1
|
Shainker-Connelly S, Stoeckel S, Vis ML, Crowell RM, Krueger-Hadfield SA. Seasonality and interannual stability in the population genetic structure of Batrachospermum gelatinosum (Rhodophyta). JOURNAL OF PHYCOLOGY 2025; 61:172-193. [PMID: 39954296 PMCID: PMC11914944 DOI: 10.1111/jpy.13539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/18/2024] [Accepted: 12/01/2024] [Indexed: 02/17/2025]
Abstract
Temporal population genetic studies have investigated evolutionary processes, but few have characterized reproductive system variation. Yet, temporal sampling may improve our understanding of reproductive system evolution through the assessment of the relative rates of selfing, outcrossing, and clonality. In this study, we focused on the monoicous, haploid-diploid freshwater red alga Batrachospermum gelatinosum. This species has a perennial, microscopic diploid phase (chantransia) that produces an ephemeral, macroscopic haploid phase (gametophyte). Recent work focusing on single-time point genotyping suggested high rates of intragametophytic selfing, although there was variation among sites. We expand on this work by genotyping 191 gametophytes sampled from four sites that had reproductive system variation based on single-snapshot genotyping. For this study, we sampled at multiple time points within and among years. Results from intra-annual data suggested shifts in gametophytic genotypes throughout the season. We hypothesize that this pattern is likely due to the seasonality of the life cycle and the timing of meiosis among the chantransia. Interannual patterns were characterized by consistent genotypic and genetic composition, indicating stability in the prevailing reproductive system through time. Yet, our study identified limits by which available theoretical predictions and analytical tools can resolve reproductive system variation using haploid data. There is a need to develop new analytical tools to understand the evolution of sex by expanding our ability to characterize the spatiotemporal variation in reproductive systems across diverse life cycles.
Collapse
Affiliation(s)
| | - Solenn Stoeckel
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro, IFREMER, Rennes, France
| | - Morgan L Vis
- Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, USA
| | - Roseanna M Crowell
- Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, USA
| | - Stacy A Krueger-Hadfield
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Virginia Institute of Marine Science Eastern Shore Laboratory, Wachapreague, Virginia, USA
| |
Collapse
|
2
|
Thornton BM, Spalding HL, Stoeckel S, Harris ML, Wade RM, Krueger-Hadfield SA. Clonality contributes to the spread of Avrainvillea lacerata (Bryopsidales, Chlorophyta) in Hawai'i. JOURNAL OF PHYCOLOGY 2024; 60:1371-1389. [PMID: 39466082 DOI: 10.1111/jpy.13508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/18/2024] [Accepted: 08/30/2024] [Indexed: 10/29/2024]
Abstract
The relative rates of sexual versus asexual reproduction influence the partitioning of genetic diversity within and among populations. During range expansions, asexual reproduction often facilitates colonization and establishment. The arrival of the green alga Avrainvillea lacerata has caused shifts in habitat structure and community assemblages since its discovery in 1981 offshore of O'ahu, Hawai'i. Field observations suggest this species is spreading via vegetative reproduction. To characterize the reproductive system of A. lacerata in Hawai'i, we developed seven microsatellite loci and genotyped 321 blades collected between 2018 and 2023 from three intertidal sites at Maunalua Bay and 'Ewa Beach. We observed one to four alleles at multiple loci, suggesting A. lacerata is tetraploid. Each site was characterized by high genotypic richness (R > 0.8). However, clonal rates were also high, suggesting the vegetative spread of A. lacerata plays a significant role. The importance of clonal reproduction for the persistence of A. lacerata in Hawai'i is consistent with the ecological data collected for this species and observations of other abundant macroalgal invaders in Hawai'i and other regions of the world. These data demonstrate the necessity for implementing appropriate population genetic methods and provide insights into the biology of this alga that will contribute to future studies on effective management strategies incorporating its reproductive system. This study represents one of the few that investigate green algal population genetic patterns and contributes to our understanding of algal reproductive system evolution.
Collapse
Affiliation(s)
- Brinkley M Thornton
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Heather L Spalding
- Department of Biology, College of Charleston, Charleston, South Carolina, USA
| | - Solenn Stoeckel
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro, IFREMER, Rennes, France
| | - Melissa L Harris
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rachael M Wade
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Stacy A Krueger-Hadfield
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Virginia Institute of Marine Science Eastern Shore Laboratory, Wachapreague, Virginia, USA
- William & Mary's Batten School of Coastal and Marine Science at VIMS, Gloucester Point, Virginia, USA
| |
Collapse
|
3
|
Van Rossum F, Hardy OJ. Guidelines for genetic monitoring of translocated plant populations. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13670. [PMID: 33236806 DOI: 10.1111/cobi.13670] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/05/2020] [Accepted: 11/18/2020] [Indexed: 06/11/2023]
Abstract
Plant translocation is a useful tool for implementing assisted gene flow in recovery plans of critically endangered plant species. Although it helps to restore genetically viable populations, it is not devoid of genetic risks, such as poor adaptation of transplants and outbreeding depression in the hybrid progeny, which may have negative consequences in terms of demographic growth and plant fitness. Hence, a follow-up genetic monitoring should evaluate whether the translocated populations are genetically viable and self-sustaining in the short and long term. The causes of failure to adjust management responses also need to be identified. Molecular markers and fitness-related quantitative traits can be used to determine whether a plant translocation enhanced genetic diversity, increased fitness, and improved the probability of long-term survival. We devised guidelines and illustrated them with studies from the literature to help practitioners determine the appropriate genetic survey methods so that management practices can better integrate evolutionary processes. These guidelines include methods for sampling and for assessing changes in genetic diversity and differentiation, contemporary gene flow, mode of local recruitment, admixture level, the effects of genetic rescue, inbreeding or outbreeding depression and local adaptation on plant fitness, and long-term genetic changes.
Collapse
Affiliation(s)
- Fabienne Van Rossum
- Meise Botanic Garden, Nieuwelaan 38, Meise, 1860, Belgium
- Service général de l'Enseignement supérieur et de la Recherche scientifique, Fédération Wallonie-Bruxelles, rue A. Lavallée 1, Brussels, 1080, Belgium
| | - Olivier J Hardy
- Unit of Evolutionary Biology and Ecology, Université Libre de Bruxelles, Avenue F.D. Roosevelt 50, CP 160/12, Brussels, 1050, Belgium
| |
Collapse
|
4
|
Hart MW, Guerra VI, Allen JD, Byrne M. Cloning and Selfing Affect Population Genetic Variation in Simulations of Outcrossing, Sexual Sea Stars. THE BIOLOGICAL BULLETIN 2021; 241:286-302. [PMID: 35015625 DOI: 10.1086/717293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
AbstractMany sea stars are well known for facultative or obligate asexual reproduction in both the adult and larval life-cycle stages. Some species and lineages are also capable of facultative or obligate hermaphroditic reproduction with self-fertilization. However, models of population genetic variation and empirical analyses of genetic data typically assume only sexual reproduction and outcrossing. A recent reanalysis of previously published empirical data (microsatellite genotypes) from two studies of one of the most well-known sea star species (the crown-of-thorns sea star; Acanthaster sp.) concluded that cloning and self-fertilization in that species are rare and contribute little to patterns of population genetic variation. Here we reconsider that conclusion by simulating the contribution of cloning and selfing to genetic variation in a series of models of sea star demography. Simulated variation in two simple models (analogous to previous analyses of empirical data) was consistent with high rates of cloning or selfing or both. More realistic scenarios that characterize population flux in sea stars of ecological significance, including outbreaks of crown-of-thorns sea stars that devastate coral reefs, invasions by Asterias amurensis, and epizootics of sea star wasting disease that kill Pisaster ochraceus, also showed significant but smaller effects of cloning and selfing on variation within subpopulations and differentiation between subpopulations. Future models or analyses of genetic variation in similar study systems might benefit from simulation modeling to characterize possible contributions of cloning or selfing to genetic variation in population samples or to understand the limits on inferring the effects of cloning or selfing in nature.
Collapse
|
5
|
Van Rossum F, Le Pajolec S. Mixing gene pools to prevent inbreeding issues in translocated populations of clonal species. Mol Ecol 2021; 30:2756-2771. [PMID: 33890338 DOI: 10.1111/mec.15930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/01/2021] [Accepted: 04/13/2021] [Indexed: 11/28/2022]
Abstract
Assisted gene flow by plant translocations is increasingly implemented for restoring populations of critically endangered species. The success in restoring genetically healthy populations may depend on translocation design, in particular the choice of the source populations. Highly clonal populations may show low genetic diversity despite large census sizes, and disrupted and geitonogamous pollination may result in selfing and inbreeding issues in the offspring intended for translocation. We carried out a genetic monitoring of translocated populations of the clonal Dianthus deltoides using 14 microsatellite markers and quantified fitness traits over two generations (transplants, F1 seed progeny and newly established individuals). Inbreeding levels were higher in the offspring used as transplants than in the adult generation of the source populations, as a result of high clonality and pollination disruption leading to self-pollination. The F1 generation in translocated populations showed high genetic diversity maintained across generations, diminished inbreeding levels, low genetic differentiation, pollen flow and genetic mixing between the four sources. New individuals were established from seed germination. Fitness patterns were a combination of inbreeding depression in inbred transplants and F1 progeny, heterosis in admixed F1 progeny, source population adaptive capacities, phenotypic plasticity, maternal effects and site environmental specificities. The strategy in the translocation design to mix several local sources, combined with large founding population sizes and ecological management has proved success in initiating the processes leading to the establishment of genetically healthy populations, even when source populations are highly clonal with low genetic diversity leading to inbreeding issues in the transplants.
Collapse
Affiliation(s)
- Fabienne Van Rossum
- Meise Botanic Garden, Meise, Belgium.,Service général de l'Enseignement supérieur et de la Recherche scientifique, Fédération Wallonie-Bruxelles, Brussels, Belgium
| | | |
Collapse
|
6
|
Reynes L, Thibaut T, Mauger S, Blanfuné A, Holon F, Cruaud C, Couloux A, Valero M, Aurelle D. Genomic signatures of clonality in the deep water kelp Laminaria rodriguezii. Mol Ecol 2021; 30:1806-1822. [PMID: 33629449 DOI: 10.1111/mec.15860] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/17/2022]
Abstract
The development of population genomic approaches in non-model species allows for renewed studies of the impact of reproductive systems and genetic drift on population diversity. Here, we investigate the genomic signatures of partial clonality in the deep water kelp Laminaria rodriguezii, known to reproduce by both sexual and asexual means. We compared these results with the species Laminaria digitata, a closely related species that differs by different traits, in particular its reproductive mode (no clonal reproduction). We analysed genome-wide variation with dd-RAD sequencing using 4,077 SNPs in L. rodriguezii and 7,364 SNPs in L. digitata. As predicted for partially clonal populations, we show that the distribution of FIS within populations of L. rodriguezii is shifted toward negative values, with a high number of loci showing heterozygote excess. This finding is the opposite of what we observed within sexual populations of L. digitata, characterized by a generalized deficit in heterozygotes. Furthermore, we observed distinct distributions of FIS among populations of L. rodriguezii, which is congruent with the predictions of theoretical models for different levels of clonality and genetic drift. These findings highlight that the empirical distribution of FIS is a promising feature for the genomic study of asexuality in natural populations. Our results also show that the populations of L. rodriguezii analysed here are genetically differentiated and probably isolated. Our study provides a conceptual framework to investigate partial clonality on the basis of RAD-sequencing SNPs. These results could be obtained without any reference genome, and are therefore of interest for various non-model species.
Collapse
Affiliation(s)
- Lauric Reynes
- CNRS, IRD, MIO, Aix Marseille Université, Université de Toulon, Marseille, France
| | - Thierry Thibaut
- CNRS, IRD, MIO, Aix Marseille Université, Université de Toulon, Marseille, France
| | - Stéphane Mauger
- IRL 3614, Evolutionary Biology and Ecology of Algae, CNRS, UC, UACH, Sorbonne Université, Roscoff, France
| | - Aurélie Blanfuné
- CNRS, IRD, MIO, Aix Marseille Université, Université de Toulon, Marseille, France
| | | | - Corinne Cruaud
- Genoscope, Institut de Biologie François-Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, Evry, France
| | - Arnaud Couloux
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Myriam Valero
- IRL 3614, Evolutionary Biology and Ecology of Algae, CNRS, UC, UACH, Sorbonne Université, Roscoff, France
| | - Didier Aurelle
- CNRS, IRD, MIO, Aix Marseille Université, Université de Toulon, Marseille, France
- Institut de Systématique Évolution Biodiversité (ISYEB, UMR 7205), Muséum National d'Histoire Naturelle, CNRS, EPHE, Sorbonne Université, Paris, France
| |
Collapse
|
7
|
Stoeckel S, Arnaud-Haond S, Krueger-Hadfield SA. The Combined Effect of Haplodiplonty and Partial Clonality on Genotypic and Genetic Diversity in a Finite Mutating Population. J Hered 2021; 112:78-91. [PMID: 33710350 DOI: 10.1093/jhered/esaa062] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 12/17/2020] [Indexed: 02/03/2023] Open
Abstract
Partial clonality is known to affect the genetic composition and evolutionary trajectory of diplontic (single, free-living diploid stage) populations. However, many partially clonal eukaryotes exhibit life cycles in which somatic development occurs in both haploid and diploid individuals (haplodiplontic life cycles). Here, we studied how haplodiplontic life cycles and partial clonality structurally constrain, as immutable parameters, the reshuffling of genetic diversity and its dynamics in populations over generations. We assessed the distribution of common population genetic indices at different proportions of haploids, rates of clonality, mutation rates, and sampling efforts. Our results showed that haplodiplontic life cycles alone in finite populations affect effective population sizes and the ranges of distributions of population genetic indices. With nonoverlapping generations, haplodiplonty allowed the evolution of 2 temporal genetic pools that may diverge in sympatry due to genetic drift under full sexuality and clonality. Partial clonality in these life cycles acted as a homogenizing force between those 2 pools. Moreover, the combined effects of proportion of haploids, rate of clonality, and the relative strength of mutation versus genetic drift impacts the distributions of population genetics indices, rendering it difficult to transpose and use knowledge accumulated from diplontic or haplontic species. Finally, we conclude by providing recommendations for sampling and analyzing the population genetics of partially clonal haplodiplontic taxa.
Collapse
Affiliation(s)
- Solenn Stoeckel
- INRAE, Agrocampus Ouest, Université de Rennes, IGEPP, F-35650 Le Rheu, France
| | | | | |
Collapse
|
8
|
Konczal M, Przesmycka KJ, Mohammed RS, Hahn C, Cable J, Radwan J. Expansion of frozen hybrids in the guppy ectoparasite, Gyrodactylus turnbulli. Mol Ecol 2021; 30:1005-1016. [PMID: 33345416 PMCID: PMC7986700 DOI: 10.1111/mec.15781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 12/07/2020] [Accepted: 12/16/2020] [Indexed: 11/27/2022]
Abstract
Hybridization is one of the major factors contributing to the emergence of highly successful parasites. Hybrid vigour can play an important role in this process, but subsequent rounds of recombination in the hybrid population may dilute its effects. Increased fitness of hybrids can, however, be frozen by asexual reproduction. Here, we identify invasion of a 'frozen hybrid' genotype in natural populations of Gyrodactylus turnbulli, a facultatively sexual ectoparasitic flatworm that causes significant damage to its fish host. We resequenced genomes of these parasites infecting guppies from six Trinidad and Tobago populations, and found surprisingly high discrepancy in genome-wide nucleotide diversity between islands. The elevated heterozygosity on Tobago is maintained by predominantly clonal reproduction of hybrids formed from two diverged genomes. Hybridization has been followed by spread of the hybrids across the island, implying a selective advantage compared with native genotypes. Our results thus highlight that a single outcrossing event may be independently sufficient to cause pathogen expansion.
Collapse
Affiliation(s)
- Mateusz Konczal
- Faculty of BiologyEvolutionary Biology GroupAdam Mickiewicz UniversityPoznańPoland
| | | | - Ryan S. Mohammed
- Department of Life SciencesFaculty of Science and TechnologyThe University of the West Indies Zoology Museum, UWISt. AugustineTrinidad and Tobago
- School of BiosciencesCardiff UniversityCardiffUK
| | | | - Jo Cable
- School of BiosciencesCardiff UniversityCardiffUK
| | - Jacek Radwan
- Faculty of BiologyEvolutionary Biology GroupAdam Mickiewicz UniversityPoznańPoland
| |
Collapse
|
9
|
Stoeckel S, Porro B, Arnaud-Haond S. The discernible and hidden effects of clonality on the genotypic and genetic states of populations: Improving our estimation of clonal rates. Mol Ecol Resour 2021; 21:1068-1084. [PMID: 33386695 DOI: 10.1111/1755-0998.13316] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 11/05/2020] [Accepted: 12/21/2020] [Indexed: 11/29/2022]
Abstract
Partial clonality is widespread across the tree of life, but most population genetic models are designed for exclusively clonal or sexual organisms. This gap hampers our understanding of the influence of clonality on evolutionary trajectories and the interpretation of population genetic data. We performed forward simulations of diploid populations at increasing rates of clonality (c), analysed their relationships with genotypic (clonal richness, R, and distribution of clonal sizes, Pareto β) and genetic (FIS and linkage disequilibrium) indices, and tested predictions of c from population genetic data through supervised machine learning. Two complementary behaviours emerged from the probability distributions of genotypic and genetic indices with increasing c. While the impact of c on R and Pareto β was easily described by simple mathematical equations, its effects on genetic indices were noticeable only at the highest levels (c > 0.95). Consequently, genotypic indices allowed reliable estimates of c, while genetic descriptors led to poorer performances when c < 0.95. These results provide clear baseline expectations for genotypic and genetic diversity and dynamics under partial clonality. Worryingly, however, the use of realistic sample sizes to acquire empirical data systematically led to gross underestimates (often of one to two orders of magnitude) of c, suggesting that many interpretations hitherto proposed in the literature, mostly based on genotypic richness, should be reappraised. We propose future avenues to derive realistic confidence intervals for c and show that, although still approximate, a supervised learning method would greatly improve the estimation of c from population genetic data.
Collapse
Affiliation(s)
- Solenn Stoeckel
- Institute for Genetics, Environment and Plant Protection, INRAE, Le Rheu, France
| | - Barbara Porro
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d'Azur, Nice, France.,MARBEC - Marine Biodiversity Exploitation and Conservation, University of Montpellier, CNRS, Ifremer, IRD, MARBEC, Sète, France
| | - Sophie Arnaud-Haond
- MARBEC - Marine Biodiversity Exploitation and Conservation, University of Montpellier, CNRS, Ifremer, IRD, MARBEC, Sète, France
| |
Collapse
|
10
|
Becheler R, Guillemin M, Stoeckel S, Mauger S, Saunier A, Brante A, Destombe C, Valero M. After a catastrophe, a little bit of sex is better than nothing: Genetic consequences of a major earthquake on asexual and sexual populations. Evol Appl 2020; 13:2086-2100. [PMID: 32908606 PMCID: PMC7463374 DOI: 10.1111/eva.12967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 11/27/2022] Open
Abstract
Catastrophic events can have profound effects on the demography of a population and consequently on genetic diversity. The dynamics of postcatastrophic recovery and the role of sexual versus asexual reproduction in buffering the effects of massive perturbations remain poorly understood, in part because the opportunity to document genetic diversity before and after such events is rare. Six natural (purely sexual) and seven cultivated (mainly clonal due to farming practices) populations of the red alga Agarophyton chilense were surveyed along the Chilean coast before, in the days after and 2 years after the 8.8 magnitude earthquake in 2010. The genetic diversity of sexual populations appeared sensitive to this massive perturbation, notably through the loss of rare alleles immediately after the earthquake. By 2012, the levels of diversity returned to those observed before the catastrophe, probably due to migration. In contrast, enhanced rates of clonality in cultivated populations conferred a surprising ability to buffer the instantaneous loss of diversity. After the earthquake, farmers increased the already high rate of clonality to maintain the few surviving beds, but most of them collapsed rapidly. Contrasting fates between sexual and clonal populations suggest that betting on strict clonality to sustain production is risky, probably because this extreme strategy hampered adaptation to the brutal environmental perturbation induced by the catastrophe.
Collapse
Affiliation(s)
- Ronan Becheler
- Centro de Conservación MarinaDepartamento de EcologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileCasillaChile
- UMI 3614Evolutionary Biology and Ecology of AlgaeCNRSSorbonne UniversitéUniversidad Austral de ChilePontificia Universidad Católica de ChileRoscoffFrance
| | - Marie‐Laure Guillemin
- UMI 3614Evolutionary Biology and Ecology of AlgaeCNRSSorbonne UniversitéUniversidad Austral de ChilePontificia Universidad Católica de ChileRoscoffFrance
- Instituto de Ciencias Ambientales y EvolutivasFacultad de CienciasUniversidad Austral de ChileValdiviaChile
| | - Solenn Stoeckel
- UMR1349 Institute for Genetics, Environment and Plant ProtectionINRALe RheuFrance
| | - Stéphane Mauger
- UMI 3614Evolutionary Biology and Ecology of AlgaeCNRSSorbonne UniversitéUniversidad Austral de ChilePontificia Universidad Católica de ChileRoscoffFrance
| | - Alice Saunier
- UMI 3614Evolutionary Biology and Ecology of AlgaeCNRSSorbonne UniversitéUniversidad Austral de ChilePontificia Universidad Católica de ChileRoscoffFrance
- Instituto de Ciencias Ambientales y EvolutivasFacultad de CienciasUniversidad Austral de ChileValdiviaChile
| | - Antonio Brante
- Departamento de EcologíaFacultad de CienciasUniversidad Católica de la Santísima Concepción (UCSC)ConcepciónChile
- Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS)UCSCConcepciónChile
| | - Christophe Destombe
- UMI 3614Evolutionary Biology and Ecology of AlgaeCNRSSorbonne UniversitéUniversidad Austral de ChilePontificia Universidad Católica de ChileRoscoffFrance
| | - Myriam Valero
- UMI 3614Evolutionary Biology and Ecology of AlgaeCNRSSorbonne UniversitéUniversidad Austral de ChilePontificia Universidad Católica de ChileRoscoffFrance
| |
Collapse
|
11
|
Arnaud-Haond S, Stoeckel S, Bailleul D. New insights into the population genetics of partially clonal organisms: When seagrass data meet theoretical expectations. Mol Ecol 2020; 29:3248-3260. [PMID: 32613610 DOI: 10.1111/mec.15532] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/30/2020] [Accepted: 06/11/2020] [Indexed: 01/23/2023]
Abstract
Seagrass meadows are among the most important coastal ecosystems in terms of both spatial extent and ecosystem services, but they are also declining worldwide. Understanding the drivers of seagrass meadow dynamics is essential for designing sound management, conservation and restoration strategies. However, poor knowledge of the effect of clonality on the population genetics of natural populations severely limits our understanding of the dynamics and connectivity of meadows. Recent modelling approaches have described the expected distributions of genotypic and genetic descriptors under increasing clonal rates, which may help us better understand and interpret population genetics data obtained for partial asexuals. Here, in the light of these recent theoretical developments, we revisited population genetics data for 165 meadows of four seagrass species. Contrasting shoot lifespan and rhizome turnover led to the prediction that the influence of asexual reproduction would increase along a gradient from Zostera noltii to Zostera marina, Cymodocea nodosa and Posidonia oceanica, with increasing departure from Hardy-Weinberg equilibrium (Fis ), mostly towards heterozygote excess, and decreasing genotypic richness (R). This meta-analysis provides a nested validation of this hypothesis at both the species and meadow scales through a significant relationship between Fis and R within each species. By empirically demonstrating the theoretical expectations derived from recent modelling approaches, this work calls for the use of Hardy-Weinberg equilibrium (Fis ) rather than only the strongly sampling-sensitive R to assess the importance of clonal reproduction (c), at least when the impact of selfing on Fis can be neglected. The results also emphasize the need to revise our appraisal of the extent of clonality and its influence on the dynamics, connectivity and evolutionary trajectory of partial asexuals in general, including in seagrass meadows, to develop the most accurate management strategies.
Collapse
Affiliation(s)
| | - Solenn Stoeckel
- IGEPP INRAE, Institut Agro, University of Rennes, Le Rheu, France
| | - Diane Bailleul
- Université de Montpellier, Ifremer, CNRS, IRD, MARBEC, Sète, France
| |
Collapse
|
12
|
Van Rossum F, Hardy OJ, Le Pajolec S, Raspé O. Genetic monitoring of translocated plant populations in practice. Mol Ecol 2020; 29:4040-4058. [PMID: 32654225 DOI: 10.1111/mec.15550] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/18/2020] [Accepted: 07/08/2020] [Indexed: 01/01/2023]
Abstract
Plant translocations allow the restoration of genetic diversity in inbred and depauperate populations and help to prevent the extinction of critically endangered species. However, the successes of plant translocations in restoring genetically viable populations and the possible associated key factors are still insufficiently evaluated. To fill this gap, we carried out a thorough genetic monitoring of three populations of Arnica montana that were created or reinforced by the translocation of plants obtained from seeds of two large natural source populations from southern Belgium. We genotyped nine microsatellite markers and measured fitness quantitative traits over two generations (transplants, F1 seed progeny and newly established F1 juveniles). Two years after translocation, the genetic restoration had been effective, with high genetic diversity and low genetic differentiation across generations, extensive contemporary pollen flow, admixture between seed sources in the F1 generation and recruitment of new individuals from seeds. We detected site, seed source and maternal plant effects on plant fitness. The results also suggest that phenotypic plasticity may favour short-term individual survival and long-term adaptive capacity and enhance the evolutionary resilience of the populations to changing environmental conditions. We found no sign of heterosis or outbreeding depression at early life stages in the F1 generation. Our findings emphasize the importance of the translocation design (700 transplants of mixed sources, planted at high density) as well as the preparatory site management for the successful outcome of the translocations, which maximized flowering, random mating, and recruitment from seeds in the first years after translocation.
Collapse
Affiliation(s)
- Fabienne Van Rossum
- Meise Botanic Garden, Meise, Belgium.,Fédération Wallonie-Bruxelles, Service général de l'Enseignement supérieur et de la Recherche scientifique, Brussels, Belgium
| | - Olivier J Hardy
- Unit of Evolutionary Biology and Ecology, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Olivier Raspé
- Meise Botanic Garden, Meise, Belgium.,Fédération Wallonie-Bruxelles, Service général de l'Enseignement supérieur et de la Recherche scientifique, Brussels, Belgium.,Center of Excellence in Fungal Research and School of Science, Mae Fah Luang University, Chiang Rai, Thailand
| |
Collapse
|