1
|
López-González M, Piquet JC, Maestresalas B, López-Darias M. Validation of eDNA methods for managing the terrestrial invasive snake Lampropeltis californiae on the Canary Islands. Sci Rep 2025; 15:14116. [PMID: 40269028 PMCID: PMC12018960 DOI: 10.1038/s41598-025-96387-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 03/27/2025] [Indexed: 04/25/2025] Open
Abstract
Invasive snakes are among the most challenging invaders worldwide due to their exceptionally low detection rate and grave ecological impacts. Environmental DNA (eDNA) has emerged as a promising tool to improve invasive snake detection and enhancing management programs, yet its application to terrestrial snakes remains underexplored. This study provides the first advances in the use of eDNA techniques to detect the terrestrial invasive California kingsnake (Lampropeltis californiae). We designed L. californiae-specific primers and tested their effectiveness in detecting the species in different environmental samples, including swab samples from underneath artificial cover objects (ACOs) made of different materials, soil beneath ACOs, randomly collected soil, and researchers' boots. Additionally, we conducted a controlled experiment to assess the accumulation and degradation rate of L. californiae eDNA over a 14-day period (7 with snakes in the terraria and 7 after having removed them). We detected L. californiae eDNA in 9.31% of swab samples, in 2.22% of soil samples under ACOs, and in 2.56% of boot samples, while no detections appeared in randomly collected soil or controls. In the controlled experiment, eDNA was undetectable in terraria prior snake introductions, but remained detectable throughout the study, with no evidence of snake eDNA degradation after snake removal. These findings provide key insights for the implementation of an eDNA-based protocol for the detection of L. californiae in Gran Canaria, offering a valuable tool for monitoring this invasive species. Furthermore, this study could be used for refining eDNA methodologies to detect other elusive terrestrial snake species elsewhere.
Collapse
Affiliation(s)
- Mercedes López-González
- Spanish National Research Council (CSIC), Av. Astrofísico Fco. Sánchez, 3, San Cristóbal de La Laguna, 38206, Tenerife, Canary Islands, Spain
| | - Julien C Piquet
- Spanish National Research Council (CSIC), Av. Astrofísico Fco. Sánchez, 3, San Cristóbal de La Laguna, 38206, Tenerife, Canary Islands, Spain
| | - Borja Maestresalas
- Spanish National Research Council (CSIC), Av. Astrofísico Fco. Sánchez, 3, San Cristóbal de La Laguna, 38206, Tenerife, Canary Islands, Spain
| | - Marta López-Darias
- Spanish National Research Council (CSIC), Av. Astrofísico Fco. Sánchez, 3, San Cristóbal de La Laguna, 38206, Tenerife, Canary Islands, Spain.
| |
Collapse
|
2
|
Záhonová K, Kaur H, Furgason CC, Smirnova AV, Dunfield PF, Dacks JB. Comparative Analysis of Protist Communities in Oilsands Tailings Using Amplicon Sequencing and Metagenomics. Environ Microbiol 2025; 27:e70029. [PMID: 39797470 PMCID: PMC11724239 DOI: 10.1111/1462-2920.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/05/2024] [Accepted: 11/29/2024] [Indexed: 01/13/2025]
Abstract
The Canadian province of Alberta contains substantial oilsands reservoirs, consisting of bitumen, clay and sand. Extracting oil involves separating bitumen from inorganic particles using hot water and chemical diluents, resulting in liquid tailings waste with ecotoxicologically significant compounds. Ongoing efforts aim to reclaim tailings-affected areas, with protist colonisation serving as one assessment method of reclamation progress. Oilsands-associated protist communities have mainly been evaluated using amplicon sequencing of the 18S rRNA V4 region; however, this barcode may overlook important protist groups. This study examined how community assessment methods between the V4 and V9 regions differ in representing protist diversity across four oilsands-associated environments. The V9 barcode identified more operational taxonomical units (OTUs) for Discoba, Metamonada and Amoebozoa compared with the V4. A comparative shotgun metagenomics approach revealed few eukaryotic contigs but did recover a complete Paramicrosporidia mitochondrial genome, only the second publicly available from microsporidians. Both V4 and V9 markers were informative for assessing community diversity in oilsands-associated environments and are most effective when combined for a comprehensive taxonomic estimate, particularly in anoxic environments.
Collapse
Affiliation(s)
- Kristína Záhonová
- Division of Infectious Diseases, Department of Medicine, and Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
- Institute of Parasitology, Biology CentreCzech Academy of SciencesČeské BudějoviceCzech Republic
- Department of Parasitology, Faculty of ScienceCharles UniversityVestecCzech Republic
- Life Science Research Centre, Faculty of ScienceUniversity of OstravaOstravaCzech Republic
| | - Harpreet Kaur
- Division of Infectious Diseases, Department of Medicine, and Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | | | - Angela V. Smirnova
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
| | - Peter F. Dunfield
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
| | - Joel B. Dacks
- Division of Infectious Diseases, Department of Medicine, and Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
- Institute of Parasitology, Biology CentreCzech Academy of SciencesČeské BudějoviceCzech Republic
| |
Collapse
|
3
|
Coetzer WG. Using grass inflorescence as source material for biomonitoring through environmental DNA metabarcoding. Mol Biol Rep 2024; 51:987. [PMID: 39283359 PMCID: PMC11405429 DOI: 10.1007/s11033-024-09885-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Over the last decade, increasing attention has been directed to using different substrates as sources of environmental DNA (eDNA) in ecological research. Reports on the use of environmental DNA located on the surface of plant leaves and flowers have highlighted the utility of this DNA source in studies including, but not limited to, biodiversity, invasive species, and pollination ecology. The current study assesses grass inflorescence as a source of eDNA for detecting invertebrate taxa. METHODS AND RESULTS Inflorescences from four common grass species in a central South African grassland were collected for high-throughput sequencing analysis. Universal COI primers were utilised to detect Metazoan diversity. The sequencing results allowed for the detection of three Arthropoda orders, with most OTUs assigned to fungal taxa (Ascomycota and Basidiomycota). Some biases were detected while observing the relative read abundance (RRA) results. DISCUSSION The observed biases could be explained by the accidental inclusion of invertebrate specimens during sample collection and DNA extraction. Primer biases towards the amplified taxa could be another reason for the observed RRA results. This study provided insight into the invertebrate community associated with the four sampled grass species. It should be noted that with the lack of negative field controls, it is impossible to rule out the influence of airborne eDNA on the observed diversity associated with each grass species. The lack of the inclusion of PCR and extraction blanks in the sequencing step, as well as the inclusion of negative field controls, including other areas for refinement were highlighted, and suggestions were provided to improve the outcomes of future studies.
Collapse
Affiliation(s)
- Willem G Coetzer
- Department of Zoology and Entomology, University of Fort Hare, Private Bag X1314, Alice, 5700, Eastern Cape, South Africa.
- Department of Genetics, University of the Free State, Bloemfontein, Free State, South Africa.
| |
Collapse
|
4
|
Feller JD, Colton L. Comparison of commercially available DNA and RNA extraction kits for wildlife feces collected from the environment. Biotechniques 2024; 76:463-472. [PMID: 39268902 DOI: 10.1080/07366205.2024.2397284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Wildlife fecal samples were collected across two Air Force installations to evaluate the effectiveness of commercially available DNA and RNA extraction kits. Four DNA kits, two DNA/RNA kits and one RNA only kit were used. Sample extracts were evaluated on nucleic acid concentration, TapeStation DNA or RNA Integrity Number values and presence of PCR inhibitors. For the DNA kits, PFP produced higher concentrations compared with PLM and RPM, while MWFM gave higher DNA Integrity Number values when compared with RPM. No PCR inhibition was detected. For the RNA kits, RPM gave higher concentrations compared with MWTV and no differences were seen in RNA Integrity Number values. PCR inhibition was observed in all RNA samples, with MWTV exhibiting higher inhibition compared with RPM.
Collapse
Affiliation(s)
- James D Feller
- The Ohio State University, Department of Evolution, Ecology, & Organismal Biology, Columbus, OH 43210, USA
- United States Forest Service, Region 4, Natural Resources, Logan, UT 84321, USA
| | - Leah Colton
- United States Air Force School of Aerospace Medicine, Wright-Patterson AFB, OH 45433, USA
| |
Collapse
|
5
|
MacIntosh A, Dafforn K, Chariton A, Koppel D, Cresswell T, Gissi F. Response of Microbial Communities to Naturally Occurring Radioactive Material-Contaminated Sediments: A Microcosm-Based Study. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1648-1661. [PMID: 38819030 DOI: 10.1002/etc.5887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/31/2024] [Accepted: 04/10/2024] [Indexed: 06/01/2024]
Abstract
There is a growing need to understand the potential ecological impacts of contaminants in offshore oil and gas infrastructure, especially if that infrastructure is to be left in situ as a decommissioning option. Naturally occurring radioactive material (NORM) is one type of contaminant found in solid deposits on internal surfaces of infrastructure that poses potential ecological harm if released into the marine environment. Microbes are important components of marine sediment ecosystems because they provide ecosystem services, yet the impacts of NORM contamination to these communities are not well understood. The present study aimed to investigate the response of benthic microbial communities to NORM-contaminated scale, collected from an offshore oil and gas system, via controlled laboratory microcosm studies. Changes to microbial communities in natural sediment and sediments spiked with NORM at radium-226 activity concentrations ranging from 9.5 to 59.8 Bq/kg (in partial equilibria with progeny) over 7 and 28 days were investigated using high-throughput sequencing of environmental DNA extracted from experimental sediments. There were no significant differences in microbial community composition between control and scale-spiked sediments over 7 and 28 days. However, we observed a greater presence of Firmicutes in the scale-mixed treatment and Chloroflexi in the scale-surface treatments after 28 days. This could suggest selection for species with contaminant tolerance or potential resilience to radiation and metal toxicity. Further research is needed to explore microbial tolerance mechanisms and their potential as indicators of effects of radionuclide-contaminated sediments. The present study demonstrated that microcosm studies can provide valuable insights about the potential impacts of contamination from oil and gas infrastructure to sediment microbial communities. Environ Toxicol Chem 2024;43:1648-1661. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Amy MacIntosh
- Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales, Australia
- School of Natural Sciences, Wallumattagal Campus, Macquarie University, Sydney, New South Wales, Australia
| | - Katherine Dafforn
- School of Natural Sciences, Wallumattagal Campus, Macquarie University, Sydney, New South Wales, Australia
| | - Anthony Chariton
- School of Natural Sciences, Wallumattagal Campus, Macquarie University, Sydney, New South Wales, Australia
| | - Darren Koppel
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Perth, Western Australia, Australia
| | - Tom Cresswell
- Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales, Australia
| | - Francesca Gissi
- Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales, Australia
| |
Collapse
|
6
|
Bell KL, Campos M, Hoffmann BD, Encinas-Viso F, Hunter GC, Webber BL. Environmental DNA methods for biosecurity and invasion biology in terrestrial ecosystems: Progress, pitfalls, and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171810. [PMID: 38513869 DOI: 10.1016/j.scitotenv.2024.171810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
Analysis of environmental DNA (eDNA) enables indirect detection of species without the need to directly observe and sample them. For biosecurity and invasion biology, eDNA-based methods are useful to address biological invasions at all phases, from detecting arrivals to confirming eradication of past invasions. We conducted a systematic review of the literature and found that in biosecurity and invasion biology, eDNA has primarily been used to detect new incursions and monitor spread in marine and freshwater ecosystems, with much slower uptake in terrestrial ecosystems, reflecting a broader trend common to the usage of eDNA tools. In terrestrial ecosystems, eDNA research has mostly focussed on the use of eDNA metabarcoding to characterise biodiversity, rather than targeting biosecurity threats or non-native populations. We discuss how eDNA-based methods are being applied to terrestrial ecosystems for biosecurity and managing non-native populations at each phase of the invasion continuum: transport, introduction, establishment, and spread; across different management options: containment, control, and eradication; and for detecting the impact of non-native organisms. Finally, we address some of the current technical issues and caveats of eDNA-based methods, particularly for terrestrial ecosystems, and how these might be solved. As eDNA-based methods improve, they will play an increasingly important role in the early detection and adaptive management of biological invasions, and the implementation of effective biosecurity controls.
Collapse
Affiliation(s)
- Karen L Bell
- CSIRO Health & Biosecurity, Floreat, Western Australia 6014, Australia; School of Biological Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia.
| | - Mariana Campos
- CSIRO Health & Biosecurity, Floreat, Western Australia 6014, Australia; Harry Butler Institute, Murdoch University, Murdoch, Western Australia 6150, Australia
| | | | - Francisco Encinas-Viso
- CSIRO Centre of Australian National Biodiversity Research, Black Mountain, Australian Capital Territory 2601, Australia
| | - Gavin C Hunter
- CSIRO Health & Biosecurity, Black Mountain, Australian Capital Territory 2601, Australia
| | - Bruce L Webber
- CSIRO Health & Biosecurity, Floreat, Western Australia 6014, Australia; School of Biological Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
7
|
Green ME, Hardesty BD, Deagle BE, Wilcox C. Environmental DNA as a tool to reconstruct catch composition for longline fisheries vessels. Sci Rep 2024; 14:10188. [PMID: 38702492 PMCID: PMC11068744 DOI: 10.1038/s41598-024-60917-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
Global wild-capture fisheries are a large and diverse sector requiring various tools for fisheries-dependant data collection and effective Monitoring, Control and Surveillance (MCS). Here we present a novel protocol to collect eDNA from brine tanks onboard commercial longline vessels to reconstruct catch composition. We collected samples from nine vessels operating out of the Eastern Tuna Billfish Fishery, Australia, validating eDNA results with reliable catch data consisting of seven target and bycatch species. Environmental DNA was highly effective for detecting species retained on vessels without contamination or false positives. For four vessels, logbook data and eDNA were consistent with detections of all species. The remaining vessels detected all species except for rare catches of short-billed spearfish (Tetrapturus angustirostris). Similarities between rank abundance distributions of catch and eDNA reads were observed with logbook data mirrored when eDNA sequences were organised into rank order abundance. The method was effective at identifying highly abundant taxa retained in brine tanks- tuna (Thunnus spp.), swordfish (Xiphias gladius), marlin (Kajijia audax), and Atlantic Pomfret (Brama brama). Further research is required to validate how eDNA and other molecular monitoring tools can be scaled and applied to provide solutions for monitoring challenges in the fisheries sector.
Collapse
Affiliation(s)
- M E Green
- Institute for Marine and Antactic Studies, University of Tasmania, Private Bag 49, Hobart, TAS, 7001, Australia.
- Centre for Marine Socioecology, University of Tasmania, Private Bag 49, Hobart, TAS, 7001, Australia.
| | - B D Hardesty
- CSIRO Environment, Castray Esplanade, Hobart, TAS, 7001, Australia
| | - B E Deagle
- CSIRO Australian National Fish Collection, Castray Esplanade, Hobart, TAS, 7001, Australia
| | - C Wilcox
- Wilco Analytics, 93 Carlton Beach Road, Dodges Ferry, TAS, 7173, Australia
| |
Collapse
|
8
|
Newton JP, Nevill P, Bateman PW, Campbell MA, Allentoft ME. Spider webs capture environmental DNA from terrestrial vertebrates. iScience 2024; 27:108904. [PMID: 38533454 PMCID: PMC10964257 DOI: 10.1016/j.isci.2024.108904] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/22/2023] [Accepted: 01/10/2024] [Indexed: 03/28/2024] Open
Abstract
Environmental DNA holds significant promise as a non-invasive tool for tracking terrestrial biodiversity. However, in non-homogenous terrestrial environments, the continual exploration of new substrates is crucial. Here we test the hypothesis that spider webs can act as passive biofilters, capturing eDNA from vertebrates present in the local environment. Using a metabarcoding approach, we detected vertebrate eDNA from all analyzed spider webs (N = 49). Spider webs obtained from an Australian woodland locality yielded vertebrate eDNA from 32 different species, including native mammals and birds. In contrast, webs from Perth Zoo, less than 50 km away, yielded eDNA from 61 different vertebrates and produced a highly distinct species composition, largely reflecting exotic species hosted in the zoo. We show that higher animal biomass and proximity to animal enclosures increased eDNA detection probability in the zoo. Our results indicate a tremendous potential for using spider webs as a cost-effective means to monitor terrestrial vertebrates.
Collapse
Affiliation(s)
- Joshua P. Newton
- Trace and Environmental DNA Laboratory, School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
- Minesite Biodiversity Monitoring with eDNA (MBioMe) research group, School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| | - Paul Nevill
- Trace and Environmental DNA Laboratory, School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
- Minesite Biodiversity Monitoring with eDNA (MBioMe) research group, School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| | - Philip W. Bateman
- Minesite Biodiversity Monitoring with eDNA (MBioMe) research group, School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
- Behavioural Ecology Lab, School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| | - Matthew A. Campbell
- Trace and Environmental DNA Laboratory, School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| | - Morten E. Allentoft
- Trace and Environmental DNA Laboratory, School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| |
Collapse
|
9
|
Takahashi M, Saccò M, Kestel JH, Nester G, Campbell MA, van der Heyde M, Heydenrych MJ, Juszkiewicz DJ, Nevill P, Dawkins KL, Bessey C, Fernandes K, Miller H, Power M, Mousavi-Derazmahalleh M, Newton JP, White NE, Richards ZT, Allentoft ME. Aquatic environmental DNA: A review of the macro-organismal biomonitoring revolution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162322. [PMID: 36801404 DOI: 10.1016/j.scitotenv.2023.162322] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Environmental DNA (eDNA) is the fastest growing biomonitoring tool fuelled by two key features: time efficiency and sensitivity. Technological advancements allow rapid biodiversity detection at both species and community levels with increasing accuracy. Concurrently, there has been a global demand to standardise eDNA methods, but this is only possible with an in-depth overview of the technological advancements and a discussion of the pros and cons of available methods. We therefore conducted a systematic literature review of 407 peer-reviewed papers on aquatic eDNA published between 2012 and 2021. We observed a gradual increase in the annual number of publications from four (2012) to 28 (2018), followed by a rapid growth to 124 publications in 2021. This was mirrored by a tremendous diversification of methods in all aspects of the eDNA workflow. For example, in 2012 only freezing was applied to preserve filter samples, whereas we recorded 12 different preservation methods in the 2021 literature. Despite an ongoing standardisation debate in the eDNA community, the field is seemingly moving fast in the opposite direction and we discuss the reasons and implications. Moreover, by compiling the largest PCR-primer database to date, we provide information on 522 and 141 published species-specific and metabarcoding primers targeting a wide range of aquatic organisms. This works as a user-friendly 'distillation' of primer information that was hitherto scattered across hundreds of papers, but the list also reflects which taxa are commonly studied with eDNA technology in aquatic environments such as fish and amphibians, and reveals that groups such as corals, plankton and algae are under-studied. Efforts to improve sampling and extraction methods, primer specificity and reference databases are crucial to capture these ecologically important taxa in future eDNA biomonitoring surveys. In a rapidly diversifying field, this review synthetises aquatic eDNA procedures and can guide eDNA users towards best practice.
Collapse
Affiliation(s)
- Miwa Takahashi
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia; Commonwealth Scientific and Industrial Research Organization, Indian Oceans Marine Research Centre, Environomics Future Science Platform, Crawley, Western Australia, Australia.
| | - Mattia Saccò
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia.
| | - Joshua H Kestel
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Georgia Nester
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Matthew A Campbell
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Mieke van der Heyde
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Matthew J Heydenrych
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia; Jarman Laboratory, Indian Ocean Marine Research Centre, School of Biological Sciences, University of Western Australia, Australia
| | - David J Juszkiewicz
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Paul Nevill
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Kathryn L Dawkins
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Cindy Bessey
- Commonwealth Scientific and Industrial Research Organization, Indian Oceans Marine Research Centre, Oceans and Atmosphere, Crawley, Western Australia, Australia
| | - Kristen Fernandes
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Haylea Miller
- Commonwealth Scientific and Industrial Research Organization, Indian Oceans Marine Research Centre, Environomics Future Science Platform, Crawley, Western Australia, Australia
| | - Matthew Power
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Mahsa Mousavi-Derazmahalleh
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Joshua P Newton
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Nicole E White
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Zoe T Richards
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Morten E Allentoft
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia; Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
10
|
Villacorta-Rath C, Lach L, Andrade-Rodriguez N, Burrows D, Gleeson D, Trujillo-González A. Invasive terrestrial invertebrate detection in water and soil using a targeted eDNA approach. NEOBIOTA 2023. [DOI: 10.3897/neobiota.83.98898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Terrestrial invasive invertebrates can rapidly colonise new areas, causing detrimental effects on biodiversity, economy and lifestyle. Targeted environmental DNA (eDNA) methods could constitute an early detection tool given their sensitivity to small numbers of individuals. We hypothesised that terrestrial runoff would transport eDNA from the land into adjacent waterbodies and used the invasive yellow crazy ant (Anoplolepis gracilipes) as a model species to test this hypothesis. We collected water samples from four waterbodies adjacent (< 10 m from the creek edge) to infestations following rainfall events for eDNA analysis. We also collected soil samples from areas of known infestations and tested five eDNA extraction methods to determine their efficiency to extract eDNA from soil. Water samples resulted in positive yellow crazy ant eDNA amplification (20–100% field replicates across all sites), even at one site located 300 m away from where ants had been detected visually. Soil samples resulted in a higher percentage of false negatives when sampled from ant transit areas than from nest entrances. Unpurified DNA extracts from soil also resulted in false negative detections and only after applying a purification step of DNA extracts, did we detect yellow crazy ant eDNA in 40–100% of field replicates across all methods and sites. This is the first study to empirically show that eDNA from a terrestrial invertebrate can be successfully isolated and amplified from adjacent or downstream waterbodies. Our results indicate that eDNA has the potential to be a useful method for detecting terrestrial invertebrates from soil and water.
Collapse
|
11
|
Bae S, Kim P, Yi CH. Biodiversity and spatial distribution of ascidian using environmental DNA metabarcoding. MARINE ENVIRONMENTAL RESEARCH 2023; 185:105893. [PMID: 36689844 DOI: 10.1016/j.marenvres.2023.105893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Monitoring studies are necessary to understand the biodiversity of marine ecosystems and are useful for identifying and managing rare or invasive species. Because monitoring has traditionally relied only on visual surveys (e.g., trapping, netting, electrofishing, and SCUBA diving) with limited time and physical resources, environmental DNA (eDNA) analysis is being applied as an efficient monitoring method. This study compared whether the eDNA metabarcoding technique can replace the traditional visual survey in an ascidian fauna study. We designed ascidian-specific primers and identified a clear gap (3.75%) by barcoding gap analysis. Then, we collected seawater samples for eDNA analysis during the summer (August-September) of 2021 at three sites (Mokpo, Yeosu, and Uljin) in South Korea. In the survey sites of this study, 25 species were observed through literature and visual survey, among which 9 species were detected by metabarcoding and 16 species were not detected. On the other hand, 10 species were detected only by metabarcoding, and one of them was identified as Pyura mirabilis, an unrecorded species in South Korea. This study succeeded in detecting cryptic or rare species with one seawater collection, which can be used to determine their unexplored habitat. Therefore, we conclude that monitoring using eDNA is more efficient than visual surveys for detecting rare or cryptic ascidian species. We also suggest that, when combined with traditional monitoring methods, it could be a tool to complement ascidian fauna studies.
Collapse
Affiliation(s)
- Seongjun Bae
- Department of Ecology and Conservation, National Marine Biodiversity Institute of Korea, Seocheon, 33662, Republic of Korea; Department of Ocean Environmental Sciences, College of Natural Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Philjae Kim
- Department of Biodiversity, National Marine Biodiversity Institute of Korea, Seocheon, 33662, Republic of Korea; Department of Marine Biotechnology, Kunsan National University, Kunsan, 54150, Republic of Korea
| | - Chang-Ho Yi
- Department of Ecology and Conservation, National Marine Biodiversity Institute of Korea, Seocheon, 33662, Republic of Korea.
| |
Collapse
|
12
|
Martoni F, Smith RL, Piper AM, Nancarrow N, Aftab M, Trebicki P, Kimber RBE, Rodoni BC, Blacket MJ. Non-destructive insect metabarcoding as a surveillance tool for the Australian grains industry: a first trial for the iMapPESTS smart trap. METABARCODING AND METAGENOMICS 2023. [DOI: 10.3897/mbmg.7.95650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Surveillance and long-term monitoring of insect pest populations are of paramount importance to limit dispersal and inform pest management. Molecular methods have been employed in diagnostics, surveillance and monitoring for the past few decades, often paired with more traditional techniques relying on morphological examinations. Within this context, the ‘iMapPESTS: Sentinel Surveillance for Agriculture’ project was conceptualised to enhance on-farm pest management decision-making via development and deployment of smart traps, able to collect insects, as well as recording associated environmental data. Here, we compared an iMapPESTS ‘Sentinel’ smart trap to an alternative suction trap over a 10-week period. We used a non-destructive insect metabarcoding approach complemented by insect morphological diagnostics to assess and compare aphid species presence and diversity across trap samples and time. Furthermore, we paired this with environmental data recorded throughout the sampling period. This methodology recorded a total of 497 different taxa from 70 traps over a 10-week period in the grain-growing region in western Victoria. This included not only the 14 aphid target species, but an additional 12 aphid species, including a new record for Victoria. Ultimately, with more than 450 bycatch species detected, this highlighted the value of insect metabarcoding, not only for pest surveillance, but also at a broader ecosystem level, with potential applications in integrated pest management and biocontrol.
Collapse
|
13
|
Kestel JH, Field DL, Bateman PW, White NE, Allentoft ME, Hopkins AJM, Gibberd M, Nevill P. Applications of environmental DNA (eDNA) in agricultural systems: Current uses, limitations and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157556. [PMID: 35882340 DOI: 10.1016/j.scitotenv.2022.157556] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/29/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Global food production, food supply chains and food security are increasingly stressed by human population growth and loss of arable land, becoming more vulnerable to anthropogenic and environmental perturbations. Numerous mutualistic and antagonistic species are interconnected with the cultivation of crops and livestock and these can be challenging to identify on the large scales of food production systems. Accurate identifications to capture this diversity and rapid scalable monitoring are necessary to identify emerging threats (i.e. pests and pathogens), inform on ecosystem health (i.e. soil and pollinator diversity), and provide evidence for new management practices (i.e. fertiliser and pesticide applications). Increasingly, environmental DNA (eDNA) is providing rapid and accurate classifications for specific organisms and entire species assemblages in substrates ranging from soil to air. Here, we aim to discuss how eDNA is being used for monitoring of agricultural ecosystems, what current limitations exist, and how these could be managed to expand applications into the future. In a systematic review we identify that eDNA-based monitoring in food production systems accounts for only 4 % of all eDNA studies. We found that the majority of these eDNA studies target soil and plant substrates (60 %), predominantly to identify microbes and insects (60 %) and are biased towards Europe (42 %). While eDNA-based monitoring studies are uncommon in many of the world's food production systems, the trend is most pronounced in emerging economies often where food security is most at risk. We suggest that the biggest limitations to eDNA for agriculture are false negatives resulting from DNA degradation and assay biases, as well as incomplete databases and the interpretation of abundance data. These require in silico, in vitro, and in vivo approaches to carefully design, test and apply eDNA monitoring for reliable and accurate taxonomic identifications. We explore future opportunities for eDNA research which could further develop this useful tool for food production system monitoring in both emerging and developed economies, hopefully improving monitoring, and ultimately food security.
Collapse
Affiliation(s)
- Joshua H Kestel
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia; Molecular Ecology and Evolution Group (MEEG), School of Science, Edith Cowan University, Joondalup 6027, Australia.
| | - David L Field
- Molecular Ecology and Evolution Group (MEEG), School of Science, Edith Cowan University, Joondalup 6027, Australia
| | - Philip W Bateman
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia; Behavioural Ecology Laboratory, School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia
| | - Nicole E White
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia
| | - Morten E Allentoft
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia; Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, Denmark
| | - Anna J M Hopkins
- Molecular Ecology and Evolution Group (MEEG), School of Science, Edith Cowan University, Joondalup 6027, Australia
| | - Mark Gibberd
- Centre for Crop Disease Management (CCDM), School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia
| | - Paul Nevill
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia
| |
Collapse
|
14
|
Fernandes K, Prendergast K, Bateman PW, Saunders BJ, Gibberd M, Bunce M, Nevill P. DNA metabarcoding identifies urban foraging patterns of oligolectic and polylectic cavity-nesting bees. Oecologia 2022; 200:323-337. [PMID: 36098815 PMCID: PMC9675668 DOI: 10.1007/s00442-022-05254-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 09/01/2022] [Indexed: 12/03/2022]
Abstract
Urbanisation modifies natural landscapes resulting in built-up space that is covered by buildings or hard surfaces and managed green spaces that often substitute native plant species with exotics. Some native bee species have been able to adapt to urban environments, foraging and reproducing in these highly modified areas. However, little is known on how the foraging ecology of native bees is affected by urbanised environments, and whether impacts vary among species with different degrees of specialisation for pollen collection. Here, we aim to investigate the responses of native bee foraging behaviour to urbanisation, using DNA metabarcoding to identify the resources within nesting tubes. We targeted oligolectic (specialist) and polylectic (generalist) cavity-nesting bee species in residential gardens and remnant bushland habitats. We were able to identify 40 families, 50 genera, and 23 species of plants, including exotic species, from the contents of nesting tubes. Oligolectic bee species had higher diversity of plant pollen in their nesting tubes in residential gardens compared to bushland habitats, along with significantly different forage composition between the two habitats. This result implies a greater degree of forage flexibility for oligolectic bee species than previously thought. In contrast, the diversity and composition of plant forage in polylectic bee nesting tubes did not vary between the two habitat types. Our results suggest a complex response of cavity-nesting bees to urbanisation and support the need for additional research to understand how the shifts in foraging resources impact overall bee health.
Collapse
Affiliation(s)
- Kristen Fernandes
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia. .,Section for Molecular Ecology and Evolution, Faculty of Health and Medical Sciences, Globe Institute, University of Copenhagen, Copenhagen K, Denmark. .,Food Agility CRC Ltd, 175 Pitt St, Sydney, NSW, 2000, Australia.
| | - Kit Prendergast
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Philip W Bateman
- Behavioural Ecology Lab, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia.,MBioMe - Mine Site Biomonitoring using eDNA Research Group, Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Benjamin J Saunders
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Mark Gibberd
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Michael Bunce
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia.,The Institute of Environmental Science and Research (ESR), Kenepuru, Porirua, 5022, New Zealand
| | - Paul Nevill
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia.,MBioMe - Mine Site Biomonitoring using eDNA Research Group, Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| |
Collapse
|
15
|
Environmental DNA Metabarcoding: A Novel Contrivance for Documenting Terrestrial Biodiversity. BIOLOGY 2022; 11:biology11091297. [PMID: 36138776 PMCID: PMC9495823 DOI: 10.3390/biology11091297] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 12/20/2022]
Abstract
Simple Summary The innovative concept of environmental DNA has found its foot in aquatic ecosystems but remains an unexplored area of research concerning terrestrial ecosystems. When making management choices, it is important to understand the rate of eDNA degradation, the persistence of DNA in terrestrial habitats, and the variables affecting eDNA detectability for a target species. Therefore an attempt has been made to provide comprehensive information regarding the exertion of eDNA in terrestrial ecosystems from 2012 to 2022. The information provided will assist ecologists, researchers and decision-makers in developing a holistic understanding of environmental DNA and its applicability as a biodiversity monitoring contrivance. Abstract The dearth of cardinal data on species presence, dispersion, abundance, and habitat prerequisites, besides the threats impeded by escalating human pressure has enormously affected biodiversity conservation. The innovative concept of eDNA, has been introduced as a way of overcoming many of the difficulties of rigorous conventional investigations, and is hence becoming a prominent and novel method for assessing biodiversity. Recently the demand for eDNA in ecology and conservation has expanded exceedingly, despite the lack of coordinated development in appreciation of its strengths and limitations. Therefore it is pertinent and indispensable to evaluate the extent and significance of eDNA-based investigations in terrestrial habitats and to classify and recognize the critical considerations that need to be accounted before using such an approach. Presented here is a brief review to summarize the prospects and constraints of utilizing eDNA in terrestrial ecosystems, which has not been explored and exploited in greater depth and detail in such ecosystems. Given these obstacles, we focused primarily on compiling the most current research findings from journals accessible in eDNA analysis that discuss terrestrial ecosystems (2012–2022). In the current evaluation, we also review advancements and limitations related to the eDNA technique.
Collapse
|
16
|
Banerjee P, Stewart KA, Dey G, Antognazza CM, Sharma RK, Maity JP, Saha S, Doi H, de Vere N, Chan MWY, Lin PY, Chao HC, Chen CY. Environmental DNA analysis as an emerging non-destructive method for plant biodiversity monitoring: a review. AOB PLANTS 2022; 14:plac031. [PMID: 35990516 PMCID: PMC9389569 DOI: 10.1093/aobpla/plac031] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Environmental DNA (eDNA) analysis has recently transformed and modernized biodiversity monitoring. The accurate detection, and to some extent quantification, of organisms (individuals/populations/communities) in environmental samples is galvanizing eDNA as a successful cost and time-efficient biomonitoring technique. Currently, eDNA's application to plants remains more limited in implementation and scope compared to animals and microorganisms. This review evaluates the development of eDNA-based methods for (vascular) plants, comparing its performance and power of detection with that of traditional methods, to critically evaluate and advise best-practices needed to innovate plant biomonitoring. Recent advancements, standardization and field applications of eDNA-based methods have provided enough scope to utilize it in conservation biology for numerous organisms. Despite our review demonstrating only 13% of all eDNA studies focus on plant taxa to date, eDNA has considerable environmental DNA has considerable potential for plants, where successful detection of invasive, endangered and rare species, and community-level interpretations have provided proof-of-concept. Monitoring methods using eDNA were found to be equal or more effective than traditional methods; however, species detection increased when both methods were coupled. Additionally, eDNA methods were found to be effective in studying species interactions, community dynamics and even effects of anthropogenic pressure. Currently, elimination of potential obstacles (e.g. lack of relevant DNA reference libraries for plants) and the development of user-friendly protocols would greatly contribute to comprehensive eDNA-based plant monitoring programs. This is particularly needed in the data-depauperate tropics and for some plant groups (e.g., Bryophytes and Pteridophytes). We further advocate to coupling traditional methods with eDNA approaches, as the former is often cheaper and methodologically more straightforward, while the latter offers non-destructive approaches with increased discrimination ability. Furthermore, to make a global platform for eDNA, governmental and academic-industrial collaborations are essential to make eDNA surveys a broadly adopted and implemented, rapid, cost-effective and non-invasive plant monitoring approach.
Collapse
Affiliation(s)
- Pritam Banerjee
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Kathryn A Stewart
- Institute of Environmental Science, Leiden University, 2333 CC Leiden, The Netherlands
| | - Gobinda Dey
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Caterina M Antognazza
- Department of Theoretical and Applied Science, University of Insubria, Via J.H. Dunant, 3, 21100 Varese, Italy
| | - Raju Kumar Sharma
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Jyoti Prakash Maity
- Department of Chemistry, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Santanu Saha
- Post Graduate Department of Botany, Bidhannagar College, Salt Lake City, Kolkata 700064, India
| | - Hideyuki Doi
- Graduate School of Information Science, University of Hyogo, 7-1-28 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Natasha de Vere
- Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen K
| | - Michael W Y Chan
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Pin-Yun Lin
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Hung-Chun Chao
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | | |
Collapse
|
17
|
Diverse Host Plants of the First Instars of the Invasive Lycorma delicatula: Insights from eDNA Metabarcoding. INSECTS 2022; 13:insects13060534. [PMID: 35735872 PMCID: PMC9225603 DOI: 10.3390/insects13060534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022]
Abstract
Identification of host plants of the invasive spotted lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae), has been the focus of many studies. While the adults and late nymphs are relatively easy to observe on plants and to use for molecular gut-content analysis, studying the early instars is more challenging. This study is the continuation of our ongoing efforts to determine the host range for each developmental stage of L. delicatula. In the present study, we focused exclusively on the first nymphal instars, and we used a novel approach, utilizing "bulk" DNA extracts for DNA metabarcoding of nymphal gut contents, to identify all the detectable plants that the nymphs had ingested prior to being collected. We were able to obtain high-quality amplicons (up to 406 bp) of a portion of the rbcL gene and detect 27 unique ingested plant species belonging to 17 families. Both native and introduced plants with the prevalence of trees and grasses were present among the ingested plants. We also identified 13 novel host plants that have not been previously reported for L. delicatula on the U.S. territory. The results from our study have important applications for developing effective programs on early monitoring of invasive L. delicatula.
Collapse
|
18
|
Ranasinghe UGSL, Eberle J, Thormann J, Bohacz C, Benjamin SP, Ahrens D. Multiple species delimitation approaches with
COI
barcodes poorly fit each other and morphospecies – An integrative taxonomy case of Sri Lankan Sericini chafers (Coleoptera: Scarabaeidae). Ecol Evol 2022; 12:e8942. [PMID: 35600695 PMCID: PMC9120212 DOI: 10.1002/ece3.8942] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/14/2022] [Accepted: 05/04/2022] [Indexed: 11/07/2022] Open
Abstract
DNA taxonomy including barcoding and metabarcoding is widely used to explore the diversity in biodiversity hotspots. In most of these hotspot areas, chafers are represented by a multitude of species, which are well defined by the complex shape of male genitalia. Here, we explore how well COI barcode data reflect morphological species entities and thus their usability for accelerated species inventorization. We conducted dedicated field surveys in Sri Lanka to collect the species‐rich and highly endemic Sericini chafers (Coleoptera: Scarabaeidae). Congruence among results of a series of protocols for de novo species delimitation and with morphology‐based species identifications was investigated. Different delimitation methods, such as the Poisson tree processes (PTP) model, Statistical Parsimony Analysis (TCS), Automatic Barcode Gap Discovery (ABGD), Assemble Species by Automatic Partitioning (ASAP), and Barcode Index Number (BIN) assignments, resulted in different numbers of molecular operational taxonomic units (MOTUs). All methods showed both over‐splitting and lumping of morphologically identified species. Only 18 of the observed 45 morphospecies perfectly matched MOTUs from all methods. The congruence of delimitation between MOTUs and morphospecies expressed by the match ratio was low, ranging from 0.57 to 0.67. TCS and multirate PTP (mPTP) showed the highest match ratio, while (BIN) assignment resulted in the lowest match ratio and most splitting events. mPTP lumped more species than any other method. Principal coordinate analysis (PCoA) on a match ratio‐based distance matrix revealed incongruent outcomes of multiple DNA delimitation methods, although applied to the same data. Our results confirm that COI barcode data alone are unlikely to correctly delimit all species, in particular, when using only a single delimitation approach. We encourage the integration of various approaches and data, particularly morphology, to validate species boundaries.
Collapse
Affiliation(s)
| | - Jonas Eberle
- Zoological Research Museum A. Koenig Leibniz Institute for the Analysis of Biodiversity Change (LIB) Bonn Germany
- University of Salzburg Salzburg Austria
| | - Jana Thormann
- Zoological Research Museum A. Koenig Leibniz Institute for the Analysis of Biodiversity Change (LIB) Bonn Germany
| | - Claudia Bohacz
- Zoological Research Museum A. Koenig Leibniz Institute for the Analysis of Biodiversity Change (LIB) Bonn Germany
| | - Suresh P. Benjamin
- Zoological Research Museum A. Koenig Leibniz Institute for the Analysis of Biodiversity Change (LIB) Bonn Germany
- National Institute of Fundamental Studies Kandy Sri Lanka
| | - Dirk Ahrens
- Zoological Research Museum A. Koenig Leibniz Institute for the Analysis of Biodiversity Change (LIB) Bonn Germany
| |
Collapse
|
19
|
Saccò M, Guzik MT, van der Heyde M, Nevill P, Cooper SJB, Austin AD, Coates PJ, Allentoft ME, White NE. eDNA in subterranean ecosystems: Applications, technical aspects, and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153223. [PMID: 35063529 DOI: 10.1016/j.scitotenv.2022.153223] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/09/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Monitoring of biota is pivotal for the assessment and conservation of ecosystems. Environments worldwide are being continuously and increasingly exposed to multiple adverse impacts, and the accuracy and reliability of the biomonitoring tools that can be employed shape not only the present, but more importantly, the future of entire habitats. The analysis of environmental DNA (eDNA) metabarcoding data provides a quick, affordable, and reliable molecular approach for biodiversity assessments. However, while extensively employed in aquatic and terrestrial surface environments, eDNA-based studies targeting subterranean ecosystems are still uncommon due to the lack of accessibility and the cryptic nature of these environments and their species. Recent advances in genetic and genomic analyses have established a promising framework for shedding new light on subterranean biodiversity and ecology. To address current knowledge and the future use of eDNA methods in groundwaters and caves, this review explores conceptual and technical aspects of the application and its potential in subterranean systems. We briefly introduce subterranean biota and describe the most used traditional sampling techniques. Next, eDNA characteristics, application, and limitations in the subsurface environment are outlined. Last, we provide suggestions on how to overcome caveats and delineate some of the research avenues that will likely shape this field in the near future. We advocate that eDNA analyses, when carefully conducted and ideally combined with conventional sampling techniques, will substantially increase understanding and enable crucial expansion of subterranean community characterisation. Given the importance of groundwater and cave ecosystems for nature and humans, eDNA can bring to the surface essential insights, such as study of ecosystem assemblages and rare species detection, which are critical for the preservation of life below, as well as above, the ground.
Collapse
Affiliation(s)
- Mattia Saccò
- Subterranean Research and Groundwater Ecology (SuRGE) Group, Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia.
| | - Michelle T Guzik
- Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, The University of Adelaide, Adelaide 5005, SA, Australia
| | - Mieke van der Heyde
- Subterranean Research and Groundwater Ecology (SuRGE) Group, Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia
| | - Paul Nevill
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia; ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia
| | - Steven J B Cooper
- Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, The University of Adelaide, Adelaide 5005, SA, Australia; Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide 5000, SA, Australia
| | - Andrew D Austin
- Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, The University of Adelaide, Adelaide 5005, SA, Australia
| | - Peterson J Coates
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, 1 Challenger Drive, 1006, Dartmouth, Nova Scotia B2Y 4A2, Canada
| | - Morten E Allentoft
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia; Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, Denmark
| | - Nicole E White
- Subterranean Research and Groundwater Ecology (SuRGE) Group, Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia
| |
Collapse
|
20
|
van der Heyde M, Bunce M, Dixon KW, Fernandes K, Majer J, Wardell-Johnson G, White NE, Nevill P. Evaluating restoration trajectories using DNA metabarcoding of ground-dwelling and airborne invertebrates and associated plant communities. Mol Ecol 2022; 31:2172-2188. [PMID: 35092102 PMCID: PMC9304231 DOI: 10.1111/mec.16375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 12/05/2021] [Accepted: 01/19/2022] [Indexed: 11/26/2022]
Abstract
Invertebrates are important for restoration processes as they are key drivers of many landscape‐scale ecosystem functions; including pollination, nutrient cycling and soil formation. However, invertebrates are often overlooked in restoration monitoring because they are highly diverse, poorly described, and time‐consuming to survey, and require increasingly scarce taxonomic expertise to enable identification. DNA metabarcoding is a relatively new tool for rapid survey that is able to address some of these concerns, and provide information about the taxa with which invertebrates are interacting via food webs and habitat. Here, we evaluate how invertebrate communities may be used to determine ecosystem trajectories during restoration. We collected ground‐dwelling and airborne invertebrates across chronosequences of mine‐site restoration in three ecologically disparate locations in Western Australia and identified invertebrate and plant communities using DNA metabarcoding. Ground‐dwelling invertebrates showed the clearest restoration signals, with communities becoming more similar to reference communities over time. These patterns were weaker in airborne invertebrates, which have higher dispersal abilities and therefore less local fidelity to environmental conditions. Although we detected directional changes in community composition indicative of invertebrate recovery, patterns observed were inconsistent between study locations. The inclusion of plant assays allowed identification of plant species, as well as potential food sources and habitat. We demonstrate that DNA metabarcoding of invertebrate communities can be used to evaluate restoration trajectories. Testing and incorporating new monitoring techniques such as DNA metabarcoding is critical to improving restoration outcomes.
Collapse
Affiliation(s)
- M van der Heyde
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Bentley, GPP Box U1987, Perth, Western Australia, 6845, Australia.,Trace and Environmental DNA Laboratory, School of Life and Molecular Sciences, Curtin University, GPP Box U1987, Perth, Western Australia, 6845, Australia
| | - M Bunce
- Trace and Environmental DNA Laboratory, School of Life and Molecular Sciences, Curtin University, GPP Box U1987, Perth, Western Australia, 6845, Australia.,Institute of Environmental Science and Research (ESR), Kenepuru, Porirua, 5022, New Zealand
| | - K W Dixon
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Bentley, GPP Box U1987, Perth, Western Australia, 6845, Australia
| | - K Fernandes
- Trace and Environmental DNA Laboratory, School of Life and Molecular Sciences, Curtin University, GPP Box U1987, Perth, Western Australia, 6845, Australia
| | - J Majer
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Bentley, GPP Box U1987, Perth, Western Australia, 6845, Australia
| | - G Wardell-Johnson
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Bentley, GPP Box U1987, Perth, Western Australia, 6845, Australia
| | - N E White
- Trace and Environmental DNA Laboratory, School of Life and Molecular Sciences, Curtin University, GPP Box U1987, Perth, Western Australia, 6845, Australia
| | - P Nevill
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Bentley, GPP Box U1987, Perth, Western Australia, 6845, Australia.,Trace and Environmental DNA Laboratory, School of Life and Molecular Sciences, Curtin University, GPP Box U1987, Perth, Western Australia, 6845, Australia
| |
Collapse
|
21
|
Lem AJ, Liddicoat C, Bissett A, Cando‐Dumancela C, Gardner MG, Peddle SD, Watson CD, Breed MF. Does revegetation cause soil microbiota recovery? Evidence from revisiting a revegetation chronosequence six years after initial sampling. Restor Ecol 2022. [DOI: 10.1111/rec.13635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alfie J. Lem
- College of Science and Engineering Flinders University Bedford Park SA 5042 Australia
| | - Craig Liddicoat
- College of Science and Engineering Flinders University Bedford Park SA 5042 Australia
- School of Public Health The University of Adelaide, SA, 5005 Australia
| | - Andrew Bissett
- CSIRO Oceans and Atmosphere Hobart Tasmania 7001 Australia
| | | | - Michael G. Gardner
- College of Science and Engineering Flinders University Bedford Park SA 5042 Australia
- Evolutionary Biology Unit, South Australian Museum, North Terrace Adelaide SA 5000 Australia
| | - Shawn D. Peddle
- College of Science and Engineering Flinders University Bedford Park SA 5042 Australia
| | - Carl D. Watson
- College of Science and Engineering Flinders University Bedford Park SA 5042 Australia
| | - Martin F. Breed
- College of Science and Engineering Flinders University Bedford Park SA 5042 Australia
| |
Collapse
|
22
|
Burgess T, Edwards J, Drenth A, Massenbauer T, Cunnington J, Mostowfizadeh-Ghalamfarsa R, Dinh Q, Liew E, White D, Scott P, Barber P, O’Gara E, Ciampini J, McDougall K, Tan Y. Current status of Phytophthora in Australia. PERSOONIA 2021; 47:151-177. [PMID: 37693794 PMCID: PMC10486634 DOI: 10.3767/persoonia.2021.47.05] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/26/2021] [Indexed: 11/25/2022]
Abstract
Among the most economically relevant and environmentally devastating diseases globally are those caused by Phytophthora species. In Australia, production losses in agriculture and forestry result from several well-known cosmopolitan Phytophthora species and infestation of natural ecosystems by Phytophthora cinnamomi have caused irretrievable loss to biodiversity especially in proteaceous dominated heathlands. For this review, all available records of Phytophthora in Australia were collated and curated, resulting in a database of 7 869 records, of which 2 957 have associated molecular data. Australian databases hold records for 99 species, of which 20 are undescribed. Eight species have no records linked to molecular data, and their presence in Australia is considered doubtful. The 99 species reside in 10 of the 12 clades recognised within the complete phylogeny of Phytophthora. The review includes discussion on each of these species' status and additional information provided for another 29 species of concern. The first species reported in Australia in 1900 was Phytophthora infestans. By 2000, 27 species were known, predominantly from agriculture. The significant increase in species reported in the subsequent 20 years has coincided with extensive surveys in natural ecosystems coupled with molecular taxonomy and the recognition of numerous new phylogenetically distinct but morphologically similar species. Routine and targeted surveys within Australian natural ecosystems have resulted in the description of 27 species since 2009. Due to the new species descriptions over the last 20 years, many older records have been reclassified based on molecular identification. The distribution of records is skewed toward regions with considerable activity in high productivity agriculture, horticulture and forestry, and native vegetation at risk from P. cinnamomi. Native and exotic hosts of different Phytophthora species are found throughout the phylogeny; however, species from clades 1, 7 and 8 are more likely to be associated with exotic hosts. One of the most difficult challenges to overcome when establishing a pest status is a lack of reliable data on the current state of a species in any given country or location. The database compiled here for Australia and the information provided for each species overcomes this challenge. This review will aid federal and state governments in risk assessments and trade negotiations by providing a comprehensive resource on the current status of Phytophthora species in Australia. Citation: Burgess TI, Edwards J, Drenth A, et al. 2021. Current status of Phytophthora in Australia. Persoonia 47: 151-177. https://doi.org/10.3767/persoonia.2021.47.05.
Collapse
Affiliation(s)
- T.I. Burgess
- Phytophthora Science and Management, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - J. Edwards
- Agriculture Victoria, Department of Jobs, Precincts and Regions, Bundoora, VIC 3083, Australia; La Trobe University, Bundoora, VIC 3083, Australia
| | - A. Drenth
- Centre for Horticultural Science, The University of Queensland, Ecosciences Precinct, Dutton Park QLD, 4102, Brisbane, Australia
| | - T. Massenbauer
- TiloMass Environmental Services, PO Box 1148, Esperance WA, 6450, Australia
| | - J. Cunnington
- Department of Agriculture, Water and the Environment, 7 London Circuit, Canberra ACT 2600 Australia
| | | | - Q. Dinh
- Agriculture Victoria, Department of Jobs, Precincts and Regions, Bundoora, VIC 3083, Australia; La Trobe University, Bundoora, VIC 3083, Australia
| | - E.C.Y. Liew
- Research Centre for Ecosystem Resilience, Royal Botanic Gardens and Domain Trust, Mrs Macquaries Rd, Sydney NSW 2000, Australia
| | - D. White
- Phytophthora Science and Management, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - P. Scott
- Phytophthora Science and Management, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
- Plant Pathologist, DPIRD Diagnostics and Laboratory Services, Sustainability and Biosecurity, Department of Primary Industries and Regional Development, 3 Baron-Hay Court, Kennsington WA 6151, Australia
| | - P.A. Barber
- Phytophthora Science and Management, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
- Arbor Carbon P/L, ROTA Compound off Discovery Way, Murdoch University, Murdoch 6150, Australia
| | - E. O’Gara
- Department of Biodiversity, Conservation and Attractions, 17 Dick Perry Ave, Kensington WA 6151, Australia
| | - J. Ciampini
- Department of Biodiversity, Conservation and Attractions, 17 Dick Perry Ave, Kensington WA 6151, Australia
| | - K.L. McDougall
- Department of Ecology, Environment and Evolution, School of Life Sciences, La Trobe University, Bundoora VIC 3083, Australia
| | - Y.P. Tan
- Department of Agriculture and Fisheries, Ecosciences Precinct, Dutton Park QLD 4102; Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| |
Collapse
|
23
|
Banerjee P, Dey G, Antognazza CM, Sharma RK, Maity JP, Chan MWY, Huang YH, Lin PY, Chao HC, Lu CM, Chen CY. Reinforcement of Environmental DNA Based Methods ( Sensu Stricto) in Biodiversity Monitoring and Conservation: A Review. BIOLOGY 2021; 10:biology10121223. [PMID: 34943137 PMCID: PMC8698464 DOI: 10.3390/biology10121223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 12/02/2022]
Abstract
Simple Summary Worldwide biodiversity loss points to a necessity of upgrading to a fast and effective monitoring method that can provide quick conservation action. Newly developed environmental DNA (eDNA) based method found to be more cost-effective, non-invasive, quick, and accurate than traditional monitoring (spot identification, camera trapping). Although the eDNA based methods are proliferating rapidly, as a newly developed branch, it needs more standardization and practitioner adaptation. The present study aims to evaluate the eDNA based methods, and their potential achievements in biodiversity monitoring, and conservation for quick practitioners’ adaption. The investigation shows that the eDNA technique is applicable largely in (i) early detection of invasive species, (ii) species detection for conservation, (iii) community-level biodiversity monitoring, (iv) ecosystem health monitoring, (v) study on trophic interactions, etc. Thus, the eDNA technique shows a great promise with its high accuracy and authenticity, and will be applicable alone or alongside other methods in the near future. Abstract Recently developed non-invasive environmental DNA-based (eDNA) techniques have enlightened modern conservation biology, propelling the monitoring/management of natural populations to a more effective and efficient approach, compared to traditional surveys. However, due to rapid-expansion of eDNA, confusion in terminology and collection/analytical pipelines can potentially jeopardize research progression, methodological standardization, and practitioner adoption in several ways. Present investigation reflects the developmental progress of eDNA (sensu stricto) including highlighting the successful case studies in conservation management. The eDNA technique is successfully relevant in several areas of conservation research (invasive/conserve species detection) with a high accuracy and authentication, which gradually upgrading modern conservation approaches. The eDNA technique related bioinformatics (e.g., taxon-specific-primers MiFish, MiBird, etc.), sample-dependent methodology, and advancement of sequencing technology (e.g., oxford-nanopore-sequencing) are helping in research progress. The investigation shows that the eDNA technique is applicable largely in (i) early detection of invasive species, (ii) species detection for conservation, (iii) community level biodiversity monitoring, (iv) ecosystem health monitoring, (v) study on trophic interactions, etc. Thus, the eDNA technique with a high accuracy and authentication can be applicable alone or coupled with traditional surveys in conservation biology. However, a comprehensive eDNA-based monitoring program (ecosystem modeling and function) is essential on a global scale for future management decisions.
Collapse
Affiliation(s)
- Pritam Banerjee
- Department of Biomedical Science, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, Jiayi 62102, Taiwan; (P.B.); (G.D.); (M.W.Y.C.)
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, Jiayi 62102, Taiwan; (R.K.S.); (J.P.M.); (Y.-H.H.); (H.-C.C.)
| | - Gobinda Dey
- Department of Biomedical Science, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, Jiayi 62102, Taiwan; (P.B.); (G.D.); (M.W.Y.C.)
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, Jiayi 62102, Taiwan; (R.K.S.); (J.P.M.); (Y.-H.H.); (H.-C.C.)
| | - Caterina M. Antognazza
- Department of Theoretical and Applied Science, University of Insubria, Via J.H. Dunant, 3, 21100 Varese, Italy;
| | - Raju Kumar Sharma
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, Jiayi 62102, Taiwan; (R.K.S.); (J.P.M.); (Y.-H.H.); (H.-C.C.)
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, Jiayi 62102, Taiwan;
| | - Jyoti Prakash Maity
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, Jiayi 62102, Taiwan; (R.K.S.); (J.P.M.); (Y.-H.H.); (H.-C.C.)
- Department of Chemistry, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar 751024, India
| | - Michael W. Y. Chan
- Department of Biomedical Science, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, Jiayi 62102, Taiwan; (P.B.); (G.D.); (M.W.Y.C.)
| | - Yi-Hsun Huang
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, Jiayi 62102, Taiwan; (R.K.S.); (J.P.M.); (Y.-H.H.); (H.-C.C.)
| | - Pin-Yun Lin
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, Jiayi 62102, Taiwan;
| | - Hung-Chun Chao
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, Jiayi 62102, Taiwan; (R.K.S.); (J.P.M.); (Y.-H.H.); (H.-C.C.)
| | - Chung-Ming Lu
- Department of Chemical Engineering, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County, Jiayi 62102, Taiwan;
| | - Chien-Yen Chen
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, Jiayi 62102, Taiwan; (R.K.S.); (J.P.M.); (Y.-H.H.); (H.-C.C.)
- Correspondence: or ; Tel.: +886-5-2720411 (ext. 66220); Fax: +886-5-2720807
| |
Collapse
|
24
|
Barnes MA, Klymus K, Yamanaka H. Editorial: Environmental DNA Innovations for Conservation. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.785077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
25
|
Massey AL, Bronzoni RVDM, da Silva DJF, Allen JM, de Lázari PR, Dos Santos-Filho M, Canale GR, Bernardo CSS, Peres CA, Levi T. Invertebrates for vertebrate biodiversity monitoring: Comparisons using three insect taxa as iDNA samplers. Mol Ecol Resour 2021; 22:962-977. [PMID: 34601818 DOI: 10.1111/1755-0998.13525] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/17/2021] [Accepted: 09/29/2021] [Indexed: 11/30/2022]
Abstract
Metabarcoding of environmental DNA (eDNA) is now widely used to build diversity profiles from DNA that has been shed by species into the environment. There is substantial interest in the expansion of eDNA approaches for improved detection of terrestrial vertebrates using invertebrate-derived DNA (iDNA) in which hematophagous, sarcophagous, and coprophagous invertebrates sample vertebrate blood, carrion, or faeces. Here, we used metabarcoding and multiple iDNA samplers (carrion flies, sandflies, and mosquitos) collected from 39 forested sites in the southern Amazon to profile gamma and alpha diversity. Our main objectives were to (1) compare diversity found with iDNA to camera trapping, which is the conventional method of vertebrate diversity surveillance; and (2) compare each of the iDNA samplers to assess the effectiveness, efficiency, and potential biases associated with each sampler. In total, we collected and analysed 1759 carrion flies, 48,686 sandflies, and 4776 mosquitos. Carrion flies revealed the greatest total vertebrate species richness at the landscape level, despite the least amount of sampling effort and the fewest number of individuals captured for metabarcoding, followed by sandflies. Camera traps had the highest median species richness at the site-level but showed strong bias towards carnivore and ungulate species and missed much of the diversity described by iDNA methods. Mosquitos showed a strong feeding preference for humans as did sandflies for armadillos, thus presenting potential utility to further study related to host-vector interactions.
Collapse
Affiliation(s)
- Aimee L Massey
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon, USA
| | | | | | - Jennifer M Allen
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Patrick Ricardo de Lázari
- Centro de Estudos de Limnologia e Biodiversidade e Etnobiologia do Pantanal, Universidade do Estado de Mato Grosso, Cáceres, Brazil
| | - Manoel Dos Santos-Filho
- Centro de Estudos de Limnologia e Biodiversidade e Etnobiologia do Pantanal, Universidade do Estado de Mato Grosso, Cáceres, Brazil
| | - Gustavo Rodrigues Canale
- Instituto de Ciências Naturais, Humanas e Sociais, Universidade Federal de Mato Grosso, Sinop, Brazil
| | | | - Carlos Augusto Peres
- School of Environmental Sciences, University of East Anglia, Norwich, UK.,Instituto Juruá, Manaus, Brazil
| | - Taal Levi
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
26
|
Drinkwater R, Williamson J, Clare EL, Chung AYC, Rossiter SJ, Slade E. Dung beetles as samplers of mammals in Malaysian Borneo-a test of high throughput metabarcoding of iDNA. PeerJ 2021; 9:e11897. [PMID: 34447624 PMCID: PMC8366524 DOI: 10.7717/peerj.11897] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/13/2021] [Indexed: 11/20/2022] Open
Abstract
Invertebrate-derived DNA (iDNA) sampling in biodiversity surveys is becoming increasingly widespread, with most terrestrial studies relying on DNA derived from the gut contents of blood-feeding invertebrates, such as leeches and mosquitoes. Dung beetles (superfamily Scarabaeoidea) primarily feed on the faecal matter of terrestrial vertebrates and offer several potential benefits over blood-feeding invertebrates as samplers of vertebrate DNA. Importantly, these beetles can be easily captured in large numbers using simple, inexpensive baited traps, are globally distributed, and occur in a wide range of habitats. To build on the few existing studies demonstrating the potential of dung beetles as sources of mammalian DNA, we subjected the large-bodied, Bornean dung beetle (Catharsius renaudpauliani) to a controlled feeding experiment. We analysed DNA from gut contents at different times after feeding using qPCR techniques. Here, we first describe the window of DNA persistence within a dung beetle digestive tract. We found that the ability to successfully amplify cattle DNA decayed over relatively short time periods, with DNA copy number decreasing by two orders of magnitude in just 6 h. In addition, we sampled communities of dung beetles from a lowland tropical rainforest in Sabah, Malaysia, in order to test whether it is possible to identify vertebrate sequences from dung beetle iDNA. We sequenced both the gut contents from large dung beetle species, as well as whole communities of smaller beetles. We successfully identified six mammalian species from our samples, including the bearded pig (Sus barbatus) and the sambar deer (Rusa unicolor)—both vulnerable species on the IUCN red list. Our results represent the first use of dung beetle iDNA to sample Southeast Asian vertebrate fauna, and highlight the potential for dung beetle iDNA to be used in future biodiversity monitoring surveys.
Collapse
Affiliation(s)
- Rosie Drinkwater
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Joseph Williamson
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Elizabeth L Clare
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Arthur Y C Chung
- Sabah Forestry Department, Forest Research Centre, Sandakan, Malaysia
| | - Stephen J Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Eleanor Slade
- Asian School of the Environment, Nanyang Technological University, Singapore City, Singapore.,Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
27
|
Molecular diversity of Uzbekistan's fishes assessed with DNA barcoding. Sci Rep 2021; 11:16894. [PMID: 34413445 PMCID: PMC8376971 DOI: 10.1038/s41598-021-96487-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/31/2021] [Indexed: 11/25/2022] Open
Abstract
Uzbekistan is one of two doubly landlocked countries in the world, where all rivers are endorheic basins. Although fish diversity is relatively poor in Uzbekistan, the fish fauna of the region has not yet been fully studied. The aim of this study was to establish a reliable barcoding reference database for fish in Uzbekistan. A total of 666 specimens, belonging to 59 species within 39 genera, 17 families, and 9 orders, were subjected to polymerase chain reaction amplification in the barcode region and sequenced. The length of the 666 barcodes was 682 bp. The average K2P distances within species, genera, and families were 0.22%, 6.33%, and 16.46%, respectively. The average interspecific distance was approximately 28.8 times higher than the mean intraspecific distance. The Barcode Index Number (BIN) discordance report showed that 666 specimens represented 55 BINs, of which five were singletons, 45 were taxonomically concordant, and five were taxonomically discordant. The barcode gap analysis demonstrated that 89.3% of the fish species examined could be discriminated by DNA barcoding. These results provide new insights into fish diversity in the inland waters of Uzbekistan and can provide a basis for the development of further studies on fish fauna.
Collapse
|
28
|
Shum P, Palumbi SR. Testing small-scale ecological gradients and intraspecific differentiation for hundreds of kelp forest species using haplotypes from metabarcoding. Mol Ecol 2021; 30:3355-3373. [PMID: 33682164 DOI: 10.1111/mec.15851] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 01/27/2021] [Accepted: 02/10/2021] [Indexed: 12/25/2022]
Abstract
DNA metabarcoding has been increasingly used to detail distributions of hundreds of species. Most analyses focus on creating molecular operational taxonomic units (MOTUs) from complex mixtures of DNA sequences, but much less common is use of the sequence diversity within these MOTUs. Here we use the diversity of COI haplotypes within MOTUs from a California kelp forest to infer patterns of population abundance, dispersal and population history from 527 species of animals and algae from 106 samples of benthic habitats in Monterey Bay. Using haplotypes as a unit we show fine-grained differences of abundance across locations for 15 species, and marked aggregation from sample to sample for most of the common species of plants and animals. Previous analyses could not distinguish these patterns from artefacts of amplification or sequence bias. Our haplotype data also reveal strong population genetic differentiation over small spatial scales for 48 species of red algae, sponges and Bryozoa. Last, phylogenetic analysis of mismatch frequencies among haplotypes show a wide variety of demographic histories from recent expansions to long, stable population sizes. These analyses show that abundant, small-bodied marine species that are often overlooked in ecological surveys can have strikingly different patterns of ecological and genetic structure leading to population, ecological and perhaps adaptive differences between habitats. MOTU diversity data from the same sequencing efforts that generate species-level analyses can greatly increase the scope and value of metabarcoding studies.
Collapse
Affiliation(s)
- Peter Shum
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA
| | - Stephen R Palumbi
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA
| |
Collapse
|
29
|
Milla L, Sniderman K, Lines R, Mousavi‐Derazmahalleh M, Encinas‐Viso F. Pollen DNA metabarcoding identifies regional provenance and high plant diversity in Australian honey. Ecol Evol 2021; 11:8683-8698. [PMID: 34257922 PMCID: PMC8258210 DOI: 10.1002/ece3.7679] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 12/25/2022] Open
Abstract
Accurate identification of the botanical components of honey can be used to establish its geographical provenance, while also providing insights into honeybee (Apis mellifera L.) diet and foraging preferences. DNA metabarcoding has been demonstrated as a robust method to identify plant species from pollen and pollen-based products, including honey. We investigated the use of pollen metabarcoding to identify the floral sources and local foraging preferences of honeybees using 15 honey samples from six bioregions from eastern and western Australia. We used two plant metabarcoding markers, ITS2 and the trnL P6 loop. Both markers combined identified a total of 55 plant families, 67 genera, and 43 species. The trnL P6 loop marker provided significantly higher detection of taxa, detecting an average of 15.6 taxa per sample, compared to 4.6 with ITS2. Most honeys were dominated by Eucalyptus and other Myrtaceae species, with a few honeys dominated by Macadamia (Proteaceae) and Fabaceae. Metabarcoding detected the nominal primary source provided by beekeepers among the top five most abundant taxa for 85% of samples. We found that eastern and western honeys could be clearly differentiated by their floral composition, and clustered into bioregions with the trnL marker. Comparison with previous results obtained from melissopalynology shows that metabarcoding can detect similar numbers of plant families and genera, but provides significantly higher resolution at species level. Our results show that pollen DNA metabarcoding is a powerful and robust method for detecting honey provenance and examining the diet of honeybees. This is particularly relevant for hives foraging on the unique and diverse flora of the Australian continent, with the potential to be used as a novel monitoring tool for honeybee floral resources.
Collapse
Affiliation(s)
- Liz Milla
- Centre for Australian National Biodiversity ResearchCSIROCanberraACTAustralia
| | - Kale Sniderman
- School of Earth SciencesThe University of MelbourneMelbourneVic.Australia
| | - Rose Lines
- eDNA Frontiers LaboratoryCurtin UniversityPerthWAAustralia
| | | | | |
Collapse
|
30
|
Kirse A, Bourlat SJ, Langen K, Fonseca VG. Metabarcoding Malaise traps and soil eDNA reveals seasonal and local arthropod diversity shifts. Sci Rep 2021; 11:10498. [PMID: 34006991 PMCID: PMC8131643 DOI: 10.1038/s41598-021-89950-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/23/2021] [Indexed: 02/03/2023] Open
Abstract
Forest habitats host enormous diversity, but little is known about the seasonal turnover of arthropod species between the above- and below ground forest layers. In this study, we used metabarcoding approaches to uncover arthropod diversity in different forest types and seasons. Our study shows that metabarcoding soil eDNA and Malaise trap bulk samples can provide valuable insights into the phenology and life cycles of arthropods. We found major differences in arthropod species diversity between soil samples and Malaise traps, with only 11.8% species overlap. Higher diversity levels were found in Malaise traps in summer whereas soil samples showed a diversity peak in winter, highlighting the seasonal habitat preferences and life strategies of arthropods. We conclude that collecting time series of bulk arthropod samples and eDNA in the same locations provides a more complete picture of local arthropod diversity and turnover rates and may provide valuable information on climate induced phenological shifts for long-term monitoring.
Collapse
Affiliation(s)
- Ameli Kirse
- Centre for Biodiversity Monitoring, Zoological Research Museum Alexander Koenig, Adenauerallee 160, 53113, Bonn, Germany.
| | - Sarah J Bourlat
- Centre for Biodiversity Monitoring, Zoological Research Museum Alexander Koenig, Adenauerallee 160, 53113, Bonn, Germany
| | - Kathrin Langen
- Centre for Biodiversity Monitoring, Zoological Research Museum Alexander Koenig, Adenauerallee 160, 53113, Bonn, Germany
| | - Vera G Fonseca
- Centre for Biodiversity Monitoring, Zoological Research Museum Alexander Koenig, Adenauerallee 160, 53113, Bonn, Germany.
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, The Nothe, Weymouth, Dorset, DT4 8UB, UK.
| |
Collapse
|
31
|
Towards the Optimization of eDNA/eRNA Sampling Technologies for Marine Biosecurity Surveillance. WATER 2021. [DOI: 10.3390/w13081113] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The field of eDNA is growing exponentially in response to the need for detecting rare and invasive species for management and conservation decisions. Developing technologies and standard protocols within the biosecurity sector must address myriad challenges associated with marine environments, including salinity, temperature, advective and deposition processes, hydrochemistry and pH, and contaminating agents. These approaches must also provide a robust framework that meets the need for biosecurity management decisions regarding threats to human health, environmental resources, and economic interests, especially in areas with limited clean-laboratory resources and experienced personnel. This contribution aims to facilitate dialogue and innovation within this sector by reviewing current approaches for sample collection, post-sampling capture and concentration of eDNA, preservation, and extraction, all through a biosecurity monitoring lens.
Collapse
|
32
|
Parkhurst T, Prober SM, Hobbs RJ, Standish RJ. Global meta‐analysis reveals incomplete recovery of soil conditions and invertebrate assemblages after ecological restoration in agricultural landscapes. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tina Parkhurst
- Environmental and Conservation Sciences Murdoch University Murdoch Western Australia Australia
- CSIRO Land and Water Wembley Western Australia Australia
| | - Suzanne M. Prober
- CSIRO Land and Water Wembley Western Australia Australia
- School of Biological Sciences The University of Western Australia Crawley Western Australia Australia
| | - Richard J. Hobbs
- School of Biological Sciences The University of Western Australia Crawley Western Australia Australia
| | - Rachel J. Standish
- Environmental and Conservation Sciences Murdoch University Murdoch Western Australia Australia
| |
Collapse
|
33
|
Tsukamoto Y, Yonezawa S, Katayama N, Isagi Y. Detection of Endangered Aquatic Plants in Rapid Streams Using Environmental DNA. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2020.622291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Podostemaceae are a eudicot family of plants that grow on rapid streams and waterfalls. Two genera and six species of this family are distributed in Japan, all of which are threatened with extinction. It is difficult to find these species from the river side and it takes much effort to investigate their distribution. In this study, we attempted to determine the presence and absence of the Podostemaceae species by environmental DNA (eDNA) metabarcoding. Four species of Podostemaceae were detected near four known habitats, and the detected species were in perfect agreement with the results of a past survey that was based on visual observation. The marker used in this study had sufficient resolution to distinguish all six Podostemaceae species distributed in Japan and detected multiple species growing in a site. These results show that eDNA metabarcoding can quickly detect rare aquatic plants that are difficult to find by visual observation and can provide important information regarding their conservation.
Collapse
|
34
|
Sigsgaard EE, Olsen K, Hansen MDD, Hansen OLP, Høye TT, Svenning JC, Thomsen PF. Environmental DNA metabarcoding of cow dung reveals taxonomic and functional diversity of invertebrate assemblages. Mol Ecol 2020; 30:3374-3389. [PMID: 33205529 PMCID: PMC8359373 DOI: 10.1111/mec.15734] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 11/02/2020] [Indexed: 01/03/2023]
Abstract
Insects and other terrestrial invertebrates are declining in species richness and abundance. This includes the invertebrates associated with herbivore dung, which have been negatively affected by grazing abandonment and the progressive loss of large herbivores since the Late Pleistocene. Importantly, traditional monitoring of these invertebrates is time‐consuming and requires considerable taxonomic expertise, which is becoming increasingly scarce. In this study, we investigated the potential of environmental DNA (eDNA) metabarcoding of cow dung samples for biomonitoring of dung‐associated invertebrates. From eight cowpats we recovered eDNA from 12 orders, 29 families, and at least 54 species of invertebrates (mostly insects), representing several functional groups. Furthermore, species compositions differed between the three sampled habitats of dry grassland, meadow, and forest. These differences were in accordance with the species’ ecology; for instance, several species known to be associated with humid conditions or lower temperatures were found only in the forest habitat. We discuss potential caveats of the method, as well as directions for future study and perspectives for implementation in research and monitoring.
Collapse
Affiliation(s)
| | - Kent Olsen
- Natural History Museum Aarhus, Aarhus, Denmark
| | | | - Oskar Liset Pryds Hansen
- Department of Biology, Aarhus University, Aarhus, Denmark.,Natural History Museum Aarhus, Aarhus, Denmark
| | | | | | | |
Collapse
|
35
|
Researchers using environmental DNA must engage ethically with Indigenous communities. Nat Ecol Evol 2020; 5:146-148. [PMID: 33184485 DOI: 10.1038/s41559-020-01351-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
36
|
Liu M, Baker SC, Burridge CP, Jordan GJ, Clarke LJ. DNA
metabarcoding captures subtle differences in forest beetle communities following disturbance. Restor Ecol 2020. [DOI: 10.1111/rec.13236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Mingxin Liu
- School of Natural Sciences University of Tasmania Private Bag 55, Hobart Tasmania 7001 Australia
- ARC Centre for Forest Value University of Tasmania Hobart Tasmania 7001 Australia
| | - Susan C. Baker
- School of Natural Sciences University of Tasmania Private Bag 55, Hobart Tasmania 7001 Australia
- ARC Centre for Forest Value University of Tasmania Hobart Tasmania 7001 Australia
| | - Christopher P. Burridge
- School of Natural Sciences University of Tasmania Private Bag 55, Hobart Tasmania 7001 Australia
| | - Gregory J. Jordan
- School of Natural Sciences University of Tasmania Private Bag 55, Hobart Tasmania 7001 Australia
| | - Laurence J. Clarke
- Antarctic Climate and Ecosystems Cooperative Research Centre University of Tasmania Hobart Tasmania 7001 Australia
- Institute for Marine and Antarctic Studies University of Tasmania Hobart Tasmania 7001 Australia
| |
Collapse
|