1
|
Pérez-Umphrey AA, Settlecowski AE, Elbers JP, Williams ST, Jonsson CB, Bonisoli-Alquati A, Snider AM, Taylor SS. Genetic variants associated with hantavirus infection in a reservoir host are related to regulation of inflammation and immune surveillance. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 116:105525. [PMID: 37956745 DOI: 10.1016/j.meegid.2023.105525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/14/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023]
Abstract
The immunogenetics of wildlife populations influence the epidemiology and evolutionary dynamic of the host-pathogen system. Profiling immune gene diversity present in wildlife may be especially important for those species that, while not at risk of disease or extinction themselves, are host to diseases that are a threat to humans, other wildlife, or livestock. Hantaviruses (genus: Orthohantavirus) are globally distributed zoonotic RNA viruses with pathogenic strains carried by a diverse group of rodent hosts. The marsh rice rat (Oryzomys palustris) is the reservoir host of Orthohantavirus bayoui, a hantavirus that causes fatal cases of hantavirus cardiopulmonary syndrome in humans. We performed a genome wide association study (GWAS) using the rice rat "immunome" (i.e., all exons related to the immune response) to identify genetic variants associated with infection status in wild-caught rice rats naturally infected with their endemic strain of hantavirus. First, we created an annotated reference genome using 10× Chromium Linked Reads sequencing technology. This reference genome was used to create custom baits which were then used to target enrich prepared rice rat libraries (n = 128) and isolate their immunomes prior to sequencing. Top SNPs in the association test were present in four genes (Socs5, Eprs, Mrc1, and Il1f8) which have not been previously implicated in hantavirus infections. However, these genes correspond with other loci or pathways with established importance in hantavirus susceptibility or infection tolerance in reservoir hosts: the JAK/STAT, MHC, and NFκB. These results serve as informative markers for future exploration and highlight the importance of immune pathways that repeatedly emerge across hantavirus systems. Our work aids in creating cross-species comparisons for better understanding mechanisms of genetic susceptibility and host-pathogen coevolution in hantavirus systems.
Collapse
Affiliation(s)
- Anna A Pérez-Umphrey
- School of Renewable Natural Resources, Louisiana State University and AgCenter, 227 RNR Building, Baton Rouge, LA 70803, USA.
| | - Amie E Settlecowski
- School of Renewable Natural Resources, Louisiana State University and AgCenter, 227 RNR Building, Baton Rouge, LA 70803, USA
| | - Jean P Elbers
- School of Renewable Natural Resources, Louisiana State University and AgCenter, 227 RNR Building, Baton Rouge, LA 70803, USA; Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Straße 10, 1090 Vienna, Austria
| | - S Tyler Williams
- School of Renewable Natural Resources, Louisiana State University and AgCenter, 227 RNR Building, Baton Rouge, LA 70803, USA
| | - Colleen B Jonsson
- Department of Microbiology, Immunology and Biochemistry, College of Medicine, University of Tennessee Health Science Center, University of Tennessee, 858 Madison Ave., Memphis, TN 38163, USA
| | - Andrea Bonisoli-Alquati
- School of Renewable Natural Resources, Louisiana State University and AgCenter, 227 RNR Building, Baton Rouge, LA 70803, USA; Department of Biological Sciences, California State Polytechnic University-Pomona, Pomona, CA 91768, USA
| | - Allison M Snider
- School of Renewable Natural Resources, Louisiana State University and AgCenter, 227 RNR Building, Baton Rouge, LA 70803, USA
| | - Sabrina S Taylor
- School of Renewable Natural Resources, Louisiana State University and AgCenter, 227 RNR Building, Baton Rouge, LA 70803, USA
| |
Collapse
|
2
|
Population genetic structure and dispersal patterns of a cooperative breeding bird in variable environmental conditions. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Henriques D, Lopes AR, Chejanovsky N, Dalmon A, Higes M, Jabal-Uriel C, Le Conte Y, Reyes-Carreño M, Soroker V, Martín-Hernández R, Pinto MA. A SNP assay for assessing diversity in immune genes in the honey bee (Apis mellifera L.). Sci Rep 2021; 11:15317. [PMID: 34321557 PMCID: PMC8319136 DOI: 10.1038/s41598-021-94833-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023] Open
Abstract
With a growing number of parasites and pathogens experiencing large-scale range expansions, monitoring diversity in immune genes of host populations has never been so important because it can inform on the adaptive potential to resist the invaders. Population surveys of immune genes are becoming common in many organisms, yet they are missing in the honey bee (Apis mellifera L.), a key managed pollinator species that has been severely affected by biological invasions. To fill the gap, here we identified single nucleotide polymorphisms (SNPs) in a wide range of honey bee immune genes and developed a medium-density assay targeting a subset of these genes. Using a discovery panel of 123 whole-genomes, representing seven A. mellifera subspecies and three evolutionary lineages, 180 immune genes were scanned for SNPs in exons, introns (< 4 bp from exons), 3' and 5´UTR, and < 1 kb upstream of the transcription start site. After application of multiple filtering criteria and validation, the final medium-density assay combines 91 quality-proved functional SNPs marking 89 innate immune genes and these can be readily typed using the high-sample-throughput iPLEX MassARRAY system. This medium-density-SNP assay was applied to 156 samples from four countries and the admixture analysis clustered the samples according to their lineage and subspecies, suggesting that honey bee ancestry can be delineated from functional variation. In addition to allowing analysis of immunogenetic variation, this newly-developed SNP assay can be used for inferring genetic structure and admixture in the honey bee.
Collapse
Affiliation(s)
- Dora Henriques
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Ana R Lopes
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Nor Chejanovsky
- Agricultural Research Organization, The Volcani Center, Rishon LeTsiyon, Israel
| | - Anne Dalmon
- INRAE, Unité Abeilles et Environnement, Avignon, France
| | - Mariano Higes
- IRIAF, Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain
| | - Clara Jabal-Uriel
- IRIAF, Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain
| | - Yves Le Conte
- INRAE, Unité Abeilles et Environnement, Avignon, France
| | | | - Victoria Soroker
- Agricultural Research Organization, The Volcani Center, Rishon LeTsiyon, Israel
| | - Raquel Martín-Hernández
- IRIAF, Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain
- Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT-FEDER), Fundación Parque Científico y Tecnológico de Castilla-La Mancha, 02006, Albacete, Spain
| | - M Alice Pinto
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal.
| |
Collapse
|
4
|
Camacho-Sanchez M, Velo-Antón G, Hanson JO, Veríssimo A, Martínez-Solano Í, Marques A, Moritz C, Carvalho SB. Comparative assessment of range-wide patterns of genetic diversity and structure with SNPs and microsatellites: A case study with Iberian amphibians. Ecol Evol 2020; 10:10353-10363. [PMID: 33072264 PMCID: PMC7548196 DOI: 10.1002/ece3.6670] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 11/11/2022] Open
Abstract
Reduced representation genome sequencing has popularized the application of single nucleotide polymorphisms (SNPs) to address evolutionary and conservation questions in nonmodel organisms. Patterns of genetic structure and diversity based on SNPs often diverge from those obtained with microsatellites to different degrees, but few studies have explicitly compared their performance under similar sampling regimes in a shared analytical framework. We compared range‐wide patterns of genetic structure and diversity in two amphibians endemic to the Iberian Peninsula: Hyla molleri and Pelobates cultripes, based on microsatellite (18 and 14 loci) and SNP (15,412 and 33,140 loci) datasets of comparable sample size and spatial extent. Model‐based clustering analyses with STRUCTURE revealed minor differences in genetic structure between marker types, but inconsistent values of the optimal number of populations (K) inferred. SNPs yielded more repeatable and less admixed ancestries with increasing K compared to microsatellites. Genetic diversity was weakly correlated between marker types, with SNPs providing a better representation of southern refugia and of gradients of genetic diversity congruent with the demographic history of both species. Our results suggest that the larger number of loci in a SNP dataset can provide more reliable inferences of patterns of genetic structure and diversity than a typical microsatellite dataset, at least at the spatial and temporal scales investigated.
Collapse
Affiliation(s)
- Miguel Camacho-Sanchez
- CIBIO/InBIO Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto Vairão Portugal
| | - Guillermo Velo-Antón
- CIBIO/InBIO Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto Vairão Portugal
| | - Jeffrey O Hanson
- CIBIO/InBIO Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto Vairão Portugal
| | - Ana Veríssimo
- CIBIO/InBIO Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto Vairão Portugal
| | | | - Adam Marques
- CIBIO/InBIO Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto Vairão Portugal
| | - Craig Moritz
- Centre for Biodiversity Analysis and Research School of Biology The Australian National University Canberra ACT Australia
| | - Sílvia B Carvalho
- CIBIO/InBIO Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto Vairão Portugal
| |
Collapse
|
5
|
Ab Razak S, Mad Radzuan S, Mohamed N, Nor Azman NHE, Abd Majid AM, Ismail SN, Mohd Yusof MF, Sarip J, Nasir KH. Development of novel microsatellite markers using RAD sequencing technology for diversity assessment of rambutan ( Nephelium lappaceum L.) germplasm. Heliyon 2020; 6:e05077. [PMID: 33024864 PMCID: PMC7527576 DOI: 10.1016/j.heliyon.2020.e05077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/18/2020] [Accepted: 09/23/2020] [Indexed: 12/24/2022] Open
Abstract
The trend of microsatellite marker discovery and development revolved as a result of the advancement of next generation sequencing (NGS) technology as it has developed numerous microsatellites within a short period of time at a low cost. This study generated microsatellite markers using RAD sequencing technologies for the understudied Nephelium lappaceum. A total of 1403 microsatellite markers were successfully designed, which consisted of 853 di-, 525 tri-, 17 tetra-, 5 penta-, and 3 hexanucleotide microsatellite markers. Subsequently, selection of 39 microsatellites was made for the evaluation of genetic diversity of the selected 22 rambutan varieties. Twelve microsatellites, which exhibited high call rates across the samples, were used to assess the diversity of the aforementioned rambutan varieties. The analysis of 12 microsatellites revealed the presence of 72 alleles and six alleles per locus in average. Furthermore, the polymorphic information content (PIC) value ranged from 0.326 (NlaSSR20) to 0.832 (NlaSSR32), which included an average of 0.629 per locus, while the generated Neighbour Joining dendrogram showed two major clusters. The pairwise genetic distance of shared alleles exhibited a range of values from 0.046 (R134↔R170) to 0.818 (R5↔R170), which suggested highest dissimilarity detected between R5 and R170. Notably, these research findings would useful for varietal identification, proper management and conservation of the genetic resources, and exploitation and utilization in future breeding programs.
Collapse
Affiliation(s)
- Shahril Ab Razak
- Biotechnology & Nanotechnology Research Centre, MARDI Headquarters, 43400, Serdang, Selangor, Malaysia
| | - Salehudin Mad Radzuan
- Horticulture Research Centre, MARDI Sintok, 06050, Bukit Kayu Hitam, Kedah, Malaysia
| | - Norkhairi Mohamed
- Department of Agriculture, Hulu Paka Agricultural Centre, 23300, Dungun, Terengganu, Malaysia
| | - Nor Helwa Ezzah Nor Azman
- Biotechnology & Nanotechnology Research Centre, MARDI Headquarters, 43400, Serdang, Selangor, Malaysia
| | - Alny Marlynni Abd Majid
- Biotechnology & Nanotechnology Research Centre, MARDI Headquarters, 43400, Serdang, Selangor, Malaysia
| | - Siti Norhayati Ismail
- Biotechnology & Nanotechnology Research Centre, MARDI Headquarters, 43400, Serdang, Selangor, Malaysia
| | | | - Johari Sarip
- Horticulture Research Centre, MARDI Headquarters, 43400, Serdang, Selangor, Malaysia
| | - Khairun Hisam Nasir
- Biotechnology & Nanotechnology Research Centre, MARDI Headquarters, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
6
|
A Comparison of the Population Genetic Structure and Diversity between a Common (Chrysemys p. picta) and an Endangered (Clemmys guttata) Freshwater Turtle. DIVERSITY 2019. [DOI: 10.3390/d11070099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The northeastern United States has experienced dramatic alteration to its landscape since the time of European settlement. This alteration has had major impacts on the distribution and abundance of wildlife populations, but the legacy of this landscape change remains largely unexplored for most species of freshwater turtles. We used microsatellite markers to characterize and compare the population genetic structure and diversity between an abundant generalist, the eastern painted turtle (Chrysemys p. picta), and the rare, more specialized, spotted turtle (Clemmys guttata) in Rhode Island, USA. We predicted that because spotted turtles have disproportionately experienced the detrimental effects of habitat loss and fragmentation associated with landscape change, that these effects would manifest in the form of higher inbreeding, less diversity, and greater population genetic structure compared to eastern painted turtles. As expected, eastern painted turtles exhibited little population genetic structure, showed no evidence of inbreeding, and little differentiation among sampling sites. For spotted turtles, however, results were consistent with certain predictions and inconsistent with others. We found evidence of modest inbreeding, as well as tentative evidence of recent population declines. However, genetic diversity and differentiation among sites were comparable between species. As our results do not suggest any major signals of genetic degradation in spotted turtles, the southern region of Rhode Island may serve as a regional conservation reserve network, where the maintenance of population viability and connectivity should be prioritized.
Collapse
|
7
|
Bohling J, Small M, Von Bargen J, Louden A, DeHaan P. Comparing inferences derived from microsatellite and RADseq datasets: a case study involving threatened bull trout. CONSERV GENET 2019. [DOI: 10.1007/s10592-018-1134-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Förster DW, Bull JK, Lenz D, Autenrieth M, Paijmans JLA, Kraus RHS, Nowak C, Bayerl H, Kuehn R, Saveljev AP, Sindičić M, Hofreiter M, Schmidt K, Fickel J. Targeted resequencing of coding DNA sequences for SNP discovery in nonmodel species. Mol Ecol Resour 2018; 18:1356-1373. [PMID: 29978939 DOI: 10.1111/1755-0998.12924] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/28/2018] [Accepted: 06/05/2018] [Indexed: 11/29/2022]
Abstract
Targeted capture coupled with high-throughput sequencing can be used to gain information about nuclear sequence variation at hundreds to thousands of loci. Divergent reference capture makes use of molecular data of one species to enrich target loci in other (related) species. This is particularly valuable for nonmodel organisms, for which often no a priori knowledge exists regarding these loci. Here, we have used targeted capture to obtain data for 809 nuclear coding DNA sequences (CDS) in a nonmodel organism, the Eurasian lynx Lynx lynx, using baits designed with the help of the published genome of a related model organism (the domestic cat Felis catus). Using this approach, we were able to survey intraspecific variation at hundreds of nuclear loci in L. lynx across the species' European range. A large set of biallelic candidate SNPs was then evaluated using a high-throughput SNP genotyping platform (Fluidigm), which we then reduced to a final 96 SNP-panel based on assay performance and reliability; validation was carried out with 100 additional Eurasian lynx samples not included in the SNP discovery phase. The 96 SNP-panel developed from CDS performed very successfully in the identification of individuals and in population genetic structure inference (including the assignment of individuals to their source population). In keeping with recent studies, our results show that genic SNPs can be valuable for genetic monitoring of wildlife species.
Collapse
Affiliation(s)
- Daniel W Förster
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - James K Bull
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Dorina Lenz
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Marijke Autenrieth
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany.,Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | | - Robert H S Kraus
- Department of Biology, University of Konstanz, Konstanz, Germany.,Department of Migration and Immuno-Ecology, Max Planck Institute for Ornithology, Radolfzell, Germany
| | - Carsten Nowak
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| | - Helmut Bayerl
- Unit of Molecular Zoology, Chair of Zoology, Department of Animal Science, Technical University of Munich, Freising, Germany
| | - Ralph Kuehn
- Unit of Molecular Zoology, Chair of Zoology, Department of Animal Science, Technical University of Munich, Freising, Germany.,Department of Fish, Wildlife and Conservation Ecology, New Mexico State University, Las Cruces, New Mexico
| | - Alexander P Saveljev
- Department of Animal Ecology, Russian Research Institute of Game Management and Fur Farming, Kirov, Russia
| | - Magda Sindičić
- Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Michael Hofreiter
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Krzysztof Schmidt
- Mammal Research Institute, Polish Academy of Sciences, Białowieza, Poland
| | - Jörns Fickel
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany.,Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
9
|
Elbers JP, Brown MB, Taylor SS. Identifying genome-wide immune gene variation underlying infectious disease in wildlife populations - a next generation sequencing approach in the gopher tortoise. BMC Genomics 2018; 19:64. [PMID: 29351737 PMCID: PMC5775545 DOI: 10.1186/s12864-018-4452-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 01/15/2018] [Indexed: 11/25/2022] Open
Abstract
Background Infectious disease is the single greatest threat to taxa such as amphibians (chytrid fungus), bats (white nose syndrome), Tasmanian devils (devil facial tumor disease), and black-footed ferrets (canine distemper virus, plague). Although understanding the genetic basis to disease susceptibility is important for the long-term persistence of these groups, most research has been limited to major-histocompatibility and Toll-like receptor genes. To better understand the genetic basis of infectious disease susceptibility in a species of conservation concern, we sequenced all known/predicted immune response genes (i.e., the immunomes) in 16 Florida gopher tortoises, Gopherus polyphemus. All tortoises produced antibodies against Mycoplasma agassizii (an etiologic agent of infectious upper respiratory tract disease; URTD) and, at the time of sampling, either had (n = 10) or lacked (n = 6) clinical signs. Results We found several variants associated with URTD clinical status in complement and lectin genes, which may play a role in Mycoplasma immunity. Thirty-five genes deviated from neutrality according to Tajima’s D. These genes were enriched in functions relating to macromolecule and protein modifications, which are vital to immune system functioning. Conclusions These results are suggestive of genetic differences that might contribute to disease severity, a finding that is consistent with other mycoplasmal diseases. This has implications for management because tortoises across their range may possess genetic variation associated with a more severe response to URTD. More generally: 1) this approach demonstrates that a broader consideration of immune genes is better able to identify important variants, and; 2) this data pipeline can be adopted to identify alleles associated with disease susceptibility or resistance in other taxa, and therefore provide information on a population’s risk of succumbing to disease, inform translocations to increase genetic variation for disease resistance, and help to identify potential treatments. Electronic supplementary material The online version of this article (10.1186/s12864-018-4452-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jean P Elbers
- School of Renewable Natural Resources, 227 RNR Bldg., Louisiana State University and AgCenter, Baton Rouge, LA, 70803, USA.
| | - Mary B Brown
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Sabrina S Taylor
- School of Renewable Natural Resources, 227 RNR Bldg., Louisiana State University and AgCenter, Baton Rouge, LA, 70803, USA
| |
Collapse
|
10
|
Hohenlohe PA, Hand BK, Andrews KR, Luikart G. Population Genomics Provides Key Insights in Ecology and Evolution. POPULATION GENOMICS 2018. [DOI: 10.1007/13836_2018_20] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Qin H, Yang G, Provan J, Liu J, Gao L. Using MiddRAD-seq data to develop polymorphic microsatellite markers for an endangered yew species. PLANT DIVERSITY 2017; 39:294-299. [PMID: 30159522 PMCID: PMC6112293 DOI: 10.1016/j.pld.2017.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/26/2017] [Accepted: 05/27/2017] [Indexed: 05/31/2023]
Abstract
Microsatellites are highly polymorphic markers which have been used in a wide range of genetic studies. In recent years, various sources of next-generation sequencing data have been used to develop new microsatellite loci, but compared with the more common shotgun genomic sequencing or transcriptome data, the potential utility of RAD-seq data for microsatellite ascertainment is comparatively under-used. In this study, we employed MiddRAD-seq data to develop polymorphic microsatellite loci for the endangered yew species Taxus florinii. Of 8,823,053 clean reads generated for ten individuals of a population, 94,851 (∼1%) contained microsatellite motifs. These corresponded to 2993 unique loci, of which 526 (∼18%) exhibited polymorphism. Of which, 237 were suitable for designing microsatellite primer pairs, and 128 loci were randomly selected for PCR validation and microsatellite screening. Out of the 128 primer pairs, 16 loci gave clear, reproducible patterns, and were then screened and characterized in 24 individuals from two populations. The total number of alleles per locus ranged from two to ten (mean = 4.875), and within-population expected heterozygosity from zero to 0.789 (mean = 0.530), indicating that these microsatellite loci will be useful for population genetics and speciation studies of T. florinii. This study represents one of few examples to mine polymorphic microsatellite loci from ddRAD data.
Collapse
Affiliation(s)
- Hantao Qin
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoqian Yang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jim Provan
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Penglais, Aberystwyth, SY23 3DA, UK
| | - Jie Liu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Lianming Gao
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| |
Collapse
|