1
|
Streicher JW, Lambert SM, Méndez de la Cruz FR, Martínez‐Méndez N, García‐Vázquez UO, Nieto Montes de Oca A, Wiens JJ. What Predicts Gene Flow During Speciation? The Relative Roles of Time, Space, Morphology and Climate. Mol Ecol 2024; 33:e17580. [PMID: 39506895 PMCID: PMC11589662 DOI: 10.1111/mec.17580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/12/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024]
Abstract
The processes that restrict gene flow between populations are fundamental to speciation. Here, we develop a simple framework for studying whether divergence in morphology, climatic niche, time and space contribute to reduced gene flow among populations and species. We apply this framework to a model system involving a clade of spiny lizards (Sceloporus) occurring mostly in northeastern Mexico, which show striking variation in morphology and habitat among closely related species and populations. We developed a new time-calibrated phylogeny for the group using RADseq data from 152 individuals. This phylogeny identified 12 putative species-level clades, including at least two undescribed species. We then estimated levels of gene flow among 21 geographically adjacent pairs of species and populations. We also estimated divergence in morphological and climatic niche variables among these same pairs, along with divergence times and geographic distances. Using Bayesian generalised linear models, we found that gene flow between pairs of lineages is negatively related to divergence time and morphological divergence among them (which are uncorrelated), and not to geographic distance or climatic divergence. The framework used here can be applied to study speciation in many other organisms having genomic data but lacking direct data on reproductive isolation. We also found several other intriguing patterns in this system, including the parallel evolution of a strikingly similar montane blue-red morph from more dull-coloured desert ancestors within two different, nonsister species.
Collapse
Affiliation(s)
- Jeffrey W. Streicher
- Natural History MuseumLondonUK
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizonaUSA
| | - Shea M. Lambert
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizonaUSA
| | | | - Norberto Martínez‐Méndez
- Laboratorio de Bioconservación y Manejo, Departamento de ZoologíaEscuela Nacional de Ciencias Biológicas del Instituto Politécnico NacionalMexico CityMexico
| | - Uri Omar García‐Vázquez
- Unidad Multidisciplinaria de Investigación, Facultad de Estudios Superiores ZaragozaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Adrián Nieto Montes de Oca
- Departamento de Biología Evolutiva, Facultad de CienciasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - John J. Wiens
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizonaUSA
| |
Collapse
|
2
|
Doublet M, Degalez F, Lagarrigue S, Lagoutte L, Gueret E, Allais S, Lecerf F. Variant calling and genotyping accuracy of ddRAD-seq: Comparison with 20X WGS in layers. PLoS One 2024; 19:e0298565. [PMID: 39058708 PMCID: PMC11280156 DOI: 10.1371/journal.pone.0298565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/23/2024] [Indexed: 07/28/2024] Open
Abstract
Whole Genome Sequencing (WGS) remains a costly or unsuitable method for routine genotyping of laying hens. Until now, breeding companies have been using or developing SNP chips. Nevertheless, alternatives methods based on sequencing have been developed. Among these, reduced representation sequencing approaches can offer sequencing quality and cost-effectiveness by reducing the genomic regions covered by sequencing. The aim of this study was to evaluate the ability of double digested Restriction site Associated DNA sequencing (ddRAD-seq) to identify and genotype SNPs in laying hens, by comparison with a presumed reliable WGS approach. Firstly, the sensitivity and precision of variant calling and the genotyping reliability of ddRADseq were determined. Next, the SNP Call Rate (CRSNP) and mean depth of sequencing per SNP (DPSNP) were compared between both methods. Finally, the effect of multiple combinations of thresholds for these parameters on genotyping reliability and amount of remaining SNPs in ddRAD-seq was studied. In raw form, the ddRAD-seq identified 349,497 SNPs evenly distributed on the genome with a CRSNP of 0.55, a DPSNP of 11X and a mean genotyping reliability rate per SNP of 80%. Considering genomic regions covered by expected enzymatic fragments (EFs), the sensitivity of the ddRAD-seq was estimated at 32.4% and its precision at 96.4%. The low CRSNP and DPSNP values were explained by the detection of SNPs outside the EFs theoretically generated by the ddRAD-seq protocol. Indeed, SNPs outside the EFs had significantly lower CRSNP (0.25) and DPSNP (1X) values than SNPs within the EFs (0.7 and 17X, resp.). The study demonstrated the relationship between CRSNP, DPSNP, genotyping reliability and the number of SNPs retained, to provide a decision-support tool for defining filtration thresholds. Severe quality control over ddRAD-seq data allowed to retain a minimum of 40% of the SNPs with a CcR of 98%. Then, ddRAD-seq was defined as a suitable method for variant calling and genotyping in layers.
Collapse
Affiliation(s)
| | | | | | | | - Elise Gueret
- MGX-Montpellier GenomiX, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | | | | |
Collapse
|
3
|
Wang X, Wang J, Xia X, Xu X, Li L, Cao S, Hao Y, Zhang L. Effect of genotyping errors on linkage map construction based on repeated chip analysis of two recombinant inbred line populations in wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2024; 24:306. [PMID: 38644480 PMCID: PMC11034145 DOI: 10.1186/s12870-024-05005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/10/2024] [Indexed: 04/23/2024]
Abstract
Linkage maps are essential for genetic mapping of phenotypic traits, gene map-based cloning, and marker-assisted selection in breeding applications. Construction of a high-quality saturated map requires high-quality genotypic data on a large number of molecular markers. Errors in genotyping cannot be completely avoided, no matter what platform is used. When genotyping error reaches a threshold level, it will seriously affect the accuracy of the constructed map and the reliability of consequent genetic studies. In this study, repeated genotyping of two recombinant inbred line (RIL) populations derived from crosses Yangxiaomai × Zhongyou 9507 and Jingshuang 16 × Bainong 64 was used to investigate the effect of genotyping errors on linkage map construction. Inconsistent data points between the two replications were regarded as genotyping errors, which were classified into three types. Genotyping errors were treated as missing values, and therefore the non-erroneous data set was generated. Firstly, linkage maps were constructed using the two replicates as well as the non-erroneous data set. Secondly, error correction methods implemented in software packages QTL IciMapping (EC) and Genotype-Corrector (GC) were applied to the two replicates. Linkage maps were therefore constructed based on the corrected genotypes and then compared with those from the non-erroneous data set. Simulation study was performed by considering different levels of genotyping errors to investigate the impact of errors and the accuracy of error correction methods. Results indicated that map length and marker order differed among the two replicates and the non-erroneous data sets in both RIL populations. For both actual and simulated populations, map length was expanded as the increase in error rate, and the correlation coefficient between linkage and physical maps became lower. Map quality can be improved by repeated genotyping and error correction algorithm. When it is impossible to genotype the whole mapping population repeatedly, 30% would be recommended in repeated genotyping. The EC method had a much lower false positive rate than did the GC method under different error rates. This study systematically expounded the impact of genotyping errors on linkage analysis, providing potential guidelines for improving the accuracy of linkage maps in the presence of genotyping errors.
Collapse
Affiliation(s)
- Xinru Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Jiankang Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Xianchun Xia
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Xiaowan Xu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Lingli Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Shuanghe Cao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.
| | - Yuanfeng Hao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.
| | - Luyan Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.
| |
Collapse
|
4
|
Koontz AC, Schumacher EK, Spence ES, Hoban SM. Ex situ conservation of two rare oak species using microsatellite and SNP markers. Evol Appl 2024; 17:e13650. [PMID: 38524684 PMCID: PMC10960078 DOI: 10.1111/eva.13650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/27/2023] [Accepted: 01/14/2024] [Indexed: 03/26/2024] Open
Abstract
Plant collections held by botanic gardens and arboreta are key components of ex situ conservation. Maintaining genetic diversity in such collections allows them to be used as resources for supplementing wild populations. However, most recommended minimum sample sizes for sufficient ex situ genetic diversity are based on microsatellite markers, and it remains unknown whether these sample sizes remain valid in light of more recently developed next-generation sequencing (NGS) approaches. To address this knowledge gap, we examine how ex situ conservation status and sampling recommendations differ when derived from microsatellites and single nucleotide polymorphisms (SNPs) in garden and wild samples of two threatened oak species. For Quercus acerifolia, SNPs show lower ex situ representation of wild allelic diversity and slightly lower minimum sample size estimates than microsatellites, while results for each marker are largely similar for Q. boyntonii. The application of missing data filters tends to lead to higher ex situ representation, while the impact of different SNP calling approaches is dependent on the species being analyzed. Measures of population differentiation within species are broadly similar between markers, but larger numbers of SNP loci allow for greater resolution of population structure and clearer assignment of ex situ individuals to wild source populations. Our results offer guidance for future ex situ conservation assessments utilizing SNP data, such as the application of missing data filters and the usage of a reference genome, and illustrate that both microsatellites and SNPs remain viable options for botanic gardens and arboreta seeking to ensure the genetic diversity of their collections.
Collapse
Affiliation(s)
| | | | - Emma S. Spence
- Morton ArboretumCenter for Tree ScienceLisleIllinoisUSA
- Cornell UniversityDepartment of Public and Ecosystem HealthIthacaNew YorkUSA
| | - Sean M. Hoban
- Morton ArboretumCenter for Tree ScienceLisleIllinoisUSA
| |
Collapse
|
5
|
Franzoni J, Astuti G, Peruzzi L. Weak Genetic Isolation and Putative Phenotypic Selection in the Wild Carnation Dianthus virgineus (Caryophyllaceae). BIOLOGY 2023; 12:1355. [PMID: 37887065 PMCID: PMC10604185 DOI: 10.3390/biology12101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023]
Abstract
By relating genetic divergence at neutral loci, phenotypic variation, and geographic and environmental distances, it is possible to dissect micro-evolutionary scenarios involving natural selection and neutral evolution. In this work, we tested the patterns of intraspecific genetic and phenotypic variation along an elevational gradient, using Dianthus virgineus as study system. We genotyped genome-wide SNPs through ddRAD sequencing and quantified phenotypic variation through multivariate morphological variation. We assessed patterns of variation by testing the statistical association between genetic, phenotypic, geographic, and elevational distances and explored the role of genetic drift and selection by comparing the Fst and Pst of morphometric traits. We revealed a weak genetic structure related to geographic distance among populations, but we excluded the predominant role of genetic drift acting on phenotypic traits. A high degree of phenotypic differentiation with respect to genetic divergence at neutral loci allowed us to hypothesize the effect of selection, putatively fuelled by changing conditions at different sites, on morphological traits. Thus, natural selection acting despite low genetic divergence at neutral loci can be hypothesized as a putative driver explaining the observed patterns of variation.
Collapse
Affiliation(s)
- Jacopo Franzoni
- PLANTSEED Lab, Department of Biology, University of Pisa, 56127 Pisa, Italy;
| | - Giovanni Astuti
- Botanic Garden and Museum, University of Pisa, 56126 Pisa, Italy;
| | - Lorenzo Peruzzi
- PLANTSEED Lab, Department of Biology, University of Pisa, 56127 Pisa, Italy;
| |
Collapse
|
6
|
Bertola LV, Hoskin CJ, Jones DB, Zenger KR, McKnight DT, Higgie M. The first linkage map for Australo-Papuan Treefrogs (family: Pelodryadidae) reveals the sex-determination system of the Green-eyed Treefrog (Litoria serrata). Heredity (Edinb) 2023; 131:263-272. [PMID: 37542195 PMCID: PMC10539516 DOI: 10.1038/s41437-023-00642-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/06/2023] Open
Abstract
Amphibians represent a useful taxon to study the evolution of sex determination because of their highly variable sex-determination systems. However, the sex-determination system for many amphibian families remains unknown, in part because of a lack of genomic resources. Here, using an F1 family of Green-eyed Treefrogs (Litoria serrata), we produce the first genetic linkage map for any Australo-Papuan Treefrogs (family: Pelodryadidae). The resulting linkage map contains 8662 SNPs across 13 linkage groups. Using an independent set of sexed adults, we identify a small region in linkage group 6 matching an XY sex-determination system. These results suggest Litoria serrata possesses a male heterogametic system, with a candidate sex-determination locus on linkage group 6. Furthermore, this linkage map represents the first genomic resource for Australo-Papuan Treefrogs, an ecologically diverse family of over 220 species.
Collapse
Affiliation(s)
- Lorenzo V Bertola
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, 4811, Australia.
| | - Conrad J Hoskin
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - David B Jones
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, 4811, Australia
| | - Kyall R Zenger
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, 4811, Australia
| | - Donald T McKnight
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
- Department of Environment and Genetics, School of Agriculture, Biomedicine and Environment, West Wodonga, La Trobe University, Melbourne, VIC, 3690, Australia
| | - Megan Higgie
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, 4811, Australia
| |
Collapse
|
7
|
Maduna SN, Jónsdóttir ÓDB, Imsland AKD, Gíslason D, Reynolds P, Kapari L, Hangstad TA, Meier K, Hagen SB. Genomic Signatures of Local Adaptation under High Gene Flow in Lumpfish-Implications for Broodstock Provenance Sourcing and Larval Production. Genes (Basel) 2023; 14:1870. [PMID: 37895225 PMCID: PMC10606024 DOI: 10.3390/genes14101870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
Aquaculture of the lumpfish (Cyclopterus lumpus L.) has become a large, lucrative industry owing to the escalating demand for "cleaner fish" to minimise sea lice infestations in Atlantic salmon mariculture farms. We used over 10K genome-wide single nucleotide polymorphisms (SNPs) to investigate the spatial patterns of genomic variation in the lumpfish along the coast of Norway and across the North Atlantic. Moreover, we applied three genome scans for outliers and two genotype-environment association tests to assess the signatures and patterns of local adaptation under extensive gene flow. With our 'global' sampling regime, we found two major genetic groups of lumpfish, i.e., the western and eastern Atlantic. Regionally in Norway, we found marginal evidence of population structure, where the population genomic analysis revealed a small portion of individuals with a different genetic ancestry. Nevertheless, we found strong support for local adaption under high gene flow in the Norwegian lumpfish and identified over 380 high-confidence environment-associated loci linked to gene sets with a key role in biological processes associated with environmental pressures and embryonic development. Our results bridge population genetic/genomics studies with seascape genomics studies and will facilitate genome-enabled monitoring of the genetic impacts of escapees and allow for genetic-informed broodstock selection and management in Norway.
Collapse
Affiliation(s)
- Simo Njabulo Maduna
- Department of Ecosystems in the Barents Region, Svanhovd Research Station, Norwegian Institute of Bioeconomy Research, 9925 Svanvik, Norway;
| | | | - Albert Kjartan Dagbjartarson Imsland
- Akvaplan-Niva Iceland Office, Akralind 6, 201 Kópavogur, Iceland; (Ó.D.B.J.); (A.K.D.I.)
- Department of Biological Sciences, High Technology Centre, University of Bergen, 5020 Bergen, Norway
| | | | | | - Lauri Kapari
- Akvaplan-Niva, Framsenteret, 9296 Tromsø, Norway;
| | | | | | - Snorre B. Hagen
- Department of Ecosystems in the Barents Region, Svanhovd Research Station, Norwegian Institute of Bioeconomy Research, 9925 Svanvik, Norway;
| |
Collapse
|
8
|
Lu-Irving P, Bragg JG, Rossetto M, King K, O’Brien M, van der Merwe MM. Capturing Genetic Diversity in Seed Collections: An Empirical Study of Two Congeners with Contrasting Mating Systems. PLANTS (BASEL, SWITZERLAND) 2023; 12:522. [PMID: 36771606 PMCID: PMC9921034 DOI: 10.3390/plants12030522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Plant mating systems shape patterns of genetic diversity and impact the long-term success of populations. As such, they are relevant to the design of seed collections aiming to maximise genetic diversity (e.g., germplasm conservation, ecological restoration). However, for most species, little is known empirically about how variation in mating systems and genetic diversity is distributed. We investigated the relationship between genetic diversity and mating systems in two functionally similar, co-occurring species of Hakea (Proteaceae), and evaluated the extent to which genetic diversity was captured in seeds. We genotyped hundreds of seedlings and mother plants via DArTseq, and developed novel implementations of two approaches to inferring the mating system from SNP data. A striking contrast in patterns of genetic diversity between H. sericea and H. teretifolia was revealed, consistent with a contrast in their mating systems. While both species had mixed mating systems, H. sericea was found to be habitually selfing, while H. teretifolia more evenly employed both selfing and outcrossing. In both species, seed collection schemes maximised genetic diversity by increasing the number of maternal lines and sites sampled, but twice as many sites were needed for the selfing species to capture equivalent levels of genetic variation at a regional scale.
Collapse
Affiliation(s)
- Patricia Lu-Irving
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, Royal Botanic Gardens Sydney, Mrs Macquaries Rd., Sydney, NSW 2000, Australia
| | - Jason G. Bragg
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, Royal Botanic Gardens Sydney, Mrs Macquaries Rd., Sydney, NSW 2000, Australia
| | - Maurizio Rossetto
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, Royal Botanic Gardens Sydney, Mrs Macquaries Rd., Sydney, NSW 2000, Australia
| | - Kit King
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, Royal Botanic Gardens Sydney, Mrs Macquaries Rd., Sydney, NSW 2000, Australia
| | - Mitchell O’Brien
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, Royal Botanic Gardens Sydney, Mrs Macquaries Rd., Sydney, NSW 2000, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Innovation Quarter Westmead, Level 3, East Tower, 158-164 Hawkesbury Rd., Westmead, NSW 2145, Australia
| | - Marlien M. van der Merwe
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, Royal Botanic Gardens Sydney, Mrs Macquaries Rd., Sydney, NSW 2000, Australia
| |
Collapse
|
9
|
Byerly PA, Chesser RT, Fleischer RC, McInerney N, Przelomska NAS, Leberg PL. Museum Genomics Provide Evidence for Persistent Genetic Differentiation in a Threatened Seabird Species in the Western Atlantic. Integr Comp Biol 2022; 62:1838-1848. [PMID: 35781565 DOI: 10.1093/icb/icac107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/18/2022] [Accepted: 06/27/2022] [Indexed: 01/05/2023] Open
Abstract
Connectivity among wildlife populations facilitates exchange of genetic material between groups. Changes to historical connectivity patterns resulting from anthropogenic activities can therefore have negative consequences for genetic diversity, particularly for small or isolated populations. DNA obtained from museum specimens can enable direct comparison of temporal changes in connectivity among populations, which can aid in conservation planning and contribute to the understanding of population declines. However, museum DNA can be degraded and only available in low quantities, rendering it challenging for use in population genomic analyses. Applications of genomic methodologies such as targeted sequencing address this issue by enabling capture of shared variable sites, increasing quantity and quality of recovered genomic information. We used targeted sequencing of ultra-conserved Elements (UCEs) to evaluate potential changes in connectivity and genetic diversity of roseate terns (Sterna dougallii) with a breeding distribution in the northwestern Atlantic and the Caribbean. Both populations experienced range contractions and population declines due to anthropogenic activity in the 20th century, which has the potential to alter historical connectivity regimes. Instead, we found that the two populations were differentiated historically as well as contemporaneously, with little evidence of migration between them for either time period. We also found no evidence for temporal changes in genetic diversity, although these interpretations may have been limited due to sequencing artifacts caused by the degraded nature of the museum samples. Population structuring in migratory seabirds is typically reflective of low rates of divergence and high connectivity among geographically segregated subpopulations. Our contrasting results suggest the potential presence of ecological mechanisms driving population differentiation, and highlight the value of targeted sequencing on DNA derived from museum specimens to uncover long-term patterns of genetic differentiation in wildlife populations.
Collapse
Affiliation(s)
- Paige A Byerly
- University of Louisiana at Lafayette, 104 E University Ave, Lafayette, LA 70504, USA.,Smithsonian's National Zoo and Conservation Biology Institute, 3001 Connecticut Avenue, NW, Washington, DC 20008, USA
| | - R Terry Chesser
- Eastern Ecological Science Center, U.S. Geological Survey, 12100 Beech Forest Road, Laurel, MD 20708, USA.,National Museum of Natural History, 10th St. and Constitution Avenue, NW, Washington, DC 20560, USA
| | - Robert C Fleischer
- Smithsonian's National Zoo and Conservation Biology Institute, 3001 Connecticut Avenue, NW, Washington, DC 20008, USA
| | - Nancy McInerney
- Smithsonian's National Zoo and Conservation Biology Institute, 3001 Connecticut Avenue, NW, Washington, DC 20008, USA
| | - Natalia A S Przelomska
- National Museum of Natural History, 10th St. and Constitution Avenue, NW, Washington, DC 20560, USA.,Smithsonian's National Zoo and Conservation Biology Institute, 3001 Connecticut Avenue, NW, Washington, DC 20008, USA.,Royal Botanic Gardens, Kew, Richmond TW9 3AE, UK
| | - Paul L Leberg
- University of Louisiana at Lafayette, 104 E University Ave, Lafayette, LA 70504, USA
| |
Collapse
|
10
|
Taniguti CH, Taniguti LM, Amadeu RR, Lau J, Gesteira GDS, Oliveira TDP, Ferreira GC, Pereira GDS, Byrne D, Mollinari M, Riera-Lizarazu O, Garcia AAF. Developing best practices for genotyping-by-sequencing analysis in the construction of linkage maps. Gigascience 2022; 12:giad092. [PMID: 37889010 PMCID: PMC10603770 DOI: 10.1093/gigascience/giad092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/27/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Genotyping-by-sequencing (GBS) provides affordable methods for genotyping hundreds of individuals using millions of markers. However, this challenges bioinformatic procedures that must overcome possible artifacts such as the bias generated by polymerase chain reaction duplicates and sequencing errors. Genotyping errors lead to data that deviate from what is expected from regular meiosis. This, in turn, leads to difficulties in grouping and ordering markers, resulting in inflated and incorrect linkage maps. Therefore, genotyping errors can be easily detected by linkage map quality evaluations. RESULTS We developed and used the Reads2Map workflow to build linkage maps with simulated and empirical GBS data of diploid outcrossing populations. The workflows run GATK, Stacks, TASSEL, and Freebayes for single-nucleotide polymorphism calling and updog, polyRAD, and SuperMASSA for genotype calling, as well as OneMap and GUSMap to build linkage maps. Using simulated data, we observed which genotype call software fails in identifying common errors in GBS sequencing data and proposed specific filters to better handle them. We tested whether it is possible to overcome errors in a linkage map using genotype probabilities from each software or global error rates to estimate genetic distances with an updated version of OneMap. We also evaluated the impact of segregation distortion, contaminant samples, and haplotype-based multiallelic markers in the final linkage maps. Through our evaluations, we observed that some of the approaches produce different results depending on the dataset (dataset dependent) and others produce consistent advantageous results among them (dataset independent). CONCLUSIONS We set as default in the Reads2Map workflows the approaches that showed to be dataset independent for GBS datasets according to our results. This reduces the number of required tests to identify optimal pipelines and parameters for other empirical datasets. Using Reads2Map, users can select the pipeline and parameters that best fit their data context. The Reads2MapApp shiny app provides a graphical representation of the results to facilitate their interpretation.
Collapse
Affiliation(s)
- Cristiane Hayumi Taniguti
- Department of Genetics, University of São Paulo, São Paulo 13418-900, Brazil
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-0001, USA
| | - Lucas Mitsuo Taniguti
- Department of Genetics, University of São Paulo, São Paulo 13418-900, Brazil
- Mendelics Genomic Analysis, São Paulo 02511-000, Brazil
| | | | - Jeekin Lau
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-0001, USA
| | - Gabriel de Siqueira Gesteira
- Department of Genetics, University of São Paulo, São Paulo 13418-900, Brazil
- Bioinformatics Research Center, Department of Horticultural Sciences, North Carolina State University, Raleigh, NC 27695-7566, USA
| | | | | | | | - David Byrne
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-0001, USA
| | - Marcelo Mollinari
- Bioinformatics Research Center, Department of Horticultural Sciences, North Carolina State University, Raleigh, NC 27695-7566, USA
| | - Oscar Riera-Lizarazu
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-0001, USA
| | | |
Collapse
|
11
|
Development of SNP Set for the Marker-Assisted Selection of Guar ( Cyamopsis tetragonoloba (L.) Taub.) Based on a Custom Reference Genome Assembly. PLANTS 2021; 10:plants10102063. [PMID: 34685872 PMCID: PMC8539970 DOI: 10.3390/plants10102063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022]
Abstract
Guar gum, a polysaccharide derived from guar seeds, is widely used in a variety of industrial applications, including oil and gas production. Although guar is mostly propagated in India, interest in guar as a new industrial legume crop is increasing worldwide, demanding the development of effective tools for marker-assisted selection. In this paper, we report a wide-ranging set of 4907 common SNPs and 327 InDels generated from RADseq genotyping data of 166 guar plants of different geographical origin. A custom guar reference genome was assembled and used for variant calling. A consensus set of variants was built using three bioinformatic pipelines for short variant discovery. The developed molecular markers were used for genome-wide association study, resulting in the discovery of six markers linked to the variation of an important agronomic trait—percentage of pods matured to the harvest date under long light day conditions. One of the associated variants was found inside the putative transcript sequence homologous to an ABC transporter in Arabidopsis, which has been shown to play an important role in D-myo-inositol phosphates metabolism. Earlier, we suggested that genes involved in myo-inositol phosphate metabolism have significant impact on the early flowering of guar plants. Hence, we believe that the developed SNP set allows for the identification of confident molecular markers of important agrobiological traits.
Collapse
|
12
|
Narum S, Kelley J, Fountain-Jones N, Hooper R, Ortiz-Barrientos D, O'Boyle B, Sibbett B. Editorial 2021. Mol Ecol Resour 2021; 21:1-10. [PMID: 33332771 DOI: 10.1111/1755-0998.13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 11/30/2022]
|
13
|
Comparison of sequence-capture and ddRAD approaches in resolving species and populations in hexacorallian anthozoans. Mol Phylogenet Evol 2021; 163:107233. [PMID: 34139346 DOI: 10.1016/j.ympev.2021.107233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 05/25/2021] [Accepted: 06/11/2021] [Indexed: 10/21/2022]
Abstract
Genome-level sequencing is the next step in understanding species-level relationships within Anthozoa (soft corals, anemones, stony corals, and their kin) as morphological and PCR-directed (single-locus) sequencing methods often fall short of differentiating species. The sea anemone genus Metridium is a common northern temperate sea anemone whose species are difficult to differentiate using morphology alone. Here we use Metridium as a case study to confirm the low level of information available in six loci for species differentiation commonly sequenced for Actiniaria and explore and compare the efficacy of ddRAD and sequence-capture methods in species-level systematics and biogeographic studies. We produce phylogenetic trees from concatenated datasets and perform DAPC and STRUCTURE analyses using SNP data. The six conventional loci are not able to consistently differentiate species within Metridium. The sequence-capture dataset resulted in high support and resolution for both current species and relationships between geographic areas. The ddRAD datasets displayed ambiguity among species, and support between major geographic groupings was not as high as the sequence-capture datasets. The level of resolution and support resulting from the sequence-capture data, combined with the ability to add additional individuals and expand beyond the genus Metridium over time, emphasizes the utility of sequence-capture methods for both systematics and future biogeographic studies within anthozoans. We discuss the strengths and weaknesses of the genomic approaches in light of our findings and suggest potential implications for the biogeography of Metridium based on our sampling.
Collapse
|
14
|
Schweizer RM, Saarman N, Ramstad KM, Forester BR, Kelley JL, Hand BK, Malison RL, Ackiss AS, Watsa M, Nelson TC, Beja-Pereira A, Waples RS, Funk WC, Luikart G. Big Data in Conservation Genomics: Boosting Skills, Hedging Bets, and Staying Current in the Field. J Hered 2021; 112:313-327. [PMID: 33860294 DOI: 10.1093/jhered/esab019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
A current challenge in the fields of evolutionary, ecological, and conservation genomics is balancing production of large-scale datasets with additional training often required to handle such datasets. Thus, there is an increasing need for conservation geneticists to continually learn and train to stay up-to-date through avenues such as symposia, meetings, and workshops. The ConGen meeting is a near-annual workshop that strives to guide participants in understanding population genetics principles, study design, data processing, analysis, interpretation, and applications to real-world conservation issues. Each year of ConGen gathers a diverse set of instructors, students, and resulting lectures, hands-on sessions, and discussions. Here, we summarize key lessons learned from the 2019 meeting and more recent updates to the field with a focus on big data in conservation genomics. First, we highlight classical and contemporary issues in study design that are especially relevant to working with big datasets, including the intricacies of data filtering. We next emphasize the importance of building analytical skills and simulating data, and how these skills have applications within and outside of conservation genetics careers. We also highlight recent technological advances and novel applications to conservation of wild populations. Finally, we provide data and recommendations to support ongoing efforts by ConGen organizers and instructors-and beyond-to increase participation of underrepresented minorities in conservation and eco-evolutionary sciences. The future success of conservation genetics requires both continual training in handling big data and a diverse group of people and approaches to tackle key issues, including the global biodiversity-loss crisis.
Collapse
Affiliation(s)
- Rena M Schweizer
- Division of Biological Sciences, University of Montana, Missoula, MT
| | - Norah Saarman
- Department of Biology, Utah State University, Logan, UT
| | - Kristina M Ramstad
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC
| | | | - Joanna L Kelley
- School of Biological Sciences, Washington State University, Pullman, WA
| | - Brian K Hand
- Division of Biological Sciences, University of Montana, Missoula, MT.,Flathead Lake Biological Station, University of Montana, Polson, MT
| | - Rachel L Malison
- Flathead Lake Biological Station, University of Montana, Polson, MT
| | - Amanda S Ackiss
- Wisconsin Cooperative Fishery Research Unit, University of Wisconsin Stevens Point, Stevens Point, WI
| | | | | | - Albano Beja-Pereira
- Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO-UP), InBIO, Universidade do Porto, Vairão, Portugal.,DGAOT, Faculty of Sciences, University of Porto, Porto, Portugal.,Sustainable Agrifood Production Research Centre (GreenUPorto), Faculty of Sciences, University of Porto, Porto, Portugal
| | - Robin S Waples
- Northwest Fisheries Science Center, NOAA Fisheries, Seattle, WA
| | - W Chris Funk
- Department of Biology, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO
| | - Gordon Luikart
- Division of Biological Sciences, University of Montana, Missoula, MT.,Flathead Lake Biological Station, University of Montana, Polson, MT
| |
Collapse
|
15
|
Cockburn A, Peñalba JV, Jaccoud D, Kilian A, Brouwer L, Double MC, Margraf N, Osmond HL, Kruuk LEB, van de Pol M. hiphop: Improved paternity assignment among close relatives using a simple exclusion method for biallelic markers. Mol Ecol Resour 2021; 21:1850-1865. [PMID: 33750003 DOI: 10.1111/1755-0998.13389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/08/2021] [Accepted: 03/15/2021] [Indexed: 11/30/2022]
Abstract
Assignment of parentage with molecular markers is most difficult when the true parents have close relatives in the adult population. Here, we present an efficient solution to that problem by extending simple exclusion approaches to parentage analysis with single nucleotide polymorphic markers (SNPs). We augmented the previously published homozygote opposite test (hot), which counts mismatches due to the offspring and candidate parent having different homozygous genotypes, with an additional test. In this case, parents homozygous for the same SNP are incompatible with heterozygous offspring (i.e., "Homozygous Identical Parents, Heterozygous Offspring are Precluded": hiphop). We tested this approach in a cooperatively breeding bird, the superb fairy-wren, Malurus cyaneus, where rates of extra-pair paternity are exceptionally high, and where paternity assignment is challenging because breeding males typically have first-order adult relatives in their neighbourhood. Combining the tests and conditioning on the maternal genotype with a set of 1376 autosomal SNPs always allowed us to distinguish a single most likely sire from his relatives, and also to identify cases where the true sire must have been unsampled. In contrast, if just the hot test was used, we failed to identify a single most-likely sire in 2.5% of cases. Resampling enabled us to create guidelines for the number of SNPs required when first-order relatives coexist in the mating pool. Our method, implemented in the R package hiphop, therefore provides unambiguous parentage assignments even in systems with complex social organisation. We also identified a suite of Z- and W-linked SNPs that always identified sex correctly.
Collapse
Affiliation(s)
- Andrew Cockburn
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Joshua V Peñalba
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia.,Division of Evolutionary Biology, Ludwig Maximilians Universitat Munchen, Munchen, Germany
| | - Damian Jaccoud
- Diversity Arrays Technology Pty Ltd, Bruce, ACT, Australia
| | - Andrzej Kilian
- Diversity Arrays Technology Pty Ltd, Bruce, ACT, Australia
| | - Lyanne Brouwer
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia.,Department of Animal Ecology and Physiology, Radboud University, Nijmegen, The Netherlands
| | - Michael C Double
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia.,Australian Antarctic Division, Kingston, TAS, Australia
| | - Nicolas Margraf
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia.,Musée d'histoire naturelle de La Chaux-de-Fonds, Neuchatel, Switzerland
| | - Helen L Osmond
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Loeske E B Kruuk
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Martijn van de Pol
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia.,Netherlands Institute of Ecology, Wageningen, The Netherlands
| |
Collapse
|
16
|
Yoshikawa S, Hamasaki M, Kadomura K, Yamada T, Chuda H, Kikuchi K, Hosoya S. Genetic Dissection of a Precocious Phenotype in Male Tiger Pufferfish (Takifugu rubripes) using Genotyping by Random Amplicon Sequencing, Direct (GRAS-Di). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:177-188. [PMID: 33599909 PMCID: PMC8032607 DOI: 10.1007/s10126-020-10013-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
The novel non-targeted PCR-based genotyping system, namely Genotyping by Random Amplicon Sequencing, Direct (GRAS-Di), is characterized by the simplicity in library construction and robustness against DNA degradation and is expected to facilitate advancements in genetics, in both basic and applied sciences. In this study, we tested the utility of GRAS-Di for genetic analysis in a cultured population of the tiger pufferfish Takifugu rubripes. The genetic analyses included family structure analysis, genetic map construction, and quantitative trait locus (QTL) analysis for the male precocious phenotype using a population consisting of four full-sib families derived from a genetically precocious line. An average of 4.7 million raw reads were obtained from 198 fish. Trimmed reads were mapped onto a Fugu reference genome for genotyping, and 21,938 putative single-nucleotide polymorphisms (SNPs) were obtained. These 22 K SNPs accurately resolved the sibship and parent-offspring pairs. A fine-scale linkage map (total size: 1,949 cM; average interval: 1.75 cM) was constructed from 1,423 effective SNPs, for which the allele inheritance patterns were known. QTL analysis detected a significant locus for testes weight on Chr_14 and three suggestive loci on Chr_1, Chr_8, and Chr_19. The significant QTL was shared by body length and body weight. The effect of each QTL was small (phenotypic variation explained, PVE: 3.1-5.9%), suggesting that the precociousness seen in the cultured pufferfish is polygenic. Taken together, these results indicate that GRAS-Di is a practical genotyping tool for aquaculture species and applicable for molecular breeding programs, such as marker-assisted selection and genomic selection.
Collapse
Affiliation(s)
- Sota Yoshikawa
- Nagasaki Prefectural Institute of Fisheries, Nagasaki, Japan
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, University of Tokyo, Shizuoka, Japan
| | | | | | | | - Hisashi Chuda
- Aquaculture Research Institute, Kindai University, Wakayama, Japan
| | - Kiyoshi Kikuchi
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, University of Tokyo, Shizuoka, Japan
| | - Sho Hosoya
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, University of Tokyo, Shizuoka, Japan.
| |
Collapse
|
17
|
Comparative Analysis of SNP Discovery and Genotyping in Fagus sylvatica L. and Quercus robur L. Using RADseq, GBS, and ddRAD Methods. FORESTS 2021. [DOI: 10.3390/f12020222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Next-generation sequencing of reduced representation genomic libraries (RRL) is capable of providing large numbers of genetic markers for population genetic studies at relatively low costs. However, one major concern of these types of markers is the precision of genotyping, which is related to the common problem of missing data, which appears to be particularly important in association and genomic selection studies. We evaluated three RRL approaches (GBS, RADseq, ddRAD) and different SNP identification methods (de novo or based on a reference genome) to find the best solutions for future population genomics studies in two economically and ecologically important broadleaved tree species, namely F. sylvatica and Q. robur. We found that the use of ddRAD method coupled with SNP calling based on reference genomes provided the largest numbers of markers (28 k and 36 k for beech and oak, respectively), given standard filtering criteria. Using technical replicates of samples, we demonstrated that more than 80% of SNP loci should be considered as reliable markers in GBS and ddRAD, but not in RADseq data. According to the reference genomes’ annotations, more than 30% of the identified ddRAD loci appeared to be related to genes. Our findings provide a solid support for using ddRAD-based SNPs for future population genomics studies in beech and oak.
Collapse
|
18
|
Heller R, Nursyifa C, Garcia-Erill G, Salmona J, Chikhi L, Meisner J, Korneliussen TS, Albrechtsen A. A reference-free approach to analyse RADseq data using standard next generation sequencing toolkits. Mol Ecol Resour 2021; 21:1085-1097. [PMID: 33434329 DOI: 10.1111/1755-0998.13324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 12/18/2020] [Accepted: 01/05/2021] [Indexed: 12/29/2022]
Abstract
Genotyping-by-sequencing methods such as RADseq are popular for generating genomic and population-scale data sets from a diverse range of organisms. These often lack a usable reference genome, restricting users to RADseq specific software for processing. However, these come with limitations compared to generic next generation sequencing (NGS) toolkits. Here, we describe and test a simple pipeline for reference-free RADseq data processing that blends de novo elements from STACKS with the full suite of state-of-the art NGS tools. Specifically, we use the de novo RADseq assembly employed by STACKS to create a catalogue of RAD loci that serves as a reference for read mapping, variant calling and site filters. Using RADseq data from 28 zebra sequenced to ~8x depth-of-coverage we evaluate our approach by comparing the site frequency spectra (SFS) to those from alternative pipelines. Most pipelines yielded similar SFS at 8x depth, but only a genotype likelihood based pipeline performed similarly at low sequencing depth (2-4x). We compared the RADseq SFS with medium-depth (~13x) shotgun sequencing of eight overlapping samples, revealing that the RADseq SFS was persistently slightly skewed towards rare and invariant alleles. Using simulations and human data we confirm that this is expected when there is allelic dropout (AD) in the RADseq data. AD in the RADseq data caused a heterozygosity deficit of ~16%, which dropped to ~5% after filtering AD. Hence, AD was the most important source of bias in our RADseq data.
Collapse
Affiliation(s)
- Rasmus Heller
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Casia Nursyifa
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Genís Garcia-Erill
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Jordi Salmona
- CNRS, Université Paul Sabatier, ENFA, UMR 5174 EDB (Laboratoire Évolution & Diversité Biologique), Toulouse, France
| | - Lounes Chikhi
- CNRS, Université Paul Sabatier, ENFA, UMR 5174 EDB (Laboratoire Évolution & Diversité Biologique), Toulouse, France.,Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Jonas Meisner
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | | | - Anders Albrechtsen
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
19
|
Miklós M, Laczkó L, Sramkó G, Sebestyén F, Barta Z, Tökölyi J. Phenotypic plasticity rather than genotype drives reproductive choices in Hydra populations. Mol Ecol 2021; 30:1206-1222. [PMID: 33465828 DOI: 10.1111/mec.15810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 12/23/2020] [Accepted: 01/08/2021] [Indexed: 12/16/2022]
Abstract
Facultative clonality is associated with complex life cycles where sexual and asexual forms can be exposed to contrasting selection pressures. Facultatively clonal animals often have distinct developmental capabilities that depend on reproductive mode (e.g., negligible senescence and exceptional regeneration ability in asexual individuals, which are lacking in sexual individuals). Understanding how these differences in life history strategies evolved is hampered by limited knowledge of the population structure underlying sexual and asexual forms in nature. Here we studied genetic differentiation of coexisting sexual and asexual Hydra oligactis polyps, a freshwater cnidarian where reproductive mode-dependent life history patterns are observed. We collected asexual and sexual polyps from 13 Central European water bodies and used restriction-site associated DNA sequencing to infer population structure. We detected high relatedness among populations and signs that hydras might spread with resting eggs through zoochory. We found no genetic structure with respect to mode of reproduction (asexual vs. sexual). On the other hand, clear evidence was found for phenotypic plasticity in mode of reproduction, as polyps inferred to be clones differed in reproductive mode. Moreover, we detected two cases of apparent sex change (males and females found within the same clonal lineages) in this species with supposedly stable sexes. Our study describes population genetic structure in Hydra for the first time, highlights the role of phenotypic plasticity in generating patterns of life history variation, and contributes to understanding the evolution of reproductive mode-dependent life history variation in coexisting asexual and sexual forms.
Collapse
Affiliation(s)
- Máté Miklós
- MTA-DE Behavioral Ecology Research Group, Department of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary.,Juhász-Nagy Pál Doctoral School of Biology and Environmental Sciences, University of Debrecen, Debrecen, Hungary
| | - Levente Laczkó
- Juhász-Nagy Pál Doctoral School of Biology and Environmental Sciences, University of Debrecen, Debrecen, Hungary.,MTA-DE "Lendület" Evolutionary Phylogenomics Research Group, Debrecen, Hungary.,Department of Botany, University of Debrecen, Debrecen, Hungary
| | - Gábor Sramkó
- MTA-DE "Lendület" Evolutionary Phylogenomics Research Group, Debrecen, Hungary.,Department of Botany, University of Debrecen, Debrecen, Hungary
| | - Flóra Sebestyén
- MTA-DE Behavioral Ecology Research Group, Department of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary.,Juhász-Nagy Pál Doctoral School of Biology and Environmental Sciences, University of Debrecen, Debrecen, Hungary
| | - Zoltán Barta
- MTA-DE Behavioral Ecology Research Group, Department of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary
| | - Jácint Tökölyi
- MTA-DE Behavioral Ecology Research Group, Department of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
20
|
Gargiulo R, Kull T, Fay MF. Effective double-digest RAD sequencing and genotyping despite large genome size. Mol Ecol Resour 2021; 21:1037-1055. [PMID: 33351289 DOI: 10.1111/1755-0998.13314] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 12/03/2020] [Accepted: 12/14/2020] [Indexed: 11/28/2022]
Abstract
Obtaining informative data is the ambition of any genomic project, but in nonmodel species with very large genomes, pursuing such a goal requires surmounting a series of analytical challenges. Double-digest RAD sequencing is routinely used in nonmodel organisms and offers some control over the volume of data obtained. However, the volume of data recovered is not always an indication of the reliability of data sets, and quality checks are necessary to ensure that true and artefactual information is set apart. In the present study, we aim to fill the gap existing between the known applicability of RAD sequencing methods in plants with large genomes and the use of the retrieved loci for population genetic inference. By analysing two populations of Cypripedium calceolus, a nonmodel orchid species with a large genome size (1C ~ 31.6 Gbp), we provide a complete workflow from library preparation to bioinformatic filtering and inference of genetic diversity and differentiation. We show how filtering strategies to dismiss potentially misleading data need to be explored and adapted to data set-specific features. Moreover, we suggest that the occurrence of organellar sequences in libraries should not be neglected when planning the experiment and analysing the results. Finally, we explain how, in the absence of prior information about the genome of the species, seeking high standards of quality during library preparation and sequencing can provide an insurance against unpredicted technical or biological constraints.
Collapse
Affiliation(s)
| | - Tiiu Kull
- Estonian University of Life Sciences, Tartu, Estonia
| | - Michael F Fay
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK.,School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| |
Collapse
|