. In contrast, transitions between social and solitary nesting appear less important for explaining patterns of diversification among swallows.
Collapse
Affiliation(s)
- Drew R Schield
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA; Department of Biology, University of Virginia, Charlottesville, VA, USA.
| | - Clare E Brown
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Subir B Shakya
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA; Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Gina M Calabrese
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Rebecca J Safran
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Frederick H Sheldon
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
8
|
Cummins M, Watson C, Edwards RJ, Mattick JS. The Evolution of Ultraconserved Elements in Vertebrates. Mol Biol Evol 2024; 41:msae146. [PMID: 39058500 PMCID: PMC11276968 DOI: 10.1093/molbev/msae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/29/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
Ultraconserved elements were discovered two decades ago, arbitrarily defined as sequences that are identical over a length ≥ 200 bp in the human, mouse, and rat genomes. The definition was subsequently extended to sequences ≥ 100 bp identical in at least three of five mammalian genomes (including dog and cow), and shown to have undergone rapid expansion from ancestors in fish and strong negative selection in birds and mammals. Since then, many more genomes have become available, allowing better definition and more thorough examination of ultraconserved element distribution and evolutionary history. We developed a fast and flexible analytical pipeline for identifying ultraconserved elements in multiple genomes, dedUCE, which allows manipulation of minimum length, sequence identity, and number of species with a detectable ultraconserved element according to specified parameters. We suggest an updated definition of ultraconserved elements as sequences ≥ 100 bp and ≥97% sequence identity in ≥50% of placental mammal orders (12,813 ultraconserved elements). By mapping ultraconserved elements to ∼200 species, we find that placental ultraconserved elements appeared early in vertebrate evolution, well before land colonization, suggesting that the evolutionary pressures driving ultraconserved element selection were present in aquatic environments in the Cambrian-Devonian periods. Most (>90%) ultraconserved elements likely appeared after the divergence of gnathostomes from jawless predecessors, were largely established in sequence identity by early Sarcopterygii evolution-before the divergence of lobe-finned fishes from tetrapods-and became near fixed in the amniotes. Ultraconserved elements are mainly located in the introns of protein-coding and noncoding genes involved in neurological and skeletomuscular development, enriched in regulatory elements, and dynamically expressed throughout embryonic development.
Collapse
Affiliation(s)
- Mitchell Cummins
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Cadel Watson
- School of Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Richard J Edwards
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - John S Mattick
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
9
|
Ruiz-Vargas N, Ramanauskas K, Tyszka AS, Bretz EC, Yeo MTS, Mason-Gamer RJ, Walker JF. Transcriptome data from silica-preserved leaf tissue reveal gene flow patterns in a Caribbean bromeliad. ANNALS OF BOTANY 2024; 133:459-472. [PMID: 38181407 PMCID: PMC11006539 DOI: 10.1093/aob/mcae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/04/2024] [Indexed: 01/07/2024]
Abstract
BACKGROUND AND AIMS Transcriptome sequencing is a cost-effective approach that allows researchers to study a broad range of questions. However, to preserve RNA for transcriptome sequencing, tissue is often kept in special conditions, such as immediate ultracold freezing. Here, we demonstrate that RNA can be obtained from 6-month-old, field-collected samples stored in silica gel at room temperature. Using these transcriptomes, we explore the evolutionary relationships of the genus Pitcairnia (Bromeliaceae) in the Dominican Republic and infer barriers to gene flow. METHODS We extracted RNA from silica-dried leaf tissue from 19 Pitcairnia individuals collected across the Dominican Republic. We used a series of macro- and micro-evolutionary approaches to examine the relationships and patterns of gene flow among individuals. KEY RESULTS We produced high-quality transcriptomes from silica-dried material and demonstrated that evolutionary relationships on the island match geography more closely than species delimitation methods. A population genetic examination indicates that a combination of ecological and geographical features presents barriers to gene flow in Pitcairnia. CONCLUSIONS Transcriptomes can be obtained from silica-preserved tissue. The genetic diversity among Pitcairnia populations does not warrant classification as separate species, but the Dominican Republic contains several barriers to gene flow, notably the Cordillera Central mountain range.
Collapse
Affiliation(s)
- Natalia Ruiz-Vargas
- Department of Biological Sciences, the University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Karolis Ramanauskas
- Department of Biological Sciences, the University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Alexa S Tyszka
- Department of Biological Sciences, the University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Eric C Bretz
- Department of Biological Sciences, the University of Illinois at Chicago, Chicago, IL 60607, USA
| | - May T S Yeo
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
- Department of Genetics, Downing Site, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Roberta J Mason-Gamer
- Department of Biological Sciences, the University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Joseph F Walker
- Department of Biological Sciences, the University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
10
|
Ferrari G, Esselens L, Hart ML, Janssens S, Kidner C, Mascarello M, Peñalba JV, Pezzini F, von Rintelen T, Sonet G, Vangestel C, Virgilio M, Hollingsworth PM. Developing the Protocol Infrastructure for DNA Sequencing Natural History Collections. Biodivers Data J 2023; 11:e102317. [PMID: 38327316 PMCID: PMC10848826 DOI: 10.3897/bdj.11.e102317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/04/2023] [Indexed: 02/09/2024] Open
Abstract
Intentionally preserved biological material in natural history collections represents a vast repository of biodiversity. Advances in laboratory and sequencing technologies have made these specimens increasingly accessible for genomic analyses, offering a window into the genetic past of species and often permitting access to information that can no longer be sampled in the wild. Due to their age, preparation and storage conditions, DNA retrieved from museum and herbarium specimens is often poor in yield, heavily fragmented and biochemically modified. This not only poses methodological challenges in recovering nucleotide sequences, but also makes such investigations susceptible to environmental and laboratory contamination. In this paper, we review the practical challenges associated with making the recovery of DNA sequence data from museum collections more routine. We first review key operational principles and issues to address, to guide the decision-making process and dialogue between researchers and curators about when and how to sample museum specimens for genomic analyses. We then outline the range of steps that can be taken to reduce the likelihood of contamination including laboratory set-ups, workflows and working practices. We finish by presenting a series of case studies, each focusing on protocol practicalities for the application of different mainstream methodologies to museum specimens including: (i) shotgun sequencing of insect mitogenomes, (ii) whole genome sequencing of insects, (iii) genome skimming to recover plant plastid genomes from herbarium specimens, (iv) target capture of multi-locus nuclear sequences from herbarium specimens, (v) RAD-sequencing of bird specimens and (vi) shotgun sequencing of ancient bovid bone samples.
Collapse
Affiliation(s)
- Giada Ferrari
- Royal Botanic Garden Edinburgh, Edinburgh, United KingdomRoyal Botanic Garden EdinburghEdinburghUnited Kingdom
| | - Lore Esselens
- Royal Museum for Central Africa, Tervuren, BelgiumRoyal Museum for Central AfricaTervurenBelgium
- Royal Belgian Institute of Natural Sciences, Brussels, BelgiumRoyal Belgian Institute of Natural SciencesBrusselsBelgium
| | - Michelle L Hart
- Royal Botanic Garden Edinburgh, Edinburgh, United KingdomRoyal Botanic Garden EdinburghEdinburghUnited Kingdom
| | - Steven Janssens
- Meise Botanic Garden, Meise, BelgiumMeise Botanic GardenMeiseBelgium
- Leuven Plant Institute, Department of Biology, Leuven, BelgiumLeuven Plant Institute, Department of BiologyLeuvenBelgium
| | - Catherine Kidner
- Royal Botanic Garden Edinburgh, Edinburgh, United KingdomRoyal Botanic Garden EdinburghEdinburghUnited Kingdom
| | | | - Joshua V Peñalba
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, GermanyMuseum für Naturkunde, Leibniz Institute for Evolution and Biodiversity ScienceBerlinGermany
| | - Flávia Pezzini
- Royal Botanic Garden Edinburgh, Edinburgh, United KingdomRoyal Botanic Garden EdinburghEdinburghUnited Kingdom
| | - Thomas von Rintelen
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, GermanyMuseum für Naturkunde, Leibniz Institute for Evolution and Biodiversity ScienceBerlinGermany
| | - Gontran Sonet
- Royal Belgian Institute of Natural Sciences, Brussels, BelgiumRoyal Belgian Institute of Natural SciencesBrusselsBelgium
| | - Carl Vangestel
- Royal Belgian Institute of Natural Sciences, Brussels, BelgiumRoyal Belgian Institute of Natural SciencesBrusselsBelgium
| | - Massimiliano Virgilio
- Royal Museum for Central Africa, Department of African Zoology, Tervuren, BelgiumRoyal Museum for Central Africa, Department of African ZoologyTervurenBelgium
| | - Peter M Hollingsworth
- Royal Botanic Garden Edinburgh, Edinburgh, United KingdomRoyal Botanic Garden EdinburghEdinburghUnited Kingdom
| |
Collapse
|
11
|
Kersten O, Star B, Krabberød AK, Atmore LM, Tørresen OK, Anker-Nilssen T, Descamps S, Strøm H, Johansson US, Sweet PR, Jakobsen KS, Boessenkool S. Hybridization of Atlantic puffins in the Arctic coincides with 20th-century climate change. SCIENCE ADVANCES 2023; 9:eadh1407. [PMID: 37801495 PMCID: PMC10558128 DOI: 10.1126/sciadv.adh1407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/06/2023] [Indexed: 10/08/2023]
Abstract
The Arctic is experiencing the fastest rates of global warming, leading to shifts in the distribution of its biota and increasing the potential for hybridization. However, genomic evidence of recent hybridization events in the Arctic remains unexpectedly rare. Here, we use whole-genome sequencing of contemporary and 122-year-old historical specimens to investigate the origin of an Arctic hybrid population of Atlantic puffins (Fratercula arctica) on Bjørnøya, Norway. We show that the hybridization between the High Arctic, large-bodied subspecies F. a. naumanni and the temperate, smaller-sized subspecies F. a. arctica began as recently as six generations ago due to an unexpected southward range expansion of F. a. naumanni. Moreover, we find a significant temporal loss of genetic diversity across Arctic and temperate puffin populations. Our observations provide compelling genomic evidence of the impacts of recent distributional shifts and loss of diversity in Arctic communities during the 20th century.
Collapse
Affiliation(s)
- Oliver Kersten
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Bastiaan Star
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Anders K. Krabberød
- Section for Genetics and Evolutionary Biology (Evogene), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Lane M. Atmore
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Ole K. Tørresen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | | | | | - Hallvard Strøm
- Norwegian Polar Institute, Fram Centre, Langnes, Tromsø, Norway
| | | | - Paul R. Sweet
- American Museum of Natural History, New York, NY, USA
| | - Kjetill S. Jakobsen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Sanne Boessenkool
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
12
|
DeCicco LH, DeRaad DA, Ostrow EN, Moyle RG. A complete species-level phylogeny of the Erythrura parrotfinches (Aves: Estrildidae). Mol Phylogenet Evol 2023; 187:107883. [PMID: 37481145 DOI: 10.1016/j.ympev.2023.107883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023]
Abstract
Identifying species boundaries and phylogenetic relationships among groups of closely related species provides a necessary framework for understanding how biodiversity evolves in natural systems. Here we present a complete phylogeny of the avian genus Erythrura (family Estrildidae) commonly known as parrotfinches, which includes species threatened by habitat loss and the pet trade. Using both mitogenome and reduced-representation genome-wide nuclear DNA sequence data, we reconstructed the evolutionary history of the group by sampling all 12 recognized species, four of which had not previously been studied in a phylogenetic context. We included intra-species geographic sampling that allowed us to comment on species limits in some taxa. We recovered the Gouldian Finch (Chloebia gouldiae) of Australia which has often been placed in the monotypic genus Chloebia, as being sister to a clade comprising all Erythrura species. In addition, we recovered a well-supported clade comprising eight species distributed throughout the Pacific Island eco-region, whereas those species occurring in continental southeast Asia, the Greater Sundas, and the Philippines, were recovered as earlier branching lineages. Of note was the early branching of the Fiji-endemic E. kleinschmidti which corroborates its unique phenotype. We also found a deep phylogenetic split (8.59% corrected, 7.89% uncorrected divergence in the mitochondrial gene ND2) between the Java and Philippine populations of E. hyperythra, indicating unrecognized species-level diversity within this taxon. In contrast, genome-wide nuclear data suggested that the New Guinea endemic species E. papuana is embedded within the widespread species E. trichroa in all phylogenetic reconstructions, corroborating previously published mitochondrial data that suggested a similar pattern. By generating a phylogenetic hypothesis for the relationships among all species of Erythrura parrotfinches, we provide a framework for better understanding the extant diversity and evolutionary history of this group.
Collapse
Affiliation(s)
- Lucas H DeCicco
- Biodiversity Institute and Natural History Museum, University of Kansas, Lawrence, KS, USA.
| | - Devon A DeRaad
- Biodiversity Institute and Natural History Museum, University of Kansas, Lawrence, KS, USA
| | - Emily N Ostrow
- Biodiversity Institute and Natural History Museum, University of Kansas, Lawrence, KS, USA
| | - Robert G Moyle
- Biodiversity Institute and Natural History Museum, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
13
|
Ostrow EN, DeCicco LH, Moyle RG. Range-wide phylogenomics of the Great Horned Owl ( Bubo virginianus) reveals deep north-south divergence in northern Peru. PeerJ 2023; 11:e15787. [PMID: 37576505 PMCID: PMC10422955 DOI: 10.7717/peerj.15787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023] Open
Abstract
The Great Horned Owl (Bubo virginianus) inhabits myriad habitats throughout the Americas and shows complex patterns of individual and geographic morphological variation. The owl family Strigidae is known to follow ecogeographic rules, such as Gloger's rule. Although untested at the species level, these ecogeographic rules may affect B. virginianus plumage coloration and body size. Previous studies have indicated that, despite this species' morphological variability, little genetic differentiation exists across parts of their range. This study uses reduced representation genome-wide nuclear and complete mitochondrial DNA sequence data to assess range-wide relationships among B. virginianus populations and the disputed species status of B. v. magellanicus (Magellanic or Lesser Horned Owl) of the central and southern Andes. We found shallow phylogenetic relationships generally structured latitudinally to the north of the central Andes, and a deep divergence between a southern and northern clade close to the Marañón Valley in the central Andes, a common biogeographic barrier. We identify evidence of gene flow between B. v. magellanicus and other subspecies based on mitonuclear discordance and F-branch statistics. Overall differences in morphology, plumage coloration, voice, and genomic divergence support species status for B. v. magellanicus.
Collapse
Affiliation(s)
- Emily N. Ostrow
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, United States of America
| | - Lucas H. DeCicco
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, United States of America
| | - Robert G. Moyle
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, United States of America
| |
Collapse
|
14
|
Settlecowski AE, Marks BD, Manthey JD. Library preparation method and DNA source influence endogenous DNA recovery from 100-year-old avian museum specimens. Ecol Evol 2023; 13:e10407. [PMID: 37565027 PMCID: PMC10410627 DOI: 10.1002/ece3.10407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/28/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023] Open
Abstract
Museum specimens collected prior to cryogenic tissue storage are increasingly being used as genetic resources, and though high-throughput sequencing is becoming more cost-efficient, whole genome sequencing (WGS) of historical DNA (hDNA) remains inefficient and costly due to its short fragment sizes and high loads of exogenous DNA, among other factors. It is also unclear how sequencing efficiency is influenced by DNA sources. We aimed to identify the most efficient method and DNA source for collecting WGS data from avian museum specimens. We analyzed low-coverage WGS from 60 DNA libraries prepared from four American Robin (Turdus migratorius) and four Abyssinian Thrush (Turdus abyssinicus) specimens collected in the 1920s. We compared DNA source (toepad versus incision-line skin clip) and three library preparation methods: (1) double-stranded DNA (dsDNA), single tube (KAPA); (2) single-stranded DNA (ssDNA), multi-tube (IDT); and (3) ssDNA, single tube (Claret Bioscience). We found that the ssDNA, multi-tube method resulted in significantly greater endogenous DNA content, average read length, and sequencing efficiency than the other tested methods. We also tested whether a predigestion step reduced exogenous DNA in libraries from one specimen per species and found promising results that warrant further study. The ~10% increase in average sequencing efficiency of the best-performing method over a commonly implemented dsDNA library preparation method has the potential to significantly increase WGS coverage of hDNA from bird specimens. Future work should evaluate the threshold for specimen age at which these results hold and how the combination of library preparation method and DNA source influence WGS in other taxa.
Collapse
Affiliation(s)
- Amie E. Settlecowski
- Bird Collection Gantz Family Collections CenterThe Field MuseumChicagoIllinoisUSA
| | - Ben D. Marks
- Bird Collection Gantz Family Collections CenterThe Field MuseumChicagoIllinoisUSA
| | - Joseph D. Manthey
- Department of Biological SciencesTexas Tech UniversityLubbockTexasUSA
| |
Collapse
|
15
|
Mezzasalma M, Capriglione T, Kupriyanova L, Odierna G, Pallotta MM, Petraccioli A, Picariello O, Guarino FM. Characterization of Two Transposable Elements and an Ultra-Conserved Element Isolated in the Genome of Zootoca vivipara (Squamata, Lacertidae). Life (Basel) 2023; 13:life13030637. [PMID: 36983793 PMCID: PMC10058329 DOI: 10.3390/life13030637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/10/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Transposable elements (TEs) constitute a considerable fraction of eukaryote genomes representing a major source of genetic variability. We describe two DNA sequences isolated in the lizard Zootoca vivipara, here named Zv516 and Zv817. Both sequences are single-copy nuclear sequences, including a truncation of two transposable elements (TEs), SINE Squam1 in Zv516 and a Tc1/Mariner-like DNA transposon in Zv817. FISH analyses with Zv516 showed the occurrence of interspersed signals of the SINE Squam1 sequence on all chromosomes of Z. vivipara and quantitative dot blot indicated that this TE is present with about 4700 copies in the Z. vivipara genome. FISH and dot blot with Zv817 did not produce clear hybridization signals. Bioinformatic analysis showed the presence of active SINE Squam 1 copies in the genome of different lacertids, in different mRNAs, and intronic and coding regions of various genes. The Tc1/Mariner-like DNA transposon occurs in all reptiles, excluding Sphenodon and Archosauria. Zv817 includes a trait of 284 bp, representing an amniote ultra-conserved element (UCE). Using amniote UCE homologous sequences from available whole genome sequences of major amniote taxonomic groups, we performed a phylogenetic analysis which retrieved Prototheria as the sister group of Metatheria and Eutheria. Within diapsids, Testudines are the sister group to Aves + Crocodylia (Archosauria), and Sphenodon is the sister group to Squamata. Furthermore, large trait regions flanking the UCE are conserved at family level.
Collapse
Affiliation(s)
- Marcello Mezzasalma
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036 Rende, Italy
- Correspondence: (M.M.); (G.O.)
| | - Teresa Capriglione
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy
| | - Larissa Kupriyanova
- Zoological Institute, Russian Academy of Sciences, 190121 St. Petersburg, Russia
| | - Gaetano Odierna
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy
- Correspondence: (M.M.); (G.O.)
| | | | - Agnese Petraccioli
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy
| | - Orfeo Picariello
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy
| | - Fabio M. Guarino
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy
| |
Collapse
|
16
|
Edwards SV, Tonini JFR, Mcinerney N, Welch C, Beerli P. Multilocus phylogeography, population genetics and niche evolution of Australian brown and black-tailed treecreepers (Aves: Climacteris). Biol J Linn Soc Lond 2023. [DOI: 10.1093/biolinnean/blac144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Abstract
The Carpentarian barrier across north-eastern Australia is a major biogeographic barrier and a generator of biodiversity within the Australian Monsoonal Tropics. Here we present a continent-wide analysis of mitochondrial (control region) and autosomal (14 anonymous loci) sequence and indel variation and niche modelling of brown and black-tailed treecreepers (Climacteris picumnus and Climacteris melanurus), a clade with a classic distribution on either side of the Carpentarian barrier. mtDNA control region sequences exhibited reciprocal monophyly and strong differentiation (Fst = 0.91), and revealed a signature of a recent selective sweep in C. picumnus. A variety of tests support an isolation-with-migration model of divergence, albeit with low levels of gene flow across the Carpentarian barrier and a divergence time between species of ~1.7–2.8 Mya. Palaeoecological niche models show that both range size as measured by available habitat and estimated historical population sizes of both species declined in the past ~600 kyr and that the area of interspecific range overlap was never historically large, perhaps decreasing opportunities for extensive gene flow. The relatively long divergence time and low opportunity for gene flow may have facilitated speciation more so than in other co-distributed bird taxa across the Australian Monsoonal Tropics.
Collapse
Affiliation(s)
- Scott V Edwards
- Museum of Comparative Zoology, Harvard University , Cambridge, MA 02138 , USA
- Department of Organismic and Evolutionary Biology, Harvard University , Cambridge, MA 02138 , USA
| | - João F R Tonini
- Museum of Comparative Zoology, Harvard University , Cambridge, MA 02138 , USA
- Department of Organismic and Evolutionary Biology, Harvard University , Cambridge, MA 02138 , USA
- Department of Biology, University of Richmond , Richmond, VA 23217 , USA
| | - Nancy Mcinerney
- Smithsonian's National Zoo and Conservation Biology Institute , NW, Washington, DC 20008 , USA
| | - Corey Welch
- Department of Biology and Burke Museum, University of Washington , Seattle, WA 98195 , USA
- STEM Scholars Program, Student Innovation Center, Iowa State University , Ames, IA 50011 , USA
| | - Peter Beerli
- Department of Scientific Computing, Florida State University, Florida State University , Tallahassee, FL 32306 , USA
| |
Collapse
|
17
|
León-Tapia MÁ, Rico Y, Fernández JA, Espinosa de los Monteros A. Molecular, morphometric, and spatial data analyses provide new insights into the evolutionary history of the Peromyscus boylii species complex (Rodentia: Cricetidae) in the mountains of Mexico. SYST BIODIVERS 2022. [DOI: 10.1080/14772000.2022.2127966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- M. Ángel León-Tapia
- Laboratorio de Sistemática Filogenética, Biología Evolutiva, Instituto de Ecología, A.C. Carretera antigua a Coatepec 351, El Haya, Xalapa, 91073, Veracruz, México
| | - Yessica Rico
- Red de Diversidad Biológica del Occidente Mexicano, Instituto de Ecología, A. C., Av. Lázaro Cárdenas, Pátzcuaro, 61600, Michoacán, México
| | - Jesús A. Fernández
- Departamento de Recursos Naturales, Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Periférico Francisco R. Almada Km 1, Chihuahua, 31453, México
| | - Alejandro Espinosa de los Monteros
- Laboratorio de Sistemática Filogenética, Biología Evolutiva, Instituto de Ecología, A.C. Carretera antigua a Coatepec 351, El Haya, Xalapa, 91073, Veracruz, México
| |
Collapse
|
18
|
Nunes R, Storer C, Doleck T, Kawahara AY, Pierce NE, Lohman DJ. Predictors of sequence capture in a large-scale anchored phylogenomics project. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.943361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
Next-generation sequencing (NGS) technologies have revolutionized phylogenomics by decreasing the cost and time required to generate sequence data from multiple markers or whole genomes. Further, the fragmented DNA of biological specimens collected decades ago can be sequenced with NGS, reducing the need for collecting fresh specimens. Sequence capture, also known as anchored hybrid enrichment, is a method to produce reduced representation libraries for NGS sequencing. The technique uses single-stranded oligonucleotide probes that hybridize with pre-selected regions of the genome that are sequenced via NGS, culminating in a dataset of numerous orthologous loci from multiple taxa. Phylogenetic analyses using these sequences have the potential to resolve deep and shallow phylogenetic relationships. Identifying the factors that affect sequence capture success could save time, money, and valuable specimens that might be destructively sampled despite low likelihood of sequencing success. We investigated the impacts of specimen age, preservation method, and DNA concentration on sequence capture (number of captured sequences and sequence quality) while accounting for taxonomy and extracted tissue type in a large-scale butterfly phylogenomics project. This project used two probe sets to extract 391 loci or a subset of 13 loci from over 6,000 butterfly specimens. We found that sequence capture is a resilient method capable of amplifying loci in samples of varying age (0–111 years), preservation method (alcohol, papered, pinned), and DNA concentration (0.020 ng/μl - 316 ng/ul). Regression analyses demonstrate that sequence capture is positively correlated with DNA concentration. However, sequence capture and DNA concentration are negatively correlated with sample age and preservation method. Our findings suggest that sequence capture projects should prioritize the use of alcohol-preserved samples younger than 20 years old when available. In the absence of such specimens, dried samples of any age can yield sequence data, albeit with returns that diminish with increasing age.
Collapse
|
19
|
Leber M, Moncrief ND, Gatens LJ, Michel M, Brinkerhoff RJ. Use of mammalian museum specimens to test hypotheses about the geographic expansion of Lyme disease in the southeastern United States. Ticks Tick Borne Dis 2022; 13:102018. [PMID: 35964455 DOI: 10.1016/j.ttbdis.2022.102018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/06/2022] [Accepted: 08/03/2022] [Indexed: 10/31/2022]
Abstract
Lyme disease, caused primarily in North America by the bacterium Borrelia burgdorferi sensu stricto, is the most frequently reported vector-borne disease in North America and its geographic extent is increasing in all directions from foci in the northeastern and north central United States. Several southeastern states, including Virginia and North Carolina, have experienced large increases in Lyme disease incidence in the past two decades, with the biggest changes in incidence occurring in the western portion of each state. We tested the hypothesis that B. burgdorferi s.s. was present in western Virginia and North Carolina Peromyscus leucopus populations prior to the recent emergence of Lyme disease. Specifically, we examined archived P. leucopus museum specimens, sampled between 1900 and 2000, for B. burgdorferi s.s. DNA. After confirming viability of DNA extracted from ear punch biopsies from P. leucopus study skins collected between 1945 and 2000 in 19 Virginia counties and 17 North Carolina counties, we used qPCR of two species-specific loci to test for the presence of B. burgdorferi s.s. DNA. Ten mice, all collected from the Eastern Shore of Virginia in 1989, tested positive for presence of B. burgdorferi; all of the remaining 344 specimens were B. burgdorferi-negative. Our results suggest that B. burgdorferi s.s was not common in western Virginia or North Carolina prior to the emergence of Lyme disease cases in the past two decades. Rather, the emergence of Lyme disease in this region has likely been driven by the relatively recent expansion of B. burgdorferi s.s. in southward-moving ticks and reservoir hosts in the mountainous counties of these two states.
Collapse
Affiliation(s)
- Meghan Leber
- Department of Biology, University of Richmond, Richmond, VA 23173, United States
| | - Nancy D Moncrief
- Virginia Museum of Natural History, Martinsville, VA, 24112, United States
| | - Lisa J Gatens
- North Carolina Museum of Natural Sciences, Raleigh, NC, 27601, United States
| | - Maggie Michel
- Department of Biology, University of Richmond, Richmond, VA 23173, United States
| | - R Jory Brinkerhoff
- Department of Biology, University of Richmond, Richmond, VA 23173, United States; School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa.
| |
Collapse
|
20
|
Pacheco C, Lobo D, Silva P, Álvares F, García EJ, Castro D, Layna JF, López-Bao JV, Godinho R. Assessing the performance of historical skins and bones for museomics using wolf specimens as a case study. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.970249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Advances in the field of museomics have promoted a high sampling demand for natural history collections (NHCs), eventually resulting in damage to invaluable resources to understand historical biodiversity. It is thus essential to achieve a consensus about which historical tissues present the best sources of DNA. In this study, we evaluated the performance of different historical tissues from Iberian wolf NHCs in genome-wide assessments. We targeted three tissues—bone (jaw and femur), maxilloturbinal bone, and skin—that have been favored by traditional taxidermy practices for mammalian carnivores. Specifically, we performed shotgun sequencing and target capture enrichment for 100,000 single nucleotide polymorphisms (SNPs) selected from the commercial Canine HD BeadChip across 103 specimens from 1912 to 2005. The performance of the different tissues was assessed using metrics based on endogenous DNA content, uniquely high-quality mapped reads after capture, and enrichment proportions. All samples succeeded as DNA sources, regardless of their collection year or sample type. Skin samples yielded significantly higher amounts of endogenous DNA compared to both bone types, which yielded equivalent amounts. There was no evidence for a direct effect of tissue type on capture efficiency; however, the number of genotyped SNPs was strictly associated with the starting amount of endogenous DNA. Evaluation of genotyping accuracy for distinct minimum read depths across tissue types showed a consistent overall low genotyping error rate (<7%), even at low (3x) coverage. We recommend the use of skins as reliable and minimally destructive sources of endogenous DNA for whole-genome and target enrichment approaches in mammalian carnivores. In addition, we provide a new 100,000 SNP capture array validated for historical DNA (hDNA) compatible to the Canine HD BeadChip for high-quality DNA. The increasing demand for NHCs as DNA sources should encourage the generation of genomic datasets comparable among studies.
Collapse
|
21
|
Lozano-Fernandez J. A Practical Guide to Design and Assess a Phylogenomic Study. Genome Biol Evol 2022; 14:evac129. [PMID: 35946263 PMCID: PMC9452790 DOI: 10.1093/gbe/evac129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Over the last decade, molecular systematics has undergone a change of paradigm as high-throughput sequencing now makes it possible to reconstruct evolutionary relationships using genome-scale datasets. The advent of "big data" molecular phylogenetics provided a battery of new tools for biologists but simultaneously brought new methodological challenges. The increase in analytical complexity comes at the price of highly specific training in computational biology and molecular phylogenetics, resulting very often in a polarized accumulation of knowledge (technical on one side and biological on the other). Interpreting the robustness of genome-scale phylogenetic studies is not straightforward, particularly as new methodological developments have consistently shown that the general belief of "more genes, more robustness" often does not apply, and because there is a range of systematic errors that plague phylogenomic investigations. This is particularly problematic because phylogenomic studies are highly heterogeneous in their methodology, and best practices are often not clearly defined. The main aim of this article is to present what I consider as the ten most important points to take into consideration when planning a well-thought-out phylogenomic study and while evaluating the quality of published papers. The goal is to provide a practical step-by-step guide that can be easily followed by nonexperts and phylogenomic novices in order to assess the technical robustness of phylogenomic studies or improve the experimental design of a project.
Collapse
Affiliation(s)
- Jesus Lozano-Fernandez
- Department of Genetics, Microbiology and Statistics, Biodiversity Research Institute (IRBio), University of Barcelona, Avd. Diagonal 643, 08028 Barcelona, Spain
- Institute of Evolutionary Biology (CSIC – Universitat Pompeu Fabra), Passeig marítim de la Barcelona 37-49, 08003 Barcelona, Spain
| |
Collapse
|
22
|
Smith BT, Merwin J, Provost KL, Thom G, Brumfield RT, Ferreira M, Mauck Iii WM, Moyle RG, Wright T, Joseph L. Phylogenomic analysis of the parrots of the world distinguishes artifactual from biological sources of gene tree discordance. Syst Biol 2022; 72:228-241. [PMID: 35916751 DOI: 10.1093/sysbio/syac055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 02/22/2022] [Accepted: 07/22/2022] [Indexed: 11/14/2022] Open
Abstract
Gene tree discordance is expected in phylogenomic trees and biological processes are often invoked to explain it. However, heterogeneous levels of phylogenetic signal among individuals within datasets may cause artifactual sources of topological discordance. We examined how the information content in tips and subclades impacts topological discordance in the parrots (Order: Psittaciformes), a diverse and highly threatened clade of nearly 400 species. Using ultraconserved elements from 96% of the clade's species-level diversity, we estimated concatenated and species trees for 382 ingroup taxa. We found that discordance among tree topologies was most common at nodes dating between the late Miocene and Pliocene, and often at the taxonomic level of genus. Accordingly, we used two metrics to characterize information content in tips and assess the degree to which conflict between trees was being driven by lower quality samples. Most instances of topological conflict and non-monophyletic genera in the species tree could be objectively identified using these metrics. For subclades still discordant after tip-based filtering, we used a machine learning approach to determine whether phylogenetic signal or noise was the more important predictor of metrics supporting the alternative topologies. We found that when signal favored one of the topologies, noise was the most important variable in poorly performing models that favored the alternative topology. In sum, we show that artifactual sources of gene tree discordance, which are likely a common phenomenon in many datasets, can be distinguished from biological sources by quantifying the information content in each tip and modeling which factors support each topology.
Collapse
Affiliation(s)
- Brian Tilston Smith
- Department of Ornithology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
| | - Jon Merwin
- Department of Ornithology, Academy of Natural Sciences of Drexel University, 1900 Benjamin Franklin Parkway, Philadelphia, PA 19103, USA.,Department of Biodiversity, Earth, and Environmental Science, Drexel University, Philadelphia, PA 19103, USA
| | - Kaiya L Provost
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 318 W. 12th Avenue, Columbus, OH 43210, USA
| | - Gregory Thom
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Robb T Brumfield
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Mateus Ferreira
- Centro de Estudos da Biodiversidade, Universidade Federal de Roraima, Av. Cap. Ene Garcez, 2413, Boa Vista, RR, Brazil
| | - William M Mauck Iii
- Department of Ornithology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
| | - Robert G Moyle
- Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, 1345 Jayhawk Blvd., Lawrence, KS 66045, USA
| | - Timothy Wright
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Leo Joseph
- Australian National Wildlife Collection, National Research Collections Australia, CSIRO, GPO Box 1700, Canberra, ACT, 2601, Australia
| |
Collapse
|
23
|
Zhou W, Jenny Xiang QY. Phylogenomics and Biogeography of Castanea (Chestnut) and Hamamelis (Witch-hazel) - Choosing between RAD-seq and Hyb-Seq Approaches. Mol Phylogenet Evol 2022; 176:107592. [DOI: 10.1016/j.ympev.2022.107592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 06/18/2022] [Accepted: 07/20/2022] [Indexed: 10/31/2022]
|
24
|
Herman RW, Winger BM, Dittmann DL, Harvey MG. Fine-scale population genetic structure and barriers to gene flow in a widespread seabird ( Ardenna pacifica). Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Pelagic seabirds are highly mobile, reducing opportunities for population isolation that might promote differentiation and speciation. At the same time, many seabirds are philopatric, and their tendency to return to their natal islands to breed might reduce gene flow sufficiently to permit local adaptation and differentiation. To test the net impact of these competing processes, estimates of differentiation and gene flow based on comprehensive geographical sampling are required. We leveraged diverse source material to achieve comprehensive geographical sampling in a widespread seabird, the Wedge-tailed Shearwater (Ardenna pacifica). Using data from sequence capture and high-throughput sequencing of 2402 loci containing 20 780 single nucleotide polymorphisms, we tested for population differentiation and gene flow among breeding areas. We found little evidence of deep divergences within A. pacifica but were able to resolve fine-scale differentiation across island groups. This differentiation was sufficient to assign individuals sampled away from breeding areas to their likely source populations. Estimated effective migration surfaces revealed reduced migration between the Indian Ocean and Pacific Ocean, presumably owing to land barriers, and across the equatorial Pacific Ocean, perhaps associated with differences in breeding schedule. Our results reveal that, despite their mobility, pelagic seabirds can exhibit fine-scale population differentiation and reduced gene flow among ocean basins.
Collapse
Affiliation(s)
- Rachael W Herman
- Department of Ecology and Evolution, Stony Brook University , Stony Brook, NY , USA
| | - Benjamin M Winger
- Museum of Zoology, University of Michigan , Ann Arbor, MI , USA
- Department of Ecology and Evolutionary Biology, University of Michigan , Ann Arbor, MI, USA
| | - Donna L Dittmann
- Museum of Natural Science, Louisiana State University , Baton Rouge, LA, USA
| | - Michael G Harvey
- Museum of Zoology, University of Michigan , Ann Arbor, MI , USA
- Department of Ecology and Evolutionary Biology, University of Michigan , Ann Arbor, MI, USA
| |
Collapse
|
25
|
Camacho MA, Cadar D, Horváth B, Merino-Viteri A, Murienne J. Revised phylogeny from complete mitochondrial genomes of phyllostomid bats resolves subfamilial classification. Zool J Linn Soc 2022. [DOI: 10.1093/zoolinnean/zlac055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Classically, molecular phylogenetic trees of Phyllostomidae have been inferred using a combination of a few mitochondrial and nuclear markers. However, there is still uncertainty in the relationships, especially among deep clades within the family. In this study, we provide newly sequenced complete mitochondrial genomes from 26 bat species, including genomes of 23 species reported here for the first time. By carefully analysing these genomes using maximum likelihood and Bayesian methods and different ingroup and outgroup samples, partition schemes and data types, we investigated the robustness and sensitivity of our phylogenetic results. The optimal topologies were those inferred from the complete data matrix of nucleotides, with complex and highly parameterized substitution models and partition schemes. Our results show a statistically robust picture of the evolutionary relationships between phyllostomid subfamilies and clarify hitherto uncertain relationships of Lonchorhininae and Macrotinae.
Collapse
Affiliation(s)
- M Alejandra Camacho
- Museo de Zoología (QCAZ), Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador , Quito, Pichincha , Ecuador
- Laboratoire Evolution et Diversité Biologique (UMR5174), CNRS, IRD, Université Paul Sabatier , Toulouse , France
| | - Dániel Cadar
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, BernhardNocht Institute for Tropical Medicine , Hamburg , Germany
| | - Balázs Horváth
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, BernhardNocht Institute for Tropical Medicine , Hamburg , Germany
| | - Andrés Merino-Viteri
- Museo de Zoología (QCAZ), Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador , Quito, Pichincha , Ecuador
- Laboratorio de Ecofisiología, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católicadel Ecuador , Quito, Pichincha , Ecuador
| | - Jérôme Murienne
- Laboratoire Evolution et Diversité Biologique (UMR5174), CNRS, IRD, Université Paul Sabatier , Toulouse , France
| |
Collapse
|
26
|
Roycroft E, Moritz C, Rowe KC, Moussalli A, Eldridge MDB, Portela Miguez R, Piggott MP, Potter S. Sequence Capture From Historical Museum Specimens: Maximizing Value for Population and Phylogenomic Studies. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.931644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The application of high-throughput, short-read sequencing to degraded DNA has greatly increased the feasibility of generating genomic data from historical museum specimens. While many published studies report successful sequencing results from historical specimens; in reality, success and quality of sequence data can be highly variable. To examine predictors of sequencing quality, and methodological approaches to improving data accuracy, we generated and analyzed genomic sequence data from 115 historically collected museum specimens up to 180 years old. Data span both population genomic and phylogenomic scales, including historically collected specimens from 34 specimens of four species of Australian rock-wallabies (genus Petrogale) and 92 samples from 79 specimens of Australo-Papuan murine rodents (subfamily Murinae). For historical rodent specimens, where the focus was sampling for phylogenomics, we found that regardless of specimen age, DNA sequence libraries prepared from toe pad or bone subsamples performed significantly better than those taken from the skin (in terms of proportion of reads on target, number of loci captured, and data accuracy). In total, 93% of DNA libraries from toe pad or bone subsamples resulted in reliable data for phylogenetic inference, compared to 63% of skin subsamples. For skin subsamples, proportion of reads on target weakly correlated with collection year. Then using population genomic data from rock-wallaby skins as a test case, we found substantial improvement in final data quality by mapping to a high-quality “closest sister” de novo assembly from fresh tissues, compared to mapping to a sample-specific historical de novo assembly. Choice of mapping approach also affected final estimates of the number of segregating sites and Watterson's θ, both important parameters for population genomic inference. The incorporation of accurate and reliable sequence data from historical specimens has important outcomes for evolutionary studies at both population and phylogenomic scales. By assessing the outcomes of different approaches to specimen subsampling, library preparation and bioinformatic processing, our results provide a framework for increasing sequencing success for irreplaceable historical specimens.
Collapse
|
27
|
Abreu EF, Pavan SE, Tsuchiya MTN, McLean BS, Wilson DE, Percequillo AR, Maldonado JE. Old specimens for old branches: Assessing effects of sample age in resolving a rapid Neotropical radiation of squirrels. Mol Phylogenet Evol 2022; 175:107576. [PMID: 35809853 DOI: 10.1016/j.ympev.2022.107576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/10/2022] [Accepted: 07/01/2022] [Indexed: 11/15/2022]
Abstract
Ultraconserved Elements (UCEs) have been useful to resolve challenging phylogenies of non-model clades, unpuzzling long-conflicted relationships in key branches of the Tree of Life at both deep and shallow levels. UCEs are often reliably recovered from historical samples, unlocking a vast number of preserved natural history specimens for analysis. However, the extent to which sample age and preservation method impact UCE recovery as well as downstream inferences remains unclear. Furthermore, there is an ongoing debate on how to curate, filter, and properly analyze UCE data when locus recovery is uneven across sample age and quality. In the present study we address these questions with an empirical dataset composed of over 3800 UCE loci from 219 historical and modern samples of Sciuridae, a globally distributed and ecologically important family of rodents. We provide a genome-scale phylogeny of two squirrel subfamilies (Sciurillinae and Sciurinae: Sciurini) and investigate their placement within Sciuridae. For historical specimens, recovery of UCE loci and mean length per locus were inversely related to sample age; deeper sequencing improved the number of UCE loci recovered but not locus length. Most of our phylogenetic inferences-performed on six datasets with alternative data-filtering strategies, and using three distinct optimality criteria-resulted in distinct topologies. Datasets containing more loci (40% and 50% taxa representativeness matrices) yielded more concordant topologies and higher support values than strictly filtered datasets (60% matrices) particularly with IQ-Tree and SVDquartets, while filtering based on information content provided better topological resolution for inferences with the coalescent gene-tree based approach in ASTRAL-III. We resolved deep relationships in Sciuridae (including among the five currently recognized subfamilies) and relationships among the deepest branches of Sciurini, but conflicting relationships remain at both genus- and species-levels for the rapid Neotropical tree squirrel radiation. Our results suggest that phylogenomic consensus can be difficult and heavily influenced by the age of available samples and the filtering steps used to optimize dataset properties.
Collapse
Affiliation(s)
- Edson F Abreu
- Laboratório de Mamíferos, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, Brazil; Center for Conservation Genomics, Smithsonian National Zoo and Conservation Biology Institute, Washington, DC, USA.
| | - Silvia E Pavan
- Center for Conservation Genomics, Smithsonian National Zoo and Conservation Biology Institute, Washington, DC, USA
| | - Mirian T N Tsuchiya
- Center for Conservation Genomics, Smithsonian National Zoo and Conservation Biology Institute, Washington, DC, USA; Data Science Lab, Office of the Chief Information Officer, Smithsonian Institution, Washington, DC, USA
| | - Bryan S McLean
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, USA
| | - Don E Wilson
- Division of Mammals, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Alexandre R Percequillo
- Laboratório de Mamíferos, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Jesús E Maldonado
- Center for Conservation Genomics, Smithsonian National Zoo and Conservation Biology Institute, Washington, DC, USA
| |
Collapse
|
28
|
Verry AJF, Lubbe P, Mitchell KJ, Rawlence NJ. Thirty years of ancient DNA and the faunal biogeography of Aotearoa New Zealand: lessons and future directions. J R Soc N Z 2022; 54:75-97. [PMID: 39439471 PMCID: PMC11459812 DOI: 10.1080/03036758.2022.2093227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Abstract
Thirty years ago, DNA sequences were obtained from an extinct Aotearoa New Zealand animal for the first time. Since then, ancient DNA research has provided many - often unexpected - insights into the origins of New Zealand's terrestrial and marine vertebrate fauna. Because recent human activities in New Zealand have caused the decline or extinction of many endemic plant, bird, reptile, and marine mammal species, ancient DNA has been instrumental in reconstructing their identities and origins. However, most ancient DNA studies focusing on New Zealand species have been restricted to vertebrates, with small sample sizes, and/or relatively few genetic markers. This has limited their power to infer fine-scale biogeographic patterns, including (pre)historic distributions and range-shifts driven by past climate and environmental change. Recently, 'next-generation' methodological and technological advances have broadened the range of hypotheses that can feasibly be tested with ancient DNA. These advances represent an exciting opportunity for further exploring New Zealand biogeography using ancient DNA, but their promise has not yet been fully realised. In this review, we summarise the last 30 years of ancient DNA research into New Zealand faunal biogeography and highlight key objectives, challenges, and possibilities for the next 30 years and beyond.
Collapse
Affiliation(s)
- Alexander J. F. Verry
- Otago Palaeogenetics Laboratory, Department of Zoology, University of Otago, Dunedin, New Zealand
- Centre for Anthropobiology and Genomics of Toulouse, Faculté de Médecine Purpan, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Pascale Lubbe
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Kieren J. Mitchell
- Otago Palaeogenetics Laboratory, Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Nicolas J. Rawlence
- Otago Palaeogenetics Laboratory, Department of Zoology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
29
|
Bernstein JM, Ruane S. Maximizing Molecular Data From Low-Quality Fluid-Preserved Specimens in Natural History Collections. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.893088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Over the past decade, museum genomics studies have focused on obtaining DNA of sufficient quality and quantity for sequencing from fluid-preserved natural history specimens, primarily to be used in systematic studies. While these studies have opened windows to evolutionary and biodiversity knowledge of many species worldwide, published works often focus on the success of these DNA sequencing efforts, which is undoubtedly less common than obtaining minimal or sometimes no DNA or unusable sequence data from specimens in natural history collections. Here, we attempt to obtain and sequence DNA extracts from 115 fresh and 41 degraded samples of homalopsid snakes, as well as from two degraded samples of a poorly known snake, Hydrablabes periops. Hydrablabes has been suggested to belong to at least two different families (Natricidae and Homalopsidae) and with no fresh tissues known to be available, intractable museum specimens currently provide the only opportunity to determine this snake’s taxonomic affinity. Although our aim was to generate a target-capture dataset for these samples, to be included in a broader phylogenetic study, results were less than ideal due to large amounts of missing data, especially using the same downstream methods as with standard, high-quality samples. However, rather than discount results entirely, we used mapping methods with references and pseudoreferences, along with phylogenetic analyses, to maximize any usable molecular data from our sequencing efforts, identify the taxonomic affinity of H. periops, and compare sequencing success between fresh and degraded tissue samples. This resulted in largely complete mitochondrial genomes for five specimens and hundreds to thousands of nuclear loci (ultra-conserved loci, anchored-hybrid enrichment loci, and a variety of loci frequently used in squamate phylogenetic studies) from fluid-preserved snakes, including a specimen of H. periops from the Field Museum of Natural History collection. We combined our H. periops data with previously published genomic and Sanger-sequenced datasets to confirm the familial designation of this taxon, reject previous taxonomic hypotheses, and make biogeographic inferences for Hydrablabes. A second H. periops specimen, despite being seemingly similar for initial raw sequencing results and after being put through the same protocols, resulted in little usable molecular data. We discuss the successes and failures of using different pipelines and methods to maximize the products from these data and provide expectations for others who are looking to use DNA sequencing efforts on specimens that likely have degraded DNA.Life Science Identifier (Hydrablabes periops)urn:lsid:zoobank.org:pub:F2AA44 E2-D2EF-4747-972A-652C34C2C09D.
Collapse
|
30
|
DeRaad DA, McCormack JE, Chen N, Peterson AT, Moyle RG. Combining Species Delimitation, Species Trees, and Tests for Gene Flow Clarifies Complex Speciation in Scrub-Jays. Syst Biol 2022; 71:1453-1470. [PMID: 35552760 DOI: 10.1093/sysbio/syac034] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Complex speciation, involving rapid divergence and multiple bouts of post-divergence gene flow, can obfuscate phylogenetic relationships and species limits. In North America, cases of complex speciation are common, due at least in part to the cyclical Pleistocene glacial history of the continent. Scrub-jays in the genus Aphelocoma provide a useful case study in complex speciation because their range throughout North America is structured by phylogeographic barriers with multiple cases of secondary contact between divergent lineages. Here, we show that a comprehensive approach to genomic reconstruction of evolutionary history, i.e., synthesizing results from species delimitation, species tree reconstruction, demographic model testing, and tests for gene flow, is capable of clarifying evolutionary history despite complex speciation. We find concordant evidence across all statistical approaches for the distinctiveness of an endemic southern Mexico lineage (A. w. sumichrasti), culminating in support for the species status of this lineage under any commonly applied species concept. We also find novel genomic evidence for the species status of a Texas endemic lineage A. w. texana, for which equivocal species delimitation results were clarified by demographic modeling and spatially explicit models of gene flow. Finally, we find that complex signatures of both ancient and modern gene flow between the non-sister California Scrub-Jay (A. californica) and Woodhouse's Scrub-Jay (A. woodhouseii), result in discordant gene trees throughout the species' genomes despite clear support for their overall isolation and species status. In sum, we find that a multi-faceted approach to genomic analysis can increase our understanding of complex speciation histories, even in well-studied groups. Given the emerging recognition that complex speciation is relatively commonplace, the comprehensive framework that we demonstrate for interrogation of species limits and evolutionary history using genomic data can provide a necessary roadmap for disentangling the impacts of gene flow and incomplete lineage sorting to better understand the systematics of other groups with similarly complex evolutionary histories.
Collapse
Affiliation(s)
- Devon A DeRaad
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence KS, 66045, USA
| | - John E McCormack
- Moore Laboratory of Zoology,Occidental College, Los Angeles, CA, 90041, USA
| | - Nancy Chen
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - A Townsend Peterson
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence KS, 66045, USA
| | - Robert G Moyle
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence KS, 66045, USA
| |
Collapse
|
31
|
Scarsbrook L, Verry AJF, Walton K, Hitchmough RA, Rawlence NJ. Ancient mitochondrial genomes recovered from small vertebrate bones through minimally destructive DNA extraction: phylogeography of the New Zealand gecko genus
Hoplodactylus. Mol Ecol 2022; 32:2964-2984. [DOI: 10.1111/mec.16434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/04/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Lachie Scarsbrook
- Otago Paleogenetics Laboratory Department of Zoology University of Otago Dunedin New Zealand
| | - Alexander J. F. Verry
- Otago Paleogenetics Laboratory Department of Zoology University of Otago Dunedin New Zealand
| | - Kerry Walton
- Otago Paleogenetics Laboratory Department of Zoology University of Otago Dunedin New Zealand
| | | | - Nicolas J. Rawlence
- Otago Paleogenetics Laboratory Department of Zoology University of Otago Dunedin New Zealand
| |
Collapse
|
32
|
Van Dam AR, Covas Orizondo JO, Lam AW, McKenna DD, Van Dam MH. Metagenomic clustering reveals microbial contamination as an essential consideration in ultraconserved element design for phylogenomics with insect museum specimens. Ecol Evol 2022; 12:e8625. [PMID: 35342556 PMCID: PMC8932080 DOI: 10.1002/ece3.8625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/03/2022] [Accepted: 01/17/2022] [Indexed: 11/30/2022] Open
Abstract
Phylogenomics via ultraconserved elements (UCEs) has led to improved phylogenetic reconstructions across the tree of life. However, inadvertently incorporating non-targeted DNA into the UCE marker design will lead to misinformation being incorporated into subsequent analyses. To date, the effectiveness of basic metagenomic filtering strategies has not been assessed in arthropods. Designing markers from museum specimens requires careful consideration of methods due to the high levels of microbial contamination typically found in such specimens. We investigate if contaminant sequences are carried forward into a UCE marker set we developed from insect museum specimens using a standard bioinformatics pipeline. We find that the methods currently employed by most researchers do not exclude contamination from the final set of targets. Lastly, we highlight several paths forward for reducing contamination in UCE marker design.
Collapse
Affiliation(s)
- Alex R. Van Dam
- Department of BiologyUniversity of Puerto Rico MayagüezMayagüezPuerto Rico
| | | | - Athena W. Lam
- Department of EntomologyCalifornia Academy of SciencesSan FranciscoCaliforniaUSA
| | - Duane D. McKenna
- Department of Biological SciencesUniversity of MemphisMemphisTennesseeUSA
- Center for Biodiversity ResearchUniversity of MemphisMemphisTennesseeUSA
| | - Matthew H. Van Dam
- Department of EntomologyCalifornia Academy of SciencesSan FranciscoCaliforniaUSA
| |
Collapse
|
33
|
The tangled evolutionary history of a long-debated Mesoamerican taxon: the Velazquez Woodpecker (Melanerpes santacruzi, Aves: Picidae). Mol Phylogenet Evol 2022; 170:107445. [DOI: 10.1016/j.ympev.2022.107445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 11/19/2022]
|
34
|
Systematics and biogeography of the whistlers (Aves: Pachycephalidae) inferred from ultraconserved elements and ancestral area reconstruction. Mol Phylogenet Evol 2021; 168:107379. [PMID: 34965464 DOI: 10.1016/j.ympev.2021.107379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 11/20/2022]
Abstract
The utility of islands as natural laboratories of evolution is exemplified in the patterns of differentiation in widespread, phenotypically variable lineages. The whistlers (Aves: Pachycephalidae) are one of the most complex avian radiations, with a combination of widespread and locally endemic taxa spanning the vast archipelagos of the Indo-Pacific, making them an ideal group to study patterns and processes of diversification on islands. Here, we present a robust, species-level phylogeny of all five genera and 85% of species within Pachycephalidae, based on thousands of ultraconserved elements (UCEs) generated with a target-capture approach and high-throughput sequencing. We clarify phylogenetic relationships within Pachycephala and report on divergence timing and ancestral range estimation. We explored multiple biogeographic coding schemes that incorporated geological uncertainty in this complex region. The biogeographic origin of this group was difficult to discern, likely owing to aspects of dynamic Earth history in the Indo-Pacific. The Australo-Papuan region was the likely origin of crown-group whistlers, but the specific ancestral area could not be identified more precisely than Australia or New Guinea, and Wallacea may have played a larger role than previously realized in the evolutionary history of whistlers. Multiple independent colonizations of island archipelagos across Melanesia, Wallacea, and the Philippines contributed to the relatively high species richness of extant whistlers. This work refines our understanding of one of the regions' most celebrated bird lineages and adds to our growing knowledge about the patterns and processes of diversification in the Indo-Pacific.
Collapse
|
35
|
Abstract
Natural history collections are invaluable repositories of biological information that provide an unrivaled record of Earth's biodiversity. Museum genomics-genomics research using traditional museum and cryogenic collections and the infrastructure supporting these investigations-has particularly enhanced research in ecology and evolutionary biology, the study of extinct organisms, and the impact of anthropogenic activity on biodiversity. However, leveraging genomics in biological collections has exposed challenges, such as digitizing, integrating, and sharing collections data; updating practices to ensure broadly optimal data extraction from existing and new collections; and modernizing collections practices, infrastructure, and policies to ensure fair, sustainable, and genomically manifold uses of museum collections by increasingly diverse stakeholders. Museum genomics collections are poised to address these challenges and, with increasingly sensitive genomics approaches, will catalyze a future era of reproducibility, innovation, and insight made possible through integrating museum and genome sciences.
Collapse
Affiliation(s)
- Daren C Card
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA; .,Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California 95064, USA.,Howard Hughes Medical Institute, University of California, Santa Cruz, California 95064, USA
| | - Gonzalo Giribet
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA; .,Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Craig Moritz
- Centre for Biodiversity Analysis and Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA; .,Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
36
|
Chen D, Hosner PA, Dittmann DL, O'Neill JP, Birks SM, Braun EL, Kimball RT. Divergence time estimation of Galliformes based on the best gene shopping scheme of ultraconserved elements. BMC Ecol Evol 2021; 21:209. [PMID: 34809586 PMCID: PMC8609756 DOI: 10.1186/s12862-021-01935-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Divergence time estimation is fundamental to understanding many aspects of the evolution of organisms, such as character evolution, diversification, and biogeography. With the development of sequence technology, improved analytical methods, and knowledge of fossils for calibration, it is possible to obtain robust molecular dating results. However, while phylogenomic datasets show great promise in phylogenetic estimation, the best ways to leverage the large amounts of data for divergence time estimation has not been well explored. A potential solution is to focus on a subset of data for divergence time estimation, which can significantly reduce the computational burdens and avoid problems with data heterogeneity that may bias results. RESULTS In this study, we obtained thousands of ultraconserved elements (UCEs) from 130 extant galliform taxa, including representatives of all genera, to determine the divergence times throughout galliform history. We tested the effects of different "gene shopping" schemes on divergence time estimation using a carefully, and previously validated, set of fossils. Our results found commonly used clock-like schemes may not be suitable for UCE dating (or other data types) where some loci have little information. We suggest use of partitioning (e.g., PartitionFinder) and selection of tree-like partitions may be good strategies to select a subset of data for divergence time estimation from UCEs. Our galliform time tree is largely consistent with other molecular clock studies of mitochondrial and nuclear loci. With our increased taxon sampling, a well-resolved topology, carefully vetted fossil calibrations, and suitable molecular dating methods, we obtained a high quality galliform time tree. CONCLUSIONS We provide a robust galliform backbone time tree that can be combined with more fossil records to further facilitate our understanding of the evolution of Galliformes and can be used as a resource for comparative and biogeographic studies in this group.
Collapse
Affiliation(s)
- De Chen
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Peter A Hosner
- Department of Biology, University of Florida, Gainesville, FL, USA
- Natural History Museum of Denmark and Center for Global Mountain Biodiversity, University of Copenhagen, Copenhagen, Denmark
| | - Donna L Dittmann
- Museum of Natural Science, Louisiana State University, Baton Rouge, LA, USA
| | - John P O'Neill
- Museum of Natural Science, Louisiana State University, Baton Rouge, LA, USA
| | - Sharon M Birks
- Burke Museum of Natural History and Culture, University of Washington, Seattle, WA, USA
| | - Edward L Braun
- Department of Biology, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
37
|
Welt RS, Raxworthy CJ. Dispersal, not vicariance, explains the biogeographic origin of iguanas on Madagascar. Mol Phylogenet Evol 2021; 167:107345. [PMID: 34748875 DOI: 10.1016/j.ympev.2021.107345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 09/23/2021] [Accepted: 11/02/2021] [Indexed: 11/19/2022]
Abstract
Lizards of the clade Iguanidae (sensu lato) are primarily a New World group. Thus, the remarkable presence of an endemic lineage of iguanas (family Opluridae) on the isolated Indian Ocean island of Madagascar has long been considered a biogeographic anomaly. Previous work attributed this disjunct extant distribution to: (1) vicariance at about 140-165 Ma, caused by the breakup of Gondwana and the separation of South America, Africa, and Madagascar (with subsequent extinction of iguanas on Africa, and potentially other Gondwanan landmasses), (2) vicariance at about 80-90 Ma, caused by the sundering of hypothesized land-bridge connections between South America, Antarctica, India, and Madagascar, or (3) long-distance overwater dispersal from South America to Madagascar. Each hypothesis has been supported with molecular divergence dating analyses, and thus the biogeographic origin of the Opluridae is not yet well resolved. Here we utilize genetic sequences of ultraconserved elements for all Iguania families and the majority of Iguanidae (s.l.) genera, and morphological data for extant and fossil taxa (used for divergence dating analyses), to produce the most comprehensive dataset applied to date to test these origin hypotheses. We find strong support for a sister relationship between the Opluridae (Madagascar) and Leiosauridae (South America). Divergence of the Opluridae from Leiosauridae is dated to between the late Cretaceous and mid-Paleogene, at a time when Madagascar was already an island and was isolated from all other Gondwanan landmasses. Consequently, our results support a hypothesis of long-distance overwater dispersal of the Opluridae lineage, either directly from South America to Madagascar or potentially via Antarctica or Africa, leading to this radiation of iguanas in the Indian Ocean.
Collapse
Affiliation(s)
- Rachel S Welt
- Department of Herpetology, American Museum of Natural History, USA.
| | | |
Collapse
|
38
|
León‐Tapia MÁ, Rico Y, Fernández JA, Arellano E, Espinosa de los Monteros A. Role of Pleistocene climatic oscillations on genetic differentiation and evolutionary history of the Transvolcanic deer mouse
Peromyscus hylocetes
(Rodentia: Cricetidae) throughout the Mexican central highlands. J ZOOL SYST EVOL RES 2021. [DOI: 10.1111/jzs.12541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- M. Ángel León‐Tapia
- Laboratorio de Sistemática Filogenética, Biología Evolutiva Instituto de Ecología A.C Xalapa Mexico
| | - Yessica Rico
- Red de Diversidad Biológica del Occidente Mexicano Instituto de Ecología, A.C. Pátzcuaro Mexico
| | - Jesús A. Fernández
- Departamento de Recursos Naturales Facultad de Zootecnia y Ecología Universidad Autónoma de Chihuahua Chihuahua Mexico
| | - Elizabeth Arellano
- Centro de Investigación en Biodiversidad y Conservación Universidad Autónoma del Estado de Morelos Cuernavaca Morelos Mexico
| | | |
Collapse
|
39
|
White ND, Batz ZA, Braun EL, Braun MJ, Carleton KL, Kimball RT, Swaroop A. A novel exome probe set captures phototransduction genes across birds (Aves) enabling efficient analysis of vision evolution. Mol Ecol Resour 2021; 22:587-601. [PMID: 34652059 DOI: 10.1111/1755-0998.13496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 11/27/2022]
Abstract
The diversity of avian visual phenotypes provides a framework for studying mechanisms of trait diversification generally, and the evolution of vertebrate vision, specifically. Previous research has focused on opsins, but to fully understand visual adaptation, we must study the complete phototransduction cascade (PTC). Here, we developed a probe set that captures exonic regions of 46 genes representing the PTC and other light responses. For a subset of species, we directly compared gene capture between our probe set and low-coverage whole genome sequencing (WGS), and we discuss considerations for choosing between these methods. Finally, we developed a unique strategy to avoid chimeric assembly by using "decoy" reference sequences. We successfully captured an average of 64% of our targeted exome in 46 species across 14 orders using the probe set and had similar recovery using the WGS data. Compared to WGS or transcriptomes, our probe set: (1) reduces sequencing requirements by efficiently capturing vision genes, (2) employs a simpler bioinformatic pipeline by limiting required assembly and negating annotation, and (3) eliminates the need for fresh tissues, enabling researchers to leverage existing museum collections. We then utilized our vision exome data to identify positively selected genes in two evolutionary scenarios-evolution of night vision in nocturnal birds and evolution of high-speed vision specific to manakins (Pipridae). We found parallel positive selection of SLC24A1 in both scenarios, implicating the alteration of rod response kinetics, which could improve color discrimination in dim light conditions and/or facilitate higher temporal resolution.
Collapse
Affiliation(s)
- Noor D White
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA.,Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA.,Behavior, Ecology, Evolution and Systematics Program, University of Maryland, College Park, Maryland, USA
| | - Zachary A Batz
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Edward L Braun
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - Michael J Braun
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA.,Behavior, Ecology, Evolution and Systematics Program, University of Maryland, College Park, Maryland, USA.,Department of Biology, University of Maryland, College Park, Maryland, USA
| | - Karen L Carleton
- Behavior, Ecology, Evolution and Systematics Program, University of Maryland, College Park, Maryland, USA.,Department of Biology, University of Maryland, College Park, Maryland, USA
| | - Rebecca T Kimball
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - Anand Swaroop
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
40
|
Houston DD, Satler JD, Stack TK, Carroll HM, Bevan AM, Moya AL, Alexander KD. A phylogenomic perspective on the evolutionary history of the stonefly genus Suwallia (Plecoptera: Chloroperlidae) revealed by ultraconserved genomic elements. Mol Phylogenet Evol 2021; 166:107320. [PMID: 34626810 DOI: 10.1016/j.ympev.2021.107320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 09/20/2021] [Accepted: 10/04/2021] [Indexed: 11/18/2022]
Abstract
Evolutionary biologists have long sought to disentangle phylogenetic relationships among taxa spanning the tree of life, an increasingly important task as anthropogenic influences accelerate population declines and species extinctions, particularly in insects. Phylogenetic analyses are commonly used to identify unique evolutionary lineages, to clarify taxonomic designations of the focal taxa, and to inform conservation decisions. Advances in DNA sequencing techniques have increasingly facilitated the ability of researchers to apply genomic methods to phylogenetic analyses, even for non-model organisms. Stoneflies are non-model insects that are important bioindicators of the quality of freshwater habitats and landscape disturbance as they spend the immature stages of their life cycles in fresh water, and the adult stages in terrestrial environments. Phylogenetic relationships within the stonefly genus Suwallia (Insecta: Plecoptera: Chloroperlidae) are poorly understood, and have never been assessed using molecular data. We used DNA sequence data from genome-wide ultraconserved element loci to generate the first molecular phylogeny for the group and assess its monophyly. We found that Palearctic and Nearctic Suwallia do not form reciprocally monophyletic clades, and that a biogeographic history including dispersal, vicariance, and founder event speciation via jump dispersal best explains the geographic distribution of this group. Our results also strongly suggest that Neaviperla forcipata (Neave, 1929) is nested within Suwallia, and the concept of the genus Suwallia should be revised to include it. Thus, we formally propose a new taxonomic combination wherein Neaviperla forcipata (Neave, 1929) is reclassified as Suwallia forcipata (Neave, 1929). Moreover, some Suwallia species (e.g., S. amoenacolens, S. kerzhneri, S. marginata, S. pallidula, and S. starki) exhibit pronounced cryptic diversity that is worthy of further investigation. These findings provide a first glimpse into the evolutionary history of Suwallia, improve our understanding of stonefly diversity in the tribe Suwallini, and highlight areas where additional research is needed.
Collapse
Affiliation(s)
- Derek D Houston
- Department of Natural and Environmental Sciences, Western Colorado University, Gunnison, CO, USA.
| | - Jordan D Satler
- Department of Ecology Evolution and Organismal Biology, Iowa State University, Ames, IA, USA.
| | - Taylor K Stack
- Department of Natural and Environmental Sciences, Western Colorado University, Gunnison, CO, USA.
| | - Hannah M Carroll
- Department of Ecology Evolution and Organismal Biology, Iowa State University, Ames, IA, USA; Department of Earth Planetary and Space Sciences, University of California-Los Angeles, CA, USA.
| | - Alissa M Bevan
- Department of Natural and Environmental Sciences, Western Colorado University, Gunnison, CO, USA.
| | - Autumn L Moya
- Department of Natural and Environmental Sciences, Western Colorado University, Gunnison, CO, USA.
| | - Kevin D Alexander
- Department of Natural and Environmental Sciences, Western Colorado University, Gunnison, CO, USA.
| |
Collapse
|
41
|
Bello JC, Hausbeck MK, Sakalidis ML. Application of Target Enrichment Sequencing for Population Genetic Analyses of the Obligate Plant Pathogens Pseudoperonospora cubensis and P. humuli in Michigan. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1103-1118. [PMID: 34227836 DOI: 10.1094/mpmi-11-20-0329-ta] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Technological advances in genome sequencing have improved our ability to catalog genomic variation and have led to an expansion of the scope and scale of genetic studies over the past decade. Yet, for agronomically important plant pathogens such as the downy mildews (Peronosporaceae), the scale of genetic studies remains limited. This is, in part, due to the difficulties associated with maintaining obligate pathogens and the logistical constraints involved in the genotyping of these species (e.g., obtaining DNA of sufficient quantity and quality). To gain an evolutionary and ecological perspective of downy mildews, adaptable methods for the genotyping of their populations are required. Here, we describe a targeted enrichment (TE) protocol to genotype isolates from two Pseudoperonospora species (P. cubensis and P. humuli), using less than 50 ng of mixed pathogen and plant DNA for library preparation. We were able to enrich 830 target genes across 128 samples and identified 2,514 high-quality single nucleotide polymorphism (SNP) variants. Using these SNPs, we detected significant genetic differentiation (analysis of molecular variance [AMOVA], P = 0.01) between P. cubensis subpopulations from Cucurbita moschata (clade I) and Cucumis sativus (clade II) in the state of Michigan. No evidence of location-based differentiation was detected within the P. cubensis (clade II) subpopulation in Michigan. However, a significant effect of location on the genetic variation of the P. humuli subpopulation was detected in the state (AMOVA, P = 0.01). Mantel tests found evidence that the genetic distance among P. humuli samples was associated with the physical distance of the hop yards from which the samples were collected (P = 0.005). The differences in the distribution of genetic variation of the Michigan P. humuli and P. cubensis subpopulations suggest differences in the dispersal of these two species. The TE protocol described here provides an additional tool for genotyping obligate biotrophic plant pathogens and the execution of new genetic studies.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Julian C Bello
- Department of Plant, Soil and Microbial Sciences, Michigan State, University, East Lansing, MI 48824, U.S.A
| | - Mary K Hausbeck
- Department of Plant, Soil and Microbial Sciences, Michigan State, University, East Lansing, MI 48824, U.S.A
| | - Monique L Sakalidis
- Department of Plant, Soil and Microbial Sciences, Michigan State, University, East Lansing, MI 48824, U.S.A
- Department of Forestry, Michigan State University, East Lansing, MI 48824, U.S.A
| |
Collapse
|
42
|
Cruaud A, Delvare G, Nidelet S, Sauné L, Ratnasingham S, Chartois M, Blaimer BB, Gates M, Brady SG, Faure S, van Noort S, Rossi JP, Rasplus JY. Ultra-Conserved Elements and morphology reciprocally illuminate conflicting phylogenetic hypotheses in Chalcididae (Hymenoptera, Chalcidoidea). Cladistics 2021; 37:1-35. [PMID: 34478176 DOI: 10.1111/cla.12416] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2020] [Indexed: 11/30/2022] Open
Abstract
Recent technical advances combined with novel computational approaches have promised the acceleration of our understanding of the tree of life. However, when it comes to hyperdiverse and poorly known groups of invertebrates, studies are still scarce. As published phylogenies will be rarely challenged by future taxonomists, careful attention must be paid to potential analytical bias. We present the first molecular phylogenetic hypothesis for the family Chalcididae, a group of parasitoid wasps, with a representative sampling (144 ingroups and seven outgroups) that covers all described subfamilies and tribes, and 82% of the known genera. Analyses of 538 Ultra-Conserved Elements (UCEs) with supermatrix (RAxML and IQTREE) and gene tree reconciliation approaches (ASTRAL, ASTRID) resulted in highly supported topologies in overall agreement with morphology but reveal conflicting topologies for some of the deepest nodes. To resolve these conflicts, we explored the phylogenetic tree space with clustering and gene genealogy interrogation methods, analyzed marker and taxon properties that could bias inferences and performed a thorough morphological analysis (130 characters encoded for 40 taxa representative of the diversity). This joint analysis reveals that UCEs enable attainment of resolution between ancestry and convergent/divergent evolution when morphology is not informative enough, but also shows that a systematic exploration of bias with different analytical methods and a careful analysis of morphological features is required to prevent publication of artifactual results. We highlight a GC content bias for maximum-likelihood approaches, an artifactual mid-point rooting of the ASTRAL tree and a deleterious effect of high percentage of missing data (>85% missing UCEs) on gene tree reconciliation methods. Based on the results we propose a new classification of the family into eight subfamilies and ten tribes that lay the foundation for future studies on the evolutionary history of Chalcididae.
Collapse
Affiliation(s)
- Astrid Cruaud
- CBGP, CIRAD, INRAe, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Gérard Delvare
- CBGP, CIRAD, INRAe, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France.,UMR CBGP, CIRAD, F-34398, Montpellier, France
| | - Sabine Nidelet
- CBGP, CIRAD, INRAe, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Laure Sauné
- CBGP, CIRAD, INRAe, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | | | - Marguerite Chartois
- CBGP, CIRAD, INRAe, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | | | - Michael Gates
- USDA, ARS, SEL, c/o Smithsonian Institution, National Museum of Natural History, Washington, DC, USA
| | - Seán G Brady
- Department of Entomology, Smithsonian Institution, National Museum of Natural History, Washington, DC, USA
| | - Sariana Faure
- Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa
| | - Simon van Noort
- Research and Exhibitions Department, South African Museum, Iziko Museums of South Africa, PO Box 61, Cape Town, 8000, South Africa.,Department of Biological Sciences, University of Cape Town, Private Bag, Rondebosch, 7701, Cape Town, South Africa
| | - Jean-Pierre Rossi
- CBGP, CIRAD, INRAe, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Jean-Yves Rasplus
- CBGP, CIRAD, INRAe, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| |
Collapse
|
43
|
Mining museums for historical DNA: advances and challenges in museomics. Trends Ecol Evol 2021; 36:1049-1060. [PMID: 34456066 DOI: 10.1016/j.tree.2021.07.009] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 01/22/2023]
Abstract
Historical DNA (hDNA), obtained from museum and herbarium specimens, has yielded spectacular new insights into the history of organisms. This includes documenting historical genetic erosion and extinction, discovering species new to science, resolving evolutionary relationships, investigating epigenetic effects, and determining origins of infectious diseases. However, the development of best-practices in isolating, processing, and analyzing hDNA remain under-explored, due to the substantial diversity of specimen preparation types, tissue sources, archival ages, and collecting histories. Thus, for hDNA to reach its full potential, and justify the destructive sampling of the rarest specimens, more experimental work using time-series collections, and the development of improved methods to correct for data asymmetries and biases due to DNA degradation are required.
Collapse
|
44
|
Zacho CM, Bager MA, Margaryan A, Gravlund P, Galatius A, Rasmussen AR, Allentoft ME. Uncovering the genomic and metagenomic research potential in old ethanol-preserved snakes. PLoS One 2021; 16:e0256353. [PMID: 34424926 PMCID: PMC8382189 DOI: 10.1371/journal.pone.0256353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/04/2021] [Indexed: 11/19/2022] Open
Abstract
Natural history museum collections worldwide represent a tremendous resource of information on past and present biodiversity. Fish, reptiles, amphibians and many invertebrate collections have often been preserved in ethanol for decades or centuries and our knowledge on the genomic and metagenomic research potential of such material is limited. Here, we use ancient DNA protocols, combined with shotgun sequencing to test the molecular preservation in liver, skin and bone tissue from five old (1842 to 1964) museum specimens of the common garter snake (Thamnophis sirtalis). When mapping reads to a T. sirtalis reference genome, we find that the DNA molecules are highly damaged with short average sequence lengths (38-64 bp) and high C-T deamination, ranging from 9% to 21% at the first position. Despite this, the samples displayed relatively high endogenous DNA content, ranging from 26% to 56%, revealing that genome-scale analyses are indeed possible from all specimens and tissues included here. Of the three tested types of tissue, bone shows marginally but significantly higher DNA quality in these metrics. Though at least one of the snakes had been exposed to formalin, neither the concentration nor the quality of the obtained DNA was affected. Lastly, we demonstrate that these specimens display a diverse and tissue-specific microbial genetic profile, thus offering authentic metagenomic data despite being submerged in ethanol for many years. Our results emphasize that historical museum collections continue to offer an invaluable source of information in the era of genomics.
Collapse
Affiliation(s)
- Claus M. Zacho
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Martina A. Bager
- Section for EvoGenomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ashot Margaryan
- Section for EvoGenomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Evolutionary Hologenomics, University of Copenhagen, Copenhagen, Denmark
| | | | - Anders Galatius
- Department of Bioscience, Aarhus University, Roskilde, Denmark
| | - Arne R. Rasmussen
- Institute of Conservation, Royal Danish Academy—Architecture, Design, Conservation, Copenhagen, Denmark
| | - Morten E. Allentoft
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| |
Collapse
|
45
|
O'Connell KA, Mulder KP, Wynn A, de Queiroz K, Bell RC. Genomic library preparation and hybridization capture of formalin-fixed tissues and allozyme supernatant for population genomics and considerations for combining capture- and RADseq-based single nucleotide polymorphism data sets. Mol Ecol Resour 2021; 22:487-502. [PMID: 34329532 DOI: 10.1111/1755-0998.13481] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/10/2021] [Accepted: 07/14/2021] [Indexed: 12/17/2022]
Abstract
Until recently many historical museum specimens were largely inaccessible to genomic inquiry, but high-throughput sequencing (HTS) approaches have allowed researchers to successfully sequence genomic DNA from dried and fluid-preserved museum specimens. In addition to preserved specimens, many museums contain large series of allozyme supernatant samples, but the amenability of these samples to HTS has not yet been assessed. Here, we compared the performance of a target-capture approach using alternative sources of genomic DNA from 10 specimens of spring salamanders (Plethodontidae: Gyrinophilus porphyriticus) collected between 1985 and 1990: allozyme supernatants, allozyme homogenate pellets and formalin-fixed tissues. We designed capture probes based on double-digest restriction-site associated sequencing (RADseq) derived loci from frozen blood samples available for seven of the specimens and assessed the success and consistency of capture and RADseq approaches. This study design enabled direct comparisons of data quality and potential biases among the different data sets for phylogenomic and population genomic analyses. We found that in phylogenetic analyses, all enrichment types for a given specimen clustered together. In principal component space all capture-based samples clustered together, but RADseq samples did not cluster with corresponding capture-based samples. Single nucleotide polymorphism calls were on average 18.3% different between enrichment types for a given individual, but these discrepancies were primarily due to differences in heterozygous/homozygous single nucleotide polymorphism calls. We demonstrate that both allozyme supernatant and formalin-fixed samples can be successfully used for population genomic analyses and we discuss ways to identify and reduce biases associated with combining capture and RADseq data.
Collapse
Affiliation(s)
- Kyle A O'Connell
- Global Genome Initiative, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA.,Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA.,Department of Biological Sciences, The George Washington University, Washington, District of Columbia, USA.,Biomedical Data Science Lab, Deloitte Consulting LLP, Arlington, Virginia, USA
| | - Kevin P Mulder
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA.,CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, USA
| | - Addison Wynn
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA
| | - Kevin de Queiroz
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA
| | - Rayna C Bell
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA.,Department of Herpetology, California Academy of Sciences, San Francisco, California, USA
| |
Collapse
|
46
|
Manzanilla V, Teixidor-Toneu I, Martin GJ, Hollingsworth PM, de Boer HJ, Kool A. Using target capture to address conservation challenges: Population-level tracking of a globally-traded herbal medicine. Mol Ecol Resour 2021; 22:212-224. [PMID: 34270854 DOI: 10.1111/1755-0998.13472] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 05/27/2021] [Accepted: 07/06/2021] [Indexed: 12/01/2022]
Abstract
The promotion of responsible and sustainable trade in biological resources is widely proposed as one solution to mitigate current high levels of global biodiversity loss. Various molecular identification methods have been proposed as appropriate tools for monitoring global supply chains of commercialized animals and plants. Here, we demonstrate the efficacy of target capture genomic barcoding in identifying and establishing the geographic origin of samples traded as Anacyclus pyrethrum, a medicinal plant assessed as globally vulnerable in the IUCN Red List of Threatened Species. Samples collected from national and international supply chains were identified through target capture sequencing of 443 low-copy nuclear makers and compared to results derived from genome skimming of plastome and DNA barcoding of standard plastid regions and ITS. Both target capture and genome skimming provided approximately 3.4 million reads per sample, but target capture largely outperformed standard plant barcodes and entire plastid genome sequences. We were able to discern the geographical origin of Anacyclus samples collected in Moroccan, Indian and Sri Lankan markets, differentiating between plant materials originally harvested from diverse populations in Algeria and Morocco. Dropping costs of analysing samples enables the potential of target capture to routinely identify commercialized plant species and determine their geographic origin. It promises to play an important role in monitoring and regulation of plant species in trade, supporting biodiversity conservation efforts, and in ensuring that plant products are unadulterated, contributing to consumer protection.
Collapse
Affiliation(s)
| | | | | | | | - Hugo J de Boer
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Anneleen Kool
- Natural History Museum, University of Oslo, Oslo, Norway
| |
Collapse
|
47
|
Smith BT, Mauck WM, Benz BW, Andersen MJ. Uneven Missing Data Skew Phylogenomic Relationships within the Lories and Lorikeets. Genome Biol Evol 2021; 12:1131-1147. [PMID: 32470111 PMCID: PMC7486955 DOI: 10.1093/gbe/evaa113] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2020] [Indexed: 01/21/2023] Open
Abstract
The resolution of the Tree of Life has accelerated with advances in DNA sequencing technology. To achieve dense taxon sampling, it is often necessary to obtain DNA from historical museum specimens to supplement modern genetic samples. However, DNA from historical material is generally degraded, which presents various challenges. In this study, we evaluated how the coverage at variant sites and missing data among historical and modern samples impacts phylogenomic inference. We explored these patterns in the brush-tongued parrots (lories and lorikeets) of Australasia by sampling ultraconserved elements in 105 taxa. Trees estimated with low coverage characters had several clades where relationships appeared to be influenced by whether the sample came from historical or modern specimens, which were not observed when more stringent filtering was applied. To assess if the topologies were affected by missing data, we performed an outlier analysis of sites and loci, and a data reduction approach where we excluded sites based on data completeness. Depending on the outlier test, 0.15% of total sites or 38% of loci were driving the topological differences among trees, and at these sites, historical samples had 10.9× more missing data than modern ones. In contrast, 70% data completeness was necessary to avoid spurious relationships. Predictive modeling found that outlier analysis scores were correlated with parsimony informative sites in the clades whose topologies changed the most by filtering. After accounting for biased loci and understanding the stability of relationships, we inferred a more robust phylogenetic hypothesis for lories and lorikeets.
Collapse
Affiliation(s)
- Brian Tilston Smith
- Department of Ornithology, American Museum of Natural History, New York, New York
| | - William M Mauck
- Department of Ornithology, American Museum of Natural History, New York, New York.,New York Genome Center, New York, New York
| | - Brett W Benz
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan
| | - Michael J Andersen
- Department of Biology and Museum of Southwestern Biology, University of New Mexico
| |
Collapse
|
48
|
Barrientos LS, Streicher JW, Miller EC, Pie MR, Wiens JJ, Crawford AJ. Phylogeny of terraranan frogs based on 2,665 loci and impacts of missing data on phylogenomic analyses. SYST BIODIVERS 2021. [DOI: 10.1080/14772000.2021.1933249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Lucas S. Barrientos
- Department of Biological Sciences, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Jeffrey W. Streicher
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, 85721-0088, AZ, USA
- Department of Life Sciences, The Natural History Museum, South Kensington, London, SW7 5BD, England, UK
| | - Elizabeth C. Miller
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, 85721-0088, AZ, USA
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, 98195-5020, WA, USA
| | - Marcio R. Pie
- Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, 81531-980, Paraná, Brazil
| | - John J. Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, 85721-0088, AZ, USA
| | - Andrew J. Crawford
- Department of Biological Sciences, Universidad de los Andes, Bogotá, 111711, Colombia
| |
Collapse
|
49
|
|
50
|
Straube N, Lyra ML, Paijmans JLA, Preick M, Basler N, Penner J, Rödel MO, Westbury MV, Haddad CFB, Barlow A, Hofreiter M. Successful application of ancient DNA extraction and library construction protocols to museum wet collection specimens. Mol Ecol Resour 2021; 21:2299-2315. [PMID: 34036732 DOI: 10.1111/1755-0998.13433] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 01/02/2023]
Abstract
Millions of scientific specimens are housed in museum collections, a large part of which are fluid preserved. The use of formaldehyde as fixative and subsequent storage in ethanol is especially common in ichthyology and herpetology. This type of preservation damages DNA and reduces the chance of successful retrieval of genetic data. We applied ancient DNA extraction and single stranded library construction protocols to a variety of vertebrate samples obtained from wet collections and of different ages. Our results show that almost all samples tested yielded endogenous DNA. Archival DNA extraction was successful across different tissue types as well as using small amounts of tissue. Conversion of archival DNA fragments into single-stranded libraries resulted in usable data even for samples with initially undetectable DNA amounts. Subsequent target capture approaches for mitochondrial DNA using homemade baits on a subset of 30 samples resulted in almost complete mitochondrial genome sequences in several instances. Thus, application of ancient DNA methodology makes wet collection specimens, including type material as well as rare, old or extinct species, accessible for genetic and genomic analyses. Our results, accompanied by detailed step-by-step protocols, are a large step forward to open the DNA archive of museum wet collections for scientific studies.
Collapse
Affiliation(s)
- Nicolas Straube
- University Museum of Bergen, Bergen, Norway.,SNSB Bavarian State Collection of Zoology, München, Germany
| | - Mariana L Lyra
- Departamento de Biodiversidade, Instituto de Biociências and Centro de Aquicultura (CAUNESP), Laboratório de Herpetologia, Universidade Estadual Paulista - UNESP, Rio Claro, SP, Brazil.,Zoological Institute, Braunschweig University of Technology, Braunschweig, Germany
| | - Johanna L A Paijmans
- Department of Mathematics and Natural Sciences, Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Michaela Preick
- Department of Mathematics and Natural Sciences, Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Nikolas Basler
- Department of Mathematics and Natural Sciences, Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Johannes Penner
- Museum für Naturkunde- Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany.,Chair of Wildlife Ecology and Management, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Mark-Oliver Rödel
- Museum für Naturkunde- Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Michael V Westbury
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Célio F B Haddad
- Departamento de Biodiversidade, Instituto de Biociências and Centro de Aquicultura (CAUNESP), Laboratório de Herpetologia, Universidade Estadual Paulista - UNESP, Rio Claro, SP, Brazil
| | - Axel Barlow
- Department of Mathematics and Natural Sciences, Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Michael Hofreiter
- Department of Mathematics and Natural Sciences, Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|