1
|
Varrella S, Livi S, Corinaldesi C, Castriota L, Maggio T, Vivona P, Pindo M, Fava S, Danovaro R, Dell'Anno A. A comprehensive assessment of non-indigenous species requires the combination of multi-marker eDNA metabarcoding with classical taxonomic identification. ENVIRONMENT INTERNATIONAL 2025; 199:109489. [PMID: 40288285 DOI: 10.1016/j.envint.2025.109489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
In marine environment, non-indigenous species (NIS) can alter natural habitats and cause biodiversity loss with important consequences for ecosystems and socio-economic activities. With more than 1000 NIS introduced over the last century, the Mediterranean Sea is one of the most threatened regions worldwide, requiring an early identification of newly entered alien species for a proper environmental management. Here, we carried out environmental-DNA (eDNA) metabarcoding analyses, using multiple molecular markers (i.e., 18S rRNA, COI, and rbcL) and different genetic databases (i.e., NCBI, PR2, SILVA, MIDORI2, MGZDB, and BOLD), on seawater and sediment samples collected on a seasonal basis in three Mediterranean ports located in the North Adriatic, Ionian and Tyrrhenian Sea to identify marine species, and particularly NIS. The use of the multi-marker eDNA metabarcoding allowed the identification of a higher number of species compared to the morphological analyses (1484 vs. 752 species), with a minor portion of species shared by both approaches. Overall, only 4 NIS were consistently identified by both morphological and molecular approaches, whereas 27 and 17 NIS were exclusively detected by using eDNA metabarcoding and classical taxonomic analyses, respectively. The eDNA metabarcoding allowed also identifying the genetic signatures of 5 NIS never reported in the Italian waters. We conclude that eDNA metabarcoding can represent a highly sensitive tool for the early identification of NIS, but a comprehensive census of the NIS requires the combination of molecular and morphological approaches.
Collapse
Affiliation(s)
- Stefano Varrella
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; National Biodiversity Future Centre, 90133 Palermo, Italy.
| | - Silvia Livi
- Italian Institute for Environmental Protection and Research (ISPRA), Department for the Monitoring and Protection of the Environment and for the Conservation of Biodiversity Via Brancati 48, 00144 Rome, Italy
| | - Cinzia Corinaldesi
- National Biodiversity Future Centre, 90133 Palermo, Italy; Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Luca Castriota
- Italian Institute for Environmental Protection and Research (ISPRA), Department for the Monitoring and Protection of the Environment and for the Conservation of Biodiversity, Unit for Conservation Management and Sustainable Use of Fish and Marine Resources, 90149 Palermo, Italy
| | - Teresa Maggio
- Italian Institute for Environmental Protection and Research (ISPRA), Department for the Monitoring and Protection of the Environment and for the Conservation of Biodiversity, Unit for Conservation Management and Sustainable Use of Fish and Marine Resources, 90149 Palermo, Italy
| | - Pietro Vivona
- Italian Institute for Environmental Protection and Research (ISPRA), Department for the Monitoring and Protection of the Environment and for the Conservation of Biodiversity, Unit for Conservation Management and Sustainable Use of Fish and Marine Resources, 90149 Palermo, Italy
| | - Massimo Pindo
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Sebastiano Fava
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; National Biodiversity Future Centre, 90133 Palermo, Italy
| | - Antonio Dell'Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; National Biodiversity Future Centre, 90133 Palermo, Italy
| |
Collapse
|
2
|
Doorenspleet K, Mailli AA, van der Hoorn BB, Beentjes KK, De Backer A, Derycke S, Murk AJ, Reiss H, Nijland R. Advancing molecular macrobenthos biodiversity monitoring: a comparison between Oxford Nanopore and Illumina based metabarcoding and metagenomics. PeerJ 2025; 13:e19158. [PMID: 40247828 PMCID: PMC12005195 DOI: 10.7717/peerj.19158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 02/21/2025] [Indexed: 04/19/2025] Open
Abstract
DNA-based methods and developments of sequencing technologies are integral to macrobenthos biodiversity studies, and their implementation as standardized monitoring methods is approaching. Evaluating the efficacy and reliability of these technological developments is crucial for macrobenthos biodiversity assessments. In this study, we compared three DNA-based techniques for assessing the diversity of bulk macrobenthos samples from the Belgian North Sea. Specifically, we compared amplicon sequencing using Illumina MiSeq and portable real-time sequencing of Oxford Nanopore versus shotgun sequencing using Illumina NovaSeq sequencing. The 313 bp mitochondrial cytochrome c oxidase subunit I (COI) metabarcoding fragment served as the target region for the metabarcoding analysis. Our results indicate that Oxford Nanopore and MiSeq metabarcoding had similar performances in terms of alpha and beta diversity, revealing highly similar location-specific community compositions. The NovaSeq metagenomics method also resulted in similar alpha diversity, but slightly different community compositions compared to the metabarcoding approach. Despite these differences, location-specific community compositions were maintained across all platforms. Notably, read counts from the NovaSeq metagenomic analysis showed the weakest correlation to size corrected morphological abundance and there were mismatches between morphological identification and all DNA based findings which are likely caused by a combination of factors such as primer efficiency and an incomplete reference database. Our findings underscore the critical importance of database completeness prior to implementing DNA-based techniques as standardized monitoring method, especially for metagenomics. Nevertheless, our findings emphasize that Oxford Nanopore metabarcoding proves to be a viable alternative to the conventional Illumina MiSeq metabarcoding platform for macrobenthos biodiversity monitoring.
Collapse
Affiliation(s)
- Karlijn Doorenspleet
- Marine Animal Ecology, Wageningen University and Research, Wageningen, Netherlands
| | | | | | | | - Annelies De Backer
- ILVO Marine Research, Flanders Research Institute for Agriculture, Fisheries and Food, Oostende, Belgium
| | - Sofie Derycke
- ILVO Marine Research, Flanders Research Institute for Agriculture, Fisheries and Food, Oostende, Belgium
| | - Albertinka J. Murk
- Marine Animal Ecology, Wageningen University and Research, Wageningen, Netherlands
| | - Henning Reiss
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Reindert Nijland
- Marine Animal Ecology, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
3
|
Mathon L, Baletaud F, Lebourges‐Dhaussy A, Lecellier G, Menkes C, Bachelier C, Bonneville C, Dejean T, Dumas M, Fiat S, Grelet J, Habasque J, Manel S, Mannocci L, Mouillot D, Peran M, Roudaut G, Sidobre C, Varillon D, Vigliola L. Three-dimensional conservation planning of fish biodiversity metrics to achieve the deep-sea 30×30 conservation target. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2025; 39:e14368. [PMID: 39225250 PMCID: PMC11959324 DOI: 10.1111/cobi.14368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 06/05/2024] [Accepted: 06/24/2024] [Indexed: 09/04/2024]
Abstract
Accelerating rate of human impact and environmental change severely affects marine biodiversity and increases the urgency to implement the Convention on Biological Diversity (CBD) 30×30 plan for conserving 30% of sea areas by 2030. However, area-based conservation targets are complex to identify in a 3-dimensional (3D) ocean where deep-sea features such as seamounts have been seldom studied mostly due to challenging methodologies to implement at great depths. Yet, the use of emerging technologies, such as environmental DNA combined with modern modeling frameworks, could help address the problem. We collected environmental DNA, echosounder acoustic, and video data at 15 seamounts and deep island slopes across the Coral Sea. We modeled 7 fish community metrics and the abundances of 45 individual species and molecular operational taxonomic units (MOTUs) in benthic and pelagic waters (down to 600-m deep) with boosted regression trees and generalized joint attribute models to describe biodiversity on seamounts and deep slopes and identify 3D protection solutions for achieving the CBD area target in New Caledonia (1.4 million km2). We prioritized the identified conservation units in a 3D space, based on various biodiversity targets, to meet the goal of protecting at least 30% of the spatial domain, with a focus on areas with high biodiversity. The relationship between biodiversity protection targets and the spatial area protected by the solution was linear. The scenario protecting 30% of each biodiversity metric preserved almost 30% of the considered spatial domain and accounted for the 3D distribution of biodiversity. Our study paves the way for the use of combined data collection methodologies to improve biodiversity estimates in 3D structured marine environments for the selection of conservation areas and for the use of biodiversity targets to achieve area-based international targets.
Collapse
Affiliation(s)
- Laetitia Mathon
- ENTROPIE, IRD, CNRS, Ifremer, Université de la RéunionUniversité de la Nouvelle‐CalédonieNouméaNew Caledonia
- CEFE, Univ. Montpellier, CNRSEPHE‐PSL University, IRDMontpellierFrance
| | - Florian Baletaud
- ENTROPIE, IRD, CNRS, Ifremer, Université de la RéunionUniversité de la Nouvelle‐CalédonieNouméaNew Caledonia
- MARBECUniv. Montpellier, CNRS, IfremerIRDMontpellierFrance
- Soproner, groupe GINGERNouméaNew Caledonia
| | | | - Gaël Lecellier
- ENTROPIE, IRD, CNRS, Ifremer, Université de la RéunionUniversité de la Nouvelle‐CalédonieNouméaNew Caledonia
| | - Christophe Menkes
- ENTROPIE, IRD, CNRS, Ifremer, Université de la RéunionUniversité de la Nouvelle‐CalédonieNouméaNew Caledonia
| | | | - Claire Bonneville
- ENTROPIE, IRD, CNRS, Ifremer, Université de la RéunionUniversité de la Nouvelle‐CalédonieNouméaNew Caledonia
| | | | - Mahé Dumas
- ENTROPIE, IRD, CNRS, Ifremer, Université de la RéunionUniversité de la Nouvelle‐CalédonieNouméaNew Caledonia
| | - Sylvie Fiat
- ENTROPIE, IRD, CNRS, Ifremer, Université de la RéunionUniversité de la Nouvelle‐CalédonieNouméaNew Caledonia
| | | | | | - Stéphanie Manel
- CEFE, Univ. Montpellier, CNRSEPHE‐PSL University, IRDMontpellierFrance
| | - Laura Mannocci
- MARBECUniv. Montpellier, CNRS, IfremerIRDMontpellierFrance
| | - David Mouillot
- MARBECUniv. Montpellier, CNRS, IfremerIRDMontpellierFrance
| | - Maëlis Peran
- ENTROPIE, IRD, CNRS, Ifremer, Université de la RéunionUniversité de la Nouvelle‐CalédonieNouméaNew Caledonia
- LEMAR, Univ. Brest, CNRS, IRD, IfremerPlouzanéFrance
| | | | - Christine Sidobre
- ENTROPIE, IRD, CNRS, Ifremer, Université de la RéunionUniversité de la Nouvelle‐CalédonieNouméaNew Caledonia
| | | | - Laurent Vigliola
- ENTROPIE, IRD, CNRS, Ifremer, Université de la RéunionUniversité de la Nouvelle‐CalédonieNouméaNew Caledonia
| |
Collapse
|
4
|
Roy F, Baumann P, Ullrich R, Moll J, Bässler C, Hofrichter M, Kellner H. Illuminating ecology and distribution of the rare fungus Phellinidium pouzarii in the Bavarian Forest National Park. Sci Rep 2025; 15:8604. [PMID: 40074832 PMCID: PMC11904187 DOI: 10.1038/s41598-025-91672-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Due to their cryptic lifestyle, hidden diversity and a lack of ecological knowledge, conservation of wood-inhabiting fungi continues to be a niche interest. Molecular methods are able to provide deeper insights into the ecology of rare fungal species. We investigated the occurrence of the rare wood-inhabiting fungus Phellinidium pouzarii across the Bavarian Forest National Park in Germany using a fruit body survey, amplicon sequencing and qPCR. Additionally, we sequenced the genome of P. pouzarii and characterized the chemical substances responsible for its distinctive scent. Our approach gave matching results between amplicon sequencing and qPCRs, however, we found no evidence that P. pouzarii is more abundant in the National Park than we can assume based on fruit body inventories, underlining the species' critically endangered status. Genomics revealed P. pouzarii's repertoire of ligninolytic enzymes, pointing towards a white rot lifestyle. Two main components of P. pouzarii's distinct odour we identified (2-phenylethanol, methyl p-anisate) are known to act as insect attractants and/or to possess antimicrobial properties.
Collapse
Affiliation(s)
- Friederike Roy
- Department of Bio- and Environmental Sciences, International Institute Zittau, TU Dresden, Markt 23, 02763, Zittau, Germany
| | - Philipp Baumann
- Department of Bio- and Environmental Sciences, International Institute Zittau, TU Dresden, Markt 23, 02763, Zittau, Germany
| | - René Ullrich
- Department of Bio- and Environmental Sciences, International Institute Zittau, TU Dresden, Markt 23, 02763, Zittau, Germany
| | - Julia Moll
- Department of Soil Ecology, Helmholtz Centre for Environmental Research, Theodor-Lieser- Straße 4, 06120, Halle (Saale), Germany
| | - Claus Bässler
- Department for Biology, Chemistry and Geo Sciences, Institute for Ecology of Fungi, University Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
- National Park Bavarian Forest, Freyunger Str. 2, 94481, Grafenau, Germany
| | - Martin Hofrichter
- Department of Bio- and Environmental Sciences, International Institute Zittau, TU Dresden, Markt 23, 02763, Zittau, Germany
| | - Harald Kellner
- Department of Bio- and Environmental Sciences, International Institute Zittau, TU Dresden, Markt 23, 02763, Zittau, Germany.
| |
Collapse
|
5
|
Hutchins L, Mc Cartney A, Graham N, Gillespie R, Guzman A. Arthropods are kin: Operationalizing Indigenous data sovereignty to respectfully utilize genomic data from Indigenous lands. Mol Ecol Resour 2025; 25:e13822. [PMID: 37455607 PMCID: PMC11696483 DOI: 10.1111/1755-0998.13822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 07/18/2023]
Abstract
Indigenous peoples have cultivated biodiverse agroecosystems since time immemorial. The rise of metagenomics and high-throughput sequencing technologies in biodiversity studies has rapidly expanded the scale of data collection from these lands. A respectful approach to the data life cycle grounded in the sovereignty of indigenous communities is imperative to not perpetuate harm. In this paper, we operationalize an indigenous data sovereignty (IDS) framework to outline realistic considerations for genomic data that span data collection, governance, and communication. As a case study for this framework, we use arthropod genomic data collected from diversified and simplified farm sites close to and far from natural habitats within a historic Kānaka 'Ōiwi (Indigenous Hawaiian) agroecosystem. Diversified sites had the highest Operational Taxonomic Unit (OTU) richness for native and introduced arthropods. There may be a significant spillover effect between forest and farm sites, as farm sites near a natural habitat had higher OTU richness than those farther away. We also provide evidence that management factors such as the number of Polynesian crops cultivated may drive arthropod community composition. Through this case study, we emphasize the context-dependent opportunities and challenges for operationalizing IDS by utilizing participatory research methods, expanding novel data management tools through the Local Contexts Hub, and developing and nurturing community partnerships-all while highlighting the potential of agroecosystems for arthropod conservation. Overall, the workflow and the example presented here can help researchers take tangible steps to achieve IDS, which often seems elusive with the expanding use of genomic data.
Collapse
Affiliation(s)
- Leke Hutchins
- Department of Environmental Sciences Policy and ManagementUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Ann Mc Cartney
- UC Santa Cruz Genomics Institute, University of California Santa CruzSanta CruzCaliforniaUSA
| | - Natalie Graham
- Department of Environmental Sciences Policy and ManagementUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Rosemary Gillespie
- Department of Environmental Sciences Policy and ManagementUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Aidee Guzman
- Department of Ecology and Evolutionary BiologyUniversity of California IrvineIrvineCaliforniaUSA
| |
Collapse
|
6
|
Nguyen NL, Pawłowska J, Zajaczkowski M, Weiner AKM, Cordier T, Grant DM, De Schepper S, Pawłowski J. Taxonomic and abundance biases affect the record of marine eukaryotic plankton communities in sediment DNA archives. Mol Ecol Resour 2024; 24:e14014. [PMID: 39188124 DOI: 10.1111/1755-0998.14014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/09/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024]
Abstract
Environmental DNA (eDNA) preserved in marine sediments is increasingly being used to study past ecosystems. However, little is known about how accurately marine biodiversity is recorded in sediment eDNA archives, especially planktonic taxa. Here, we address this question by comparing eukaryotic diversity in 273 eDNA samples from three water depths and the surface sediments of 24 stations in the Nordic Seas. Analysis of 18S-V9 metabarcoding data reveals distinct eukaryotic assemblages between water and sediment eDNA. Only 40% of Amplicon Sequence Variants (ASVs) detected in water were also found in sediment eDNA. Remarkably, the ASVs shared between water and sediment accounted for 80% of total sequence reads suggesting that a large amount of plankton DNA is transported to the seafloor, predominantly from abundant phytoplankton taxa. However, not all plankton taxa were equally archived on the seafloor. The plankton DNA deposited in the sediments was dominated by diatoms and showed an underrepresentation of certain nano- and picoplankton taxa (Picozoa or Prymnesiophyceae). Our study offers the first insights into the patterns of plankton diversity recorded in sediment in relation to seasonality and spatial variability of environmental conditions in the Nordic Seas. Our results suggest that the genetic composition and structure of the plankton community vary considerably throughout the water column and differ from what accumulates in the sediment. Hence, the interpretation of sedimentary eDNA archives should take into account potential taxonomic and abundance biases when reconstructing past changes in marine biodiversity.
Collapse
Affiliation(s)
- Ngoc-Loi Nguyen
- Department of Paleoceanography, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
| | - Joanna Pawłowska
- Department of Paleoceanography, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
| | - Marek Zajaczkowski
- Department of Paleoceanography, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
| | - Agnes K M Weiner
- NORCE Climate and Environment, NORCE Norwegian Research Centre AS and Bjerknes Centre for Climate Research, Bergen, Norway
| | - Tristan Cordier
- NORCE Climate and Environment, NORCE Norwegian Research Centre AS and Bjerknes Centre for Climate Research, Bergen, Norway
| | - Danielle M Grant
- NORCE Climate and Environment, NORCE Norwegian Research Centre AS and Bjerknes Centre for Climate Research, Bergen, Norway
| | - Stijn De Schepper
- NORCE Climate and Environment, NORCE Norwegian Research Centre AS and Bjerknes Centre for Climate Research, Bergen, Norway
| | - Jan Pawłowski
- Department of Paleoceanography, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
| |
Collapse
|
7
|
Li Z, Zhao W, Jiang Y, Wen Y, Li M, Liu L, Zou K. New insights into biologic interpretation of bioinformatic pipelines for fish eDNA metabarcoding: A case study in Pearl River estuary. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122136. [PMID: 39128344 DOI: 10.1016/j.jenvman.2024.122136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/31/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Environmental DNA (eDNA) metabarcoding is an emerging tool for monitoring biological communities in aquatic ecosystems. The selection of bioinformatic pipelines significantly impacts the results of biodiversity assessments. However, there is currently no consensus on the appropriate bioinformatic pipelines for fish community analysis in eDNA metabarcoding. In this study, we compared three bioinformatic pipelines (Uparse, DADA2, and UNOISE3) using real and mock (constructed with 15/30 known fish) communities to investigate the differences in biological interpretation during the data analysis process in eDNA metabarcoding. Performance evaluation and diversity analyses revealed that the choice of bioinformatic pipeline could impact the biological results of metabarcoding experiments. Among the three pipelines, the operational taxonomic units (OTU)-based pipeline (Uparse) showed the best performance (sensitivity: 0.6250 ± 0.0166; compositional similarity: 0.4000 ± 0.0571), the highest richness (25-102) and minimal inter-group differences in alpha diversity. It suggested the OTU-based pipeline possessed superior capability in fish diversity monitoring compared to ASV/ZOTU-based pipeline. Additionally, the Bray-Curtis distance matrix achieved the highest discriminative effect in the PCoA (43.3%-53.89%) and inter-group analysis (P < 0.01), indicating it was better at distinguishing compositional differences or specific genera of fish community at different sampling sites than other distance matrices. These findings provide new insights into fish community monitoring through eDNA metabarcoding in estuarine environments.
Collapse
Affiliation(s)
- Zhuoying Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, China
| | - Wencheng Zhao
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, China
| | - Yun Jiang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, China
| | - Yongjing Wen
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, China
| | - Min Li
- Key Laboratory for Sustainable Utilization of Open-sea Fishery, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
| | - Li Liu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, China
| | - Keshu Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, China.
| |
Collapse
|
8
|
Williams J, Pettorelli N, Hartmann AC, Quinn RA, Plaisance L, O'Mahoney M, Meyer CP, Fabricius KE, Knowlton N, Ransome E. Decline of a distinct coral reef holobiont community under ocean acidification. MICROBIOME 2024; 12:75. [PMID: 38627822 PMCID: PMC11022381 DOI: 10.1186/s40168-023-01683-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/28/2023] [Indexed: 04/19/2024]
Abstract
BACKGROUND Microbes play vital roles across coral reefs both in the environment and inside and upon macrobes (holobionts), where they support critical functions such as nutrition and immune system modulation. These roles highlight the potential ecosystem-level importance of microbes, yet most knowledge of microbial functions on reefs is derived from a small set of holobionts such as corals and sponges. Declining seawater pH - an important global coral reef stressor - can cause ecosystem-level change on coral reefs, providing an opportunity to study the role of microbes at this scale. We use an in situ experimental approach to test the hypothesis that under such ocean acidification (OA), known shifts among macrobe trophic and functional groups may drive a general ecosystem-level response extending across macrobes and microbes, leading to reduced distinctness between the benthic holobiont community microbiome and the environmental microbiome. RESULTS We test this hypothesis using genetic and chemical data from benthic coral reef community holobionts sampled across a pH gradient from CO2 seeps in Papua New Guinea. We find support for our hypothesis; under OA, the microbiome and metabolome of the benthic holobiont community become less compositionally distinct from the sediment microbiome and metabolome, suggesting that benthic macrobe communities are colonised by environmental microbes to a higher degree under OA conditions. We also find a simplification and homogenisation of the benthic photosynthetic community, and an increased abundance of fleshy macroalgae, consistent with previously observed reef microbialisation. CONCLUSIONS We demonstrate a novel structural shift in coral reefs involving macrobes and microbes: that the microbiome of the benthic holobiont community becomes less distinct from the sediment microbiome under OA. Our findings suggest that microbialisation and the disruption of macrobe trophic networks are interwoven general responses to environmental stress, pointing towards a universal, undesirable, and measurable form of ecosystem changed. Video Abstract.
Collapse
Affiliation(s)
- Jake Williams
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Buckhurst Road, Ascot, SL5 7PY, UK
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | - Nathalie Pettorelli
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | - Aaron C Hartmann
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Robert A Quinn
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Laetitia Plaisance
- Laboratoire Evolution Et Diversité Biologique, CNRS/UPS, Toulouse, France
- National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013, USA
| | - Michael O'Mahoney
- National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013, USA
| | - Chris P Meyer
- National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013, USA
| | | | - Nancy Knowlton
- National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013, USA
| | - Emma Ransome
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Buckhurst Road, Ascot, SL5 7PY, UK.
| |
Collapse
|
9
|
Barrenechea Angeles I, Nguyen NL, Greco M, Tan KS, Pawlowski J. Assigning the unassigned: A signature-based classification of rDNA metabarcodes reveals new deep-sea diversity. PLoS One 2024; 19:e0298440. [PMID: 38422100 PMCID: PMC10903905 DOI: 10.1371/journal.pone.0298440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Environmental DNA metabarcoding reveals a vast genetic diversity of marine eukaryotes. Yet, most of the metabarcoding data remain unassigned due to the paucity of reference databases. This is particularly true for the deep-sea meiofauna and eukaryotic microbiota, whose hidden diversity is largely unexplored. Here, we tackle this issue by using unique DNA signatures to classify unknown metabarcodes assigned to deep-sea foraminifera. We analyzed metabarcoding data obtained from 311 deep-sea sediment samples collected in the Clarion-Clipperton Fracture Zone, an area of potential polymetallic nodule exploitation in the Eastern Pacific Ocean. Using the signatures designed in the 37F hypervariable region of the 18S rRNA gene, we were able to classify 802 unassigned metabarcodes into 61 novel lineages, which have been placed in 27 phylogenetic clades. The comparison of new lineages with other foraminiferal datasets shows that most novel lineages are widely distributed in the deep sea. Five lineages are also present in the shallow-water datasets; however, phylogenetic analysis of these lineages separates deep-sea and shallow-water metabarcodes except in one case. While the signature-based classification does not solve the problem of gaps in reference databases, this taxonomy-free approach provides insight into the distribution and ecology of deep-sea species represented by unassigned metabarcodes, which could be useful in future applications of metabarcoding for environmental monitoring.
Collapse
Affiliation(s)
- Inès Barrenechea Angeles
- Department of Earth Sciences, University of Geneva, Geneva, Switzerland
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
- Department of Geosciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Ngoc-Loi Nguyen
- Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
| | - Mattia Greco
- Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
- Institute of Marine Sciences, Spanish National Research Council, Barcelona, Spain
| | - Koh Siang Tan
- Tropical Marine Science Institute, National University of Singapore, Singapore, Singapore
| | - Jan Pawlowski
- Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
- ID-Gene Ecodiagnostics Ltd., Plan-les-Ouates, Switzerland
| |
Collapse
|
10
|
Mthethwa-Hlongwa NP, Amoah ID, Gomez A, Davison S, Reddy P, Bux F, Kumari S. Profiling pathogenic protozoan and their functional pathways in wastewater using 18S rRNA and shotgun metagenomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169602. [PMID: 38154626 DOI: 10.1016/j.scitotenv.2023.169602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
Despite extensive research, little is known about the composition of eukaryotic protists in environmental samples. This is due to low parasite concentrations, the complexity of parasite diversity, and a lack of suitable reference databases and standardized protocols. To bridge this knowledge gap, this study used 18S rRNA short amplicon and shotgun metagenomic sequencing approaches to profile protozoan microbial communities as well as their functional pathways in treated and untreated wastewater samples collected from different regions of South Africa. Results demonstrated that protozoan diversity (Shannon index P-value = 0.03) and taxonomic composition (PERMANOVA, P-value = 0.02) was mainly driven by the type of wastewater samples (treated & untreated) and geographic location. However, these WWTPs were also found to contain a core community of protozoan parasites. The untreated wastewater samples revealed a predominant presence of free-living, parasitic, and potentially pathogenic protists typically found in humans and animals, ranging from Alveolata (27 %) phylum (Apicomplexa and Ciliophora) to Excavata (3.88 %) (Discoba and Parasalia) and Amoebozoa (2.84 %) (Entamoeba and Acanthamoeba). Shotgun metagenomics analyses in a subset of the untreated wastewater samples confirmed the presence of public health-importance protozoa, including Cryptosporidium species (3.48 %), Entamoeba hystolitica (6.58 %), Blastocystis hominis (2.91 %), Naegleria gruberi (2.37 %), Toxoplasma gondii (1.98 %), Cyclospora cayetanensis (1.30 %), and Giardia intestinalis (0.31 %). Virulent gene families linked to pathogenic protozoa, such as serine/threonine protein phosphatase and mucin-desulfating sulfatase were identified. Additionally, enriched pathways included thiamine diphosphate biosynthesis III, heme biosynthesis, Methylerythritol 4-Phosphate Pathway, methyl erythritol phosphate (MEP), and pentose phosphate pathways. These findings suggest that protozoan pathogens may possess metabolic and growth potential within WWTPs, posing a severe risk of transmission to humans and animals if inadequately disinfected before release. This study provides a baseline for the future investigation of diverse protozoal communities in wastewater, which are of public health importance.
Collapse
Affiliation(s)
- Nonsikelelo P Mthethwa-Hlongwa
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa; Department Community Health Studies, Faculty of Health Sciences, Durban University of Technology, Durban 4000, South Africa
| | - Isaac D Amoah
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa; Department of Environmental Science, The University of Arizona, Shantz Building Rm 4291177 E 4th St., Tucson, AZ 85721, USA
| | - Andres Gomez
- Department of Animal Science, University of Minnesota, St. Paul, MN, USA
| | - Sam Davison
- Department of Animal Science, University of Minnesota, St. Paul, MN, USA
| | - Poovendhree Reddy
- Department Community Health Studies, Faculty of Health Sciences, Durban University of Technology, Durban 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa.
| |
Collapse
|
11
|
Haider D, Hall MW, LaRoche J, Beiko RG. Mock microbial community meta-analysis using different trimming of amplicon read lengths. Environ Microbiol 2024; 26:e16566. [PMID: 38149467 DOI: 10.1111/1462-2920.16566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 12/12/2023] [Indexed: 12/28/2023]
Abstract
Trimming of sequencing reads is a pre-processing step that aims to discard sequence segments such as primers, adapters and low quality nucleotides that will interfere with clustering and classification steps. We evaluated the impact of trimming length of paired-end 16S and 18S rRNA amplicon reads on the ability to reconstruct the taxonomic composition and relative abundances of communities with a known composition in both even and uneven proportions. We found that maximizing read retention maximizes recall but reduces precision by increasing false positives. The presence of expected taxa was accurately predicted across broad trim length ranges but recovering original relative proportions remains a difficult challenge. We show that parameters that maximize taxonomic recovery do not simultaneously maximize relative abundance accuracy. Trim length represents one of several experimental parameters that have non-uniform impact across microbial clades, making it a difficult parameter to optimize. This study offers insights, guidelines, and helps researchers assess the significance of their decisions when trimming raw reads in a microbiome analysis based on overlapping or non-overlapping paired-end amplicons.
Collapse
Affiliation(s)
- Diana Haider
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michael W Hall
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Julie LaRoche
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Robert G Beiko
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
12
|
Roy F, Ibayev O, Arnstadt T, Bässler C, Borken W, Groß C, Hoppe B, Hossen S, Kahl T, Moll J, Noll M, Purahong W, Schreiber J, Weisser WW, Hofrichter M, Kellner H. Nitrogen addition increases mass loss of gymnosperm but not of angiosperm deadwood without changing microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165868. [PMID: 37516186 DOI: 10.1016/j.scitotenv.2023.165868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Enhanced nitrogen (N) deposition due to combustion of fossil fuels and agricultural fertilization is a global phenomenon which has severely altered carbon (C) and N cycling in temperate forest ecosystems in the northern hemisphere. Although deadwood holds a substantial amount of C in forest ecosystems and thus plays a crucial role in nutrient cycling, the effect of increased N deposition on microbial processes and communities, wood chemical traits and deadwood mass loss remains unclear. Here, we simulated high N deposition rates by adding reactive N in form of ammonium-nitrate (40 kg N ha-1 yr-1) to deadwood of 13 temperate tree species over nine years in a field experiment in Germany. Non-treated deadwood from the same logs served as control with background N deposition. Our results show that chronically elevated N levels alters deadwood mass loss alongside respiration, enzymatic activities and wood chemistry depending on tree clade and species. In gymnosperm deadwood, elevated N increased mass loss by +38 %, respiration by +37 % and increased laccase activity 12-fold alongside increases of white-rot fungal abundance +89 % (p = 0.03). Furthermore, we observed marginally significant (p = 0.06) shifts of bacterial communities in gymnosperm deadwood. In angiosperm deadwood, we did not detect consistent effects on mass loss, physico-chemical properties, extracellular enzymatic activity or changes in microbial communities except for changes in abundance of 10 fungal OTUs in seven tree species and 28 bacterial OTUs in 10 tree species. We conclude that N deposition alters decomposition processes exclusively in N limited gymnosperm deadwood in the long term by enhancing fungal activity as expressed by increases in respiration rate and extracellular enzyme activity with minor shifts in decomposing microbial communities. By contrast, deadwood of angiosperm tree species had higher N concentrations and mass loss as well as community composition did not respond to N addition.
Collapse
Affiliation(s)
- Friederike Roy
- Department of Bio- and Environmental Sciences, International Institute Zittau, Technische Universität Dresden, Markt 23, D-02763 Zittau, Germany
| | - Orkhan Ibayev
- Department of Bio- and Environmental Sciences, International Institute Zittau, Technische Universität Dresden, Markt 23, D-02763 Zittau, Germany
| | - Tobias Arnstadt
- Department of Bio- and Environmental Sciences, International Institute Zittau, Technische Universität Dresden, Markt 23, D-02763 Zittau, Germany
| | - Claus Bässler
- Institute for Ecology, Evolution and Diversity, Department of Conservation Biology, Goethe-Universität Frankfurt, Max-von-Laue-Str. 13, D-60438 Frankfurt am Main, Germany; National Park Bavarian Forest, Freyunger Str. 2, D-94481 Grafenau, Germany
| | - Werner Borken
- Institute for Soil Ecology, University of Bayreuth, Dr.-Hans-Frisch-Straße 1-3, D-95448 Bayreuth, Germany
| | - Christina Groß
- Institute for Soil Ecology, University of Bayreuth, Dr.-Hans-Frisch-Straße 1-3, D-95448 Bayreuth, Germany
| | - Björn Hoppe
- Institute for National and International Plant Health, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Messeweg 11/12, D-38104 Braunschweig, Germany
| | - Shakhawat Hossen
- Institute for Bioanalysis, University of Applied Sciences Coburg, Friedrich-Streib-Straße 2, D-96450 Coburg, Germany
| | - Tiemo Kahl
- UNESCO-Biosphärenreservat Thüringer Wald, Schmiedefeld a. Rstg, Brunnenstraße 1, D-98528 Suhl, Germany
| | - Julia Moll
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Th.-Lieser- Str. 4, D-06120 Halle (Saale), Germany
| | - Matthias Noll
- Institute for Bioanalysis, University of Applied Sciences Coburg, Friedrich-Streib-Straße 2, D-96450 Coburg, Germany
| | - Witoon Purahong
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Th.-Lieser- Str. 4, D-06120 Halle (Saale), Germany
| | - Jasper Schreiber
- Institute for Ecology, Evolution and Diversity, Department of Conservation Biology, Goethe-Universität Frankfurt, Max-von-Laue-Str. 13, D-60438 Frankfurt am Main, Germany
| | - Wolfgang W Weisser
- Terrestrial Ecology Research Group, Technical University of Munich, D-85354 Freising, Germany
| | - Martin Hofrichter
- Department of Bio- and Environmental Sciences, International Institute Zittau, Technische Universität Dresden, Markt 23, D-02763 Zittau, Germany
| | - Harald Kellner
- Department of Bio- and Environmental Sciences, International Institute Zittau, Technische Universität Dresden, Markt 23, D-02763 Zittau, Germany.
| |
Collapse
|
13
|
Flegontova O, Lukeš J, Horák A. Intragenomic diversity of the V9 hypervariable domain in eukaryotes has little effect on metabarcoding. iScience 2023; 26:107291. [PMID: 37554448 PMCID: PMC10404988 DOI: 10.1016/j.isci.2023.107291] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 05/05/2023] [Accepted: 07/03/2023] [Indexed: 08/10/2023] Open
Abstract
Metabarcoding revolutionized our understanding of diversity and ecology of microorganisms in different habitats. However, it is also associated with several inherent biases, one of which is associated with intragenomic diversity of a molecular barcode. Here, we compare intragenomic variability of the V9 region of the 18S rRNA gene in 19 eukaryotic phyla abundant in marine plankton. The level of intragenomic variability is comparable across all the phyla, and in most genomes and transcriptomes one V9 sequence and one OTU is predominant. However, most of the variability observed at the barcode level is probably caused by sequencing errors and is mitigated by using a denoising tool, DADA2. The SWARM algorithm commonly used in metabarcoding studies is not optimal for collapsing genuine and erroneous sequences into a single OTU, leading to an overestimation of diversity in metabarcoding data. For an unknown reason, SWARM inflates diversity of eupelagonemids more than that of other eukaryotes.
Collapse
Affiliation(s)
- Olga Flegontova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Department of Molecular Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Aleš Horák
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Department of Molecular Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
14
|
Yu F, Luo W, Xie W, Li Y, Liu Y, Ye X, Peng T, Wang H, Huang T, Hu Z. The effects of long-term hexabromocyclododecanes contamination on microbial communities in the microcosms. CHEMOSPHERE 2023; 325:138412. [PMID: 36925001 DOI: 10.1016/j.chemosphere.2023.138412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/21/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
The adaptation of microbial community to the long-term contamination of hexabromocyclododecanes (HBCDs) has not been well studied. Our previous study found that the HBCDs contamination in the microcosms constructed of sediments from two different mangrove forests in 8 months resulted in serious acidification (pH2-3). This study reanalyzed previous sequencing data and compared them with data after 20 months to investigate the adaptive properties of microbial communities in the stress of HBCDs and acidification. It hypothesized that the reassembly was based on the fitness of taxa. The results indicated that eukaryotes and fungi might have better adaptive capacity to these deteriorated habitats. Eukaryotic taxa Eufallia and Syncystis, and fungal taxa Wickerhamomyces were only detected after 20 months of contamination. Moreover, eukaryotic taxa Caloneis and Nitzschia, and fungal taxa Talaromyces were dominant in most of microbial communities (14.467-95.941%). The functional compositions were sediment-dependent and more divergent than community reassemblies. Network and co-occurrence analysis suggested that acidophiles such as Acidisoma and Acidiphilium were gaining more positive relations in the long-term stress. The acidophilic taxa and genes involved in resistance to the acidification and toxicity of HBCDs were enriched, for example, bacteria Acidisoma and Acidiphilium, archaea Thermogymnomonas, and eukaryotes Nitzschia, and genes kdpC, odc1, polA, gst, and sod-2. These genes involved in oxidative stress response, energy metabolism, DNA damage repair, potassium transportation, and decarboxylation. It suggested that the microbial communities might cope with the stress from HBCDs and acidification via multiple pathways. The present research shed light on the evolution of microbial communities under the long-term stress of HBCDs contamination and acidification.
Collapse
Affiliation(s)
- Fei Yu
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Wenqi Luo
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Wei Xie
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Yuyang Li
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Yongjin Liu
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Xueying Ye
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Tao Peng
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Hui Wang
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Tongwang Huang
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China.
| | - Zhong Hu
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong Province, China.
| |
Collapse
|
15
|
Aglieri G, Quattrocchi F, Mariani S, Baillie C, Spatafora D, Di Franco A, Turco G, Tolone M, Di Gerlando R, Milazzo M. Fish eDNA detections in ports mirror fishing fleet activities and highlight the spread of non-indigenous species in the Mediterranean Sea. MARINE POLLUTION BULLETIN 2023; 189:114792. [PMID: 36921451 DOI: 10.1016/j.marpolbul.2023.114792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Gathering comprehensive marine biodiversity data can be difficult, costly and time consuming, preventing adequate knowledge of diversity patterns in many areas worldwide. We propose fishing ports as "natural" sinks of biodiversity information collected by fishing vessels probing disparate habitats, depths, and environments. By combining rapid environmental DNA metabarcoding (eDNA) surveys and data from public registers and Automatic Identification Systems, we show significant positive relationships between fishing fleet activities (i.e. fishing effort and characteristics of the fishing grounds) and the taxonomic fish assemblage composition in eleven Mediterranean fishing ports. Overall, we identified 160 fish and 123 invertebrate OTUs, including at least seven non-indigenous species, in some instances well beyond their known distribution areas. Our findings suggest that eDNA assessments of fishing harbours' waters might offer a rapid way to monitor marine biodiversity in unknown or under-sampled areas, as well as to reconstruct fishing catches, often underreported in several regions.
Collapse
Affiliation(s)
- Giorgio Aglieri
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Palermo, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy.
| | - Federico Quattrocchi
- NBFC, National Biodiversity Future Center, Palermo, Italy; University of Palermo, Department of Earth and Marine Sciences (DiSTeM), Palermo, Italy; Institute for Biological Resources and Marine Biotechnologies, National Research Council (IRBIM-CNR), Mazara del Vallo, Italy
| | - Stefano Mariani
- School of Biological & Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | | | - Davide Spatafora
- University of Palermo, Department of Earth and Marine Sciences (DiSTeM), Palermo, Italy
| | - Antonio Di Franco
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Palermo, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Gabriele Turco
- University of Palermo, Department of Earth and Marine Sciences (DiSTeM), Palermo, Italy
| | - Marco Tolone
- University of Palermo, Department of Agricultural Food and Forest Sciences, Palermo, Italy
| | - Rosalia Di Gerlando
- University of Palermo, Department of Agricultural Food and Forest Sciences, Palermo, Italy
| | - Marco Milazzo
- NBFC, National Biodiversity Future Center, Palermo, Italy; University of Palermo, Department of Earth and Marine Sciences (DiSTeM), Palermo, Italy
| |
Collapse
|
16
|
Barrenechea Angeles I, Romero-Martínez ML, Cavaliere M, Varrella S, Francescangeli F, Piredda R, Mazzocchi MG, Montresor M, Schirone A, Delbono I, Margiotta F, Corinaldesi C, Chiavarini S, Montereali MR, Rimauro J, Parrella L, Musco L, Dell'Anno A, Tangherlini M, Pawlowski J, Frontalini F. Encapsulated in sediments: eDNA deciphers the ecosystem history of one of the most polluted European marine sites. ENVIRONMENT INTERNATIONAL 2023; 172:107738. [PMID: 36641836 DOI: 10.1016/j.envint.2023.107738] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/05/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
The Anthropocene is characterized by dramatic ecosystem changes driven by human activities. The impact of these activities can be assessed by different geochemical and paleontological proxies. However, each of these proxies provides only a fragmentary insight into the effects of anthropogenic impacts. It is highly challenging to reconstruct, with a holistic view, the state of the ecosystems from the preindustrial period to the present day, covering all biological components, from prokaryotes to multicellular eukaryotes. Here, we used sedimentary ancient DNA (sedaDNA) archives encompassing all trophic levels of biodiversity to reconstruct the two century-natural history in Bagnoli-Coroglio (Gulf of Pozzuoli, Tyrrhenian Sea), one of the most polluted marine-coastal sites in Europe. The site was characterized by seagrass meadows and high eukaryotic diversity until the beginning of the 20th century. Then, the ecosystem completely changed, with seagrasses and associated fauna as well as diverse groups of planktonic and benthic protists being replaced by low diversity biota dominated by dinophyceans and infaunal metazoan species. The sedaDNA analysis revealed a five-phase evolution of the area, where changes appear as the result of a multi-level cascade effect of impacts associated with industrial activities, urbanization, water circulation and land-use changes. The sedaDNA allowed to infer reference conditions that must be considered when restoration actions are to be implemented.
Collapse
Affiliation(s)
- Ines Barrenechea Angeles
- Department of Earth Sciences, University of Geneva, 13, rue des Maraîchers, 1205 Geneva, Switzerland; Department of Genetics and Evolution, University of Geneva, 1205 Geneva, Switzerland.
| | | | - Marco Cavaliere
- Department of Pure and Applied Sciences, Università of Urbino "Carlo Bo", 61029 Urbino, Italy.
| | - Stefano Varrella
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, 60131 Ancona, Italy.
| | | | - Roberta Piredda
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Bari, Italy.
| | | | | | - Antonio Schirone
- ENEA, Department of Sustainability, Marine Environment Research Centre S. Teresa, 19032 Pozzuolo di Lerici, Italy.
| | - Ivana Delbono
- ENEA, Department of Sustainability, Marine Environment Research Centre S. Teresa, 19032 Pozzuolo di Lerici, Italy.
| | | | - Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, 60131 Ancona, Italy.
| | | | | | - Juri Rimauro
- ENEA, Department of Sustainability, CR Portici, 80055, Portici, Naples, Italy.
| | - Luisa Parrella
- ENEA, Department of Sustainability, CR Portici, 80055, Portici, Naples, Italy.
| | - Luigi Musco
- Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, University of Salento, 73100 Lecce, Italy.
| | - Antonio Dell'Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy.
| | | | - Jan Pawlowski
- Department of Genetics and Evolution, University of Geneva, 1205 Geneva, Switzerland; ID-Gene ecodiagnostics Ltd, 1228 Plan-les-Ouates, Switzerland; Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland.
| | - Fabrizio Frontalini
- Department of Pure and Applied Sciences, Università of Urbino "Carlo Bo", 61029 Urbino, Italy.
| |
Collapse
|
17
|
Halvorsen S, Korslund L, Mattingsdal M, Slettan A. Estimating number of European eel ( Anguilla anguilla) individuals using environmental DNA and haplotype count in small rivers. Ecol Evol 2023; 13:e9785. [PMID: 36861025 PMCID: PMC9969050 DOI: 10.1002/ece3.9785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 12/21/2022] [Accepted: 01/16/2023] [Indexed: 03/03/2023] Open
Abstract
Knowledge about population genetic data is important for effective conservation management. Genetic research traditionally requires sampling directly from the organism, for example tissue, which can be challenging, time-consuming, and harmful to the animal. Environmental DNA (eDNA) approaches offer a way to sample genetic material noninvasively. In attempts to estimate population size of aquatic species using eDNA, researchers have found positive correlations between biomass and eDNA concentrations, but the approach is debated because of variations in the production and degrading of DNA in water. Recently, a more accurate eDNA-approach has emerged, focusing on the genomic differences between individuals. In this study, we used eDNA from water samples to estimate the number of European eel (Anguilla anguilla) individuals by examining haplotypes in the mitochondrial D-loop region, both in a closed aquatic environment with 10 eels of known haplotypes and in three rivers. The results revealed that it was possible to find every eel haplotype in the eDNA sample collected from the closed environment. We also found 13 unique haplotypes in the eDNA samples from the three rivers, which probably represent 13 eel individuals. This means that it is possible to obtain genomic information from European eel eDNA in water; however, more research is needed to develop the approach into a possible future tool for population quantification.
Collapse
Affiliation(s)
- Silje Halvorsen
- Faculty of Engineering and ScienceUniversity of AgderKristiansandNorway
| | - Lars Korslund
- Faculty of Engineering and ScienceUniversity of AgderKristiansandNorway
| | | | - Audun Slettan
- Faculty of Engineering and ScienceUniversity of AgderKristiansandNorway
| |
Collapse
|
18
|
Willassen E, Westgaard JI, Kongsrud JA, Hanebrekke T, Buhl-Mortensen P, Holte B. Benthic invertebrates in Svalbard fjords-when metabarcoding does not outperform traditional biodiversity assessment. PeerJ 2022; 10:e14321. [PMID: 36415859 PMCID: PMC9676020 DOI: 10.7717/peerj.14321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/10/2022] [Indexed: 11/18/2022] Open
Abstract
To protect and restore ecosystems and biodiversity is one of the 10 challenges identified by the United Nations's Decade of the Ocean Science. In this study we used eDNA from sediments collected in two fjords of the Svalbard archipelago and compared the taxonomic composition with traditional methods through metabarcoding, targeting mitochondrial CO1, to survey benthos. Clustering of 21.6 mill sequence reads with a d value of 13 in swarm, returned about 25 K OTU reads. An identification search with the BOLD database returned 12,000 taxonomy annotated sequences spanning a similarity range of 50% to 100%. Using an acceptance filter of minimum 90% similarity to the CO1 reference sequence, we found that 74% of the ca 100 taxon identified sequence reads were Polychaeta and 22% Nematoda. Relatively few other benthic invertebrate species were detected. Many of the identified sequence reads were extra-organismal DNA from terrestrial, planktonic, and photic zone sources. For the species rich Polychaeta, we found that, on average, only 20.6% of the species identified from morphology were also detected with DNA. This discrepancy was not due to missing reference sequences in the search database, because 90-100% (mean 96.7%) of the visually identified species at each station were represented with barcodes in Boldsystems. The volume of DNA samples is small compared with the volume searched in visual sorting, and the replicate DNA-samples in sum covered only about 2% of the surface area of a grab. This may considerably reduce the detection rate of species that are not uniformly distributed in the sediments. Along with PCR amplification bias and primer mismatch, this may be an important reason for the limited congruence of species identified with the two approaches. However, metabarcoding also identified 69 additional species that are usually overlooked in visual sample sorting, demonstrating how metabarcoding can complement traditional methodology by detecting additional, less conspicuous groups of organisms.
Collapse
Affiliation(s)
- Endre Willassen
- Department of Natural History, University of Bergen, Bergen, Norway
| | - Jon-Ivar Westgaard
- Department of Population Genetics, Institute of Marine Research, Tromsø, Troms, Norway
| | | | - Tanja Hanebrekke
- Department of Population Genetics, Institute of Marine Research, Tromsø, Troms, Norway
| | - Pål Buhl-Mortensen
- Department of Bentic Communities, Institute of Marine Research, Bergen, Norway
| | - Børge Holte
- Department of Bentic Communities, Institute of Marine Research, Tromsø, Troms, Norway
| |
Collapse
|
19
|
Rogers AD, Appeltans W, Assis J, Ballance LT, Cury P, Duarte C, Favoretto F, Hynes LA, Kumagai JA, Lovelock CE, Miloslavich P, Niamir A, Obura D, O'Leary BC, Ramirez-Llodra E, Reygondeau G, Roberts C, Sadovy Y, Steeds O, Sutton T, Tittensor DP, Velarde E, Woodall L, Aburto-Oropeza O. Discovering marine biodiversity in the 21st century. ADVANCES IN MARINE BIOLOGY 2022; 93:23-115. [PMID: 36435592 DOI: 10.1016/bs.amb.2022.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We review the current knowledge of the biodiversity of the ocean as well as the levels of decline and threat for species and habitats. The lack of understanding of the distribution of life in the ocean is identified as a significant barrier to restoring its biodiversity and health. We explore why the science of taxonomy has failed to deliver knowledge of what species are present in the ocean, how they are distributed and how they are responding to global and regional to local anthropogenic pressures. This failure prevents nations from meeting their international commitments to conserve marine biodiversity with the results that investment in taxonomy has declined in many countries. We explore a range of new technologies and approaches for discovery of marine species and their detection and monitoring. These include: imaging methods, molecular approaches, active and passive acoustics, the use of interconnected databases and citizen science. Whilst no one method is suitable for discovering or detecting all groups of organisms many are complementary and have been combined to give a more complete picture of biodiversity in marine ecosystems. We conclude that integrated approaches represent the best way forwards for accelerating species discovery, description and biodiversity assessment. Examples of integrated taxonomic approaches are identified from terrestrial ecosystems. Such integrated taxonomic approaches require the adoption of cybertaxonomy approaches and will be boosted by new autonomous sampling platforms and development of machine-speed exchange of digital information between databases.
Collapse
Affiliation(s)
- Alex D Rogers
- REV Ocean, Lysaker, Norway; Nekton Foundation, Begbroke Science Park, Oxford, United Kingdom.
| | - Ward Appeltans
- Intergovernmental Oceanographic Commission of UNESCO, Oostende, Belgium
| | - Jorge Assis
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Lisa T Ballance
- Marine Mammal Institute, Oregon State University, Newport, OR, United States
| | | | - Carlos Duarte
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), Thuwal, Kingdom of Saudi Arabia
| | - Fabio Favoretto
- Autonomous University of Baja California Sur, La Paz, Baja California Sur, Mexico
| | - Lisa A Hynes
- Nekton Foundation, Begbroke Science Park, Oxford, United Kingdom
| | - Joy A Kumagai
- Senckenberg Biodiversity and Climate Research Institute, Frankfurt am Main, Germany
| | - Catherine E Lovelock
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Patricia Miloslavich
- Scientific Committee on Oceanic Research (SCOR), College of Earth, Ocean and Environment, University of Delaware, Newark, DE, United States; Departamento de Estudios Ambientales, Universidad Simón Bolívar, Venezuela & Scientific Committee for Oceanic Research (SCOR), Newark, DE, United States
| | - Aidin Niamir
- Senckenberg Biodiversity and Climate Research Institute, Frankfurt am Main, Germany
| | | | - Bethan C O'Leary
- Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom; Department of Environment and Geography, University of York, York, United Kingdom
| | - Eva Ramirez-Llodra
- REV Ocean, Lysaker, Norway; Nekton Foundation, Begbroke Science Park, Oxford, United Kingdom
| | - Gabriel Reygondeau
- Yale Center for Biodiversity Movement and Global Change, Yale University, New Haven, CT, United States; Nippon Foundation-Nereus Program, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| | - Callum Roberts
- Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom
| | - Yvonne Sadovy
- School of Biological Sciences, Swire Institute of Marine Science, The University of Hong Kong, Hong Kong
| | - Oliver Steeds
- Nekton Foundation, Begbroke Science Park, Oxford, United Kingdom
| | - Tracey Sutton
- Nova Southeastern University, Halmos College of Natural Sciences and Oceanography, Dania Beach, FL, United States
| | | | - Enriqueta Velarde
- Instituto de Ciencias Marinas y Pesquerías, Universidad Veracruzana, Veracruz, Mexico
| | - Lucy Woodall
- Nekton Foundation, Begbroke Science Park, Oxford, United Kingdom; Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
20
|
Yu F, Luo W, Xie W, Li Y, Meng S, Kan J, Ye X, Peng T, Wang H, Huang T, Hu Z. Community reassemblies of eukaryotes, prokaryotes, and viruses in the hexabromocyclododecanes-contaminated microcosms. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129159. [PMID: 35643009 DOI: 10.1016/j.jhazmat.2022.129159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/28/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The microbial community in seriously contaminated environment were not well known. This research investigated the community reassemblies in microcosms made of two distinct mangrove sediments amended with high levels of hexabromocyclododecanes (HBCDs). After eight months of contamination, the transformation of HBCDs yielded various lower brominated products and resulted in acidification (pH ~2). Therefore, the degraders and dehalogenase homologous genes involved in transformation of HBCDs only presented in low abundance to avoid further deterioration of the habitats. Moreover, in these deteriorated habitats, 1344 bacterial, 969 archaeal, 599 eukaryotic (excluded fungi), 187 fungal OTUs, and 10 viral genera, were reduced compared with controls. Specifically, in two groups of microcosms, Zetaproteobacteria, Deinococcus-Thermus, Spirochaetes, Bacteroidetes, Euryarchaeota, and Ascomycota, were positively responding taxa to HBCDs. Caloneis (Bacillariophyta) and Ascomycota turned to the dominant eukaryotic and fungal taxa. Most of predominant taxa were related to the contamination of brominated flame retardants (BFRs). Microbial communities were reassembled in divergent and sediment-dependent manner. The long-term contamination of HBCDs leaded to the change of relations between many taxa, included some of the environmental viruses and their known hosts. This research highlight the importance of monitoring the ecological effects around plants producing or processing halogenated compounds.
Collapse
Affiliation(s)
- Fei Yu
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Wenqi Luo
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Wei Xie
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Yuyang Li
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Shanshan Meng
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Jie Kan
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Xueying Ye
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Tao Peng
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Hui Wang
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Tongwang Huang
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Zhong Hu
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, PR China.
| |
Collapse
|
21
|
Kirse A, Bourlat SJ, Langen K, Zapke B, Zizka VMA. Comparison of destructive and non-destructive DNA extraction methods for the metabarcoding of arthropod bulk samples. Mol Ecol Resour 2022; 23:92-105. [PMID: 35932285 DOI: 10.1111/1755-0998.13694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/07/2022] [Accepted: 07/25/2022] [Indexed: 11/28/2022]
Abstract
DNA metabarcoding is routinely used for biodiversity assessment, especially targeting highly diverse groups for which limited taxonomic expertise is available. Various protocols are currently in use, although standardization is key to its application in large-scale monitoring. DNA metabarcoding of arthropod bulk samples can be either conducted destructively from sample tissue, or non-destructively from sample fixative or lysis buffer. Non-destructive methods are highly desirable for the preservation of sample integrity but have yet to be experimentally evaluated in detail. Here, we compare diversity estimates from 14 size sorted Malaise trap samples processed consecutively with three non-destructive approaches (one using fixative ethanol and two using lysis buffers) and one destructive approach (using homogenized tissue). Extraction from commercial lysis buffer yielded comparable species richness and high overlap in species composition to the ground tissue extracts. A significantly divergent community was detected from preservative ethanol-based DNA extraction. No consistent trend in species richness was found with increasing incubation time in lysis buffer. These results indicate that non-destructive DNA extraction from incubation in lysis buffer could provide a comparable alternative to destructive approaches with the added advantage of preserving the specimens for post-metabarcoding taxonomic work but at a higher cost per sample.
Collapse
Affiliation(s)
- Ameli Kirse
- LIB/Zoological Research Museum Alexander Koenig (ZFMK), Centre for Biodiversity Monitoring, Bonn, Germany
| | - Sarah J Bourlat
- LIB/Zoological Research Museum Alexander Koenig (ZFMK), Centre for Biodiversity Monitoring, Bonn, Germany
| | - Kathrin Langen
- LIB/Zoological Research Museum Alexander Koenig (ZFMK), Centre for Biodiversity Monitoring, Bonn, Germany
| | - Björn Zapke
- LIB/Zoological Research Museum Alexander Koenig (ZFMK), Centre for Biodiversity Monitoring, Bonn, Germany
| | - Vera M A Zizka
- LIB/Zoological Research Museum Alexander Koenig (ZFMK), Centre for Biodiversity Monitoring, Bonn, Germany
| |
Collapse
|
22
|
Flück B, Mathon L, Manel S, Valentini A, Dejean T, Albouy C, Mouillot D, Thuiller W, Murienne J, Brosse S, Pellissier L. Applying convolutional neural networks to speed up environmental DNA annotation in a highly diverse ecosystem. Sci Rep 2022; 12:10247. [PMID: 35715444 PMCID: PMC9205931 DOI: 10.1038/s41598-022-13412-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/24/2022] [Indexed: 01/04/2023] Open
Abstract
High-throughput DNA sequencing is becoming an increasingly important tool to monitor and better understand biodiversity responses to environmental changes in a standardized and reproducible way. Environmental DNA (eDNA) from organisms can be captured in ecosystem samples and sequenced using metabarcoding, but processing large volumes of eDNA data and annotating sequences to recognized taxa remains computationally expensive. Speed and accuracy are two major bottlenecks in this critical step. Here, we evaluated the ability of convolutional neural networks (CNNs) to process short eDNA sequences and associate them with taxonomic labels. Using a unique eDNA data set collected in highly diverse Tropical South America, we compared the speed and accuracy of CNNs with that of a well-known bioinformatic pipeline (OBITools) in processing a small region (60 bp) of the 12S ribosomal DNA targeting freshwater fishes. We found that the taxonomic labels from the CNNs were comparable to those from OBITools, with high correlation levels for the composition of the regional fish fauna. The CNNs enabled the processing of raw fastq files at a rate of approximately 1 million sequences per minute, which was about 150 times faster than with OBITools. Given the good performance of CNNs in the highly diverse ecosystem considered here, the development of more elaborate CNNs promises fast deployment for future biodiversity inventories using eDNA.
Collapse
Affiliation(s)
- Benjamin Flück
- Department of Environmental System Science, ETH Zürich, 8092, Zurich, Switzerland.
- Swiss Federal Research Institute WSL, 8903, Birmensdorf, Switzerland.
| | - Laëtitia Mathon
- CEFE, Univ. Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
| | - Stéphanie Manel
- CEFE, Univ. Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
| | | | | | - Camille Albouy
- DECOD (Ecosystem Dynamics and Sustainability), IFREMER, INRAE, Institut Agro - Agrocampus Ouest, Rue de l'Ile d'Yeu, BP21105, 44311, Nantes Cedex 3, France
| | - David Mouillot
- MARBEC, Univ. Montpellier,CNRS, IRD, Ifremer, Montpellier, France
- Institut Universitaire de France, IUF, 75231, Paris, France
| | - Wilfried Thuiller
- CNRS, LECA, Laboratoire d'Écologie Alpine, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, 38000, Grenoble, France
| | - Jérôme Murienne
- Laboratoire Evolution et Diversité Biologique (UMR5174), CNRS, IRD, Université Paul Sabatier, Toulouse, France
| | - Sébastien Brosse
- Laboratoire Evolution et Diversité Biologique (UMR5174), CNRS, IRD, Université Paul Sabatier, Toulouse, France
| | - Loïc Pellissier
- Department of Environmental System Science, ETH Zürich, 8092, Zurich, Switzerland.
- Swiss Federal Research Institute WSL, 8903, Birmensdorf, Switzerland.
| |
Collapse
|
23
|
Mathon L, Marques V, Mouillot D, Albouy C, Andrello M, Baletaud F, Borrero-Pérez GH, Dejean T, Edgar GJ, Grondin J, Guerin PE, Hocdé R, Juhel JB, Kadarusman, Maire E, Mariani G, McLean M, Polanco F. A, Pouyaud L, Stuart-Smith RD, Sugeha HY, Valentini A, Vigliola L, Vimono IB, Pellissier L, Manel S. Cross-ocean patterns and processes in fish biodiversity on coral reefs through the lens of eDNA metabarcoding. Proc Biol Sci 2022; 289:20220162. [PMID: 35440210 PMCID: PMC9019517 DOI: 10.1098/rspb.2022.0162] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/24/2022] [Indexed: 12/11/2022] Open
Abstract
Increasing speed and magnitude of global change threaten the world's biodiversity and particularly coral reef fishes. A better understanding of large-scale patterns and processes on coral reefs is essential to prevent fish biodiversity decline but it requires new monitoring approaches. Here, we use environmental DNA metabarcoding to reconstruct well-known patterns of fish biodiversity on coral reefs and uncover hidden patterns on these highly diverse and threatened ecosystems. We analysed 226 environmental DNA (eDNA) seawater samples from 100 stations in five tropical regions (Caribbean, Central and Southwest Pacific, Coral Triangle and Western Indian Ocean) and compared those to 2047 underwater visual censuses from the Reef Life Survey in 1224 stations. Environmental DNA reveals a higher (16%) fish biodiversity, with 2650 taxa, and 25% more families than underwater visual surveys. By identifying more pelagic, reef-associated and crypto-benthic species, eDNA offers a fresh view on assembly rules across spatial scales. Nevertheless, the reef life survey identified more species than eDNA in 47 shared families, which can be due to incomplete sequence assignment, possibly combined with incomplete detection in the environment, for some species. Combining eDNA metabarcoding and extensive visual census offers novel insights on the spatial organization of the richest marine ecosystems.
Collapse
Affiliation(s)
- Laetitia Mathon
- CEFE, Univ. Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
- ENTROPIE, Institut de Recherche pour le Développement (IRD), Univ. Réunion, UNC, CNRS, Q1 IFREMER, Nouméa, New Caledonia, France
| | - Virginie Marques
- CEFE, Univ. Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - David Mouillot
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
- Institut Universitaire de France, France
| | - Camille Albouy
- DECOD (Ecosystem Dynamics and Sustainability), IFREMER, INRAE, Institut Agro - Agrocampus Ouest, Nantes, France
| | - Marco Andrello
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
- Institute for the study of Anthropic Impacts and Sustainability in the marine environment, National Research Council (CNR-IAS), Rome, Italy
| | - Florian Baletaud
- ENTROPIE, Institut de Recherche pour le Développement (IRD), Univ. Réunion, UNC, CNRS, Q1 IFREMER, Nouméa, New Caledonia, France
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
- SOPRONER, groupe GINGER, 98000 Noumea, New Caledonia, France
| | - Giomar H. Borrero-Pérez
- Programa de Biodiversidad y Ecosistemas Marinos, Museo de Historia Natural Marina de Colombia (MHNMC), Instituto de Investigaciones Marinas y Costeras- INVEMAR, Santa Marta, Colombia
| | | | - Graham J. Edgar
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | | | | | - Régis Hocdé
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | | | - Kadarusman
- Politeknik Kelautan dan Perikanan Sorong, KKD BP Sumberdaya Genetik, Konservasi dan Domestikasi, Papua Barat, Indonesia
| | - Eva Maire
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Gael Mariani
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - Matthew McLean
- Department of Biology, Dalhousie University, Halifax NSB3H4R2, Canada
| | - Andrea Polanco F.
- Programa de Biodiversidad y Ecosistemas Marinos, Museo de Historia Natural Marina de Colombia (MHNMC), Instituto de Investigaciones Marinas y Costeras- INVEMAR, Santa Marta, Colombia
| | - Laurent Pouyaud
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Rick D. Stuart-Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Hagi Yulia Sugeha
- Research Center for Oceanography, National Research and Innovation Agency, Jl. Pasir Putih 1, Ancol Timur, Jakarta Utara 14430, Indonesia
| | | | - Laurent Vigliola
- ENTROPIE, Institut de Recherche pour le Développement (IRD), Univ. Réunion, UNC, CNRS, Q1 IFREMER, Nouméa, New Caledonia, France
| | - Indra B. Vimono
- Research Center for Oceanography, National Research and Innovation Agency, Jl. Pasir Putih 1, Ancol Timur, Jakarta Utara 14430, Indonesia
| | - Loïc Pellissier
- Landscape Ecology, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
- Unit of Land Change Science, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Stéphanie Manel
- CEFE, Univ. Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
| |
Collapse
|
24
|
Günther B, Jourdain E, Rubincam L, Karoliussen R, Cox SL, Arnaud Haond S. Feces DNA analyses track the rehabilitation of a free-ranging beluga whale. Sci Rep 2022; 12:6412. [PMID: 35440734 PMCID: PMC9018719 DOI: 10.1038/s41598-022-09285-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/08/2022] [Indexed: 01/04/2023] Open
Abstract
Following the sudden appearance, and subsequent efforts to support the survival of a beluga whale (Delphinapterus leucas) speculated to have been previously trained off the coast of Norway, we investigate the animal's ability to readapt to life in the wild. Dietary DNA (dDNA) analysis was used to assess diet throughout this rehabilitation process, and during a return to unassisted foraging and self-feeding. Metabarcoding of feces collected throughout this process, confirmed the diversification of the beluga whale's diet to local prey. These findings are indicative of improved foraging behavior, and the ability of this individual to resume wild foraging following a period of dependency in managed care. New insight of digestion rates, and the time window during which prey detection through dDNA analysis is appropriate was also obtained. Beyond the case study presented here, we demonstrate the power of dDNA analysis as a non-intrusive tool to assess the diet of large mammals and track progress adapting to life in the wild following release from captivity and rehabilitation programs.
Collapse
Affiliation(s)
- Babett Günther
- ISEM (Institut des Sciences de l'Evolution), Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France.
- MARBEC (Marine Biodiversity Exploitation and Conservation), Univ Montpellier, CNRS, Ifremer, IRD, Sète, France.
| | | | | | | | - Sam L Cox
- MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland
- School of Biological, Earth, and Environmental Sciences, University College Cork, Cork, Ireland
| | - Sophie Arnaud Haond
- MARBEC (Marine Biodiversity Exploitation and Conservation), Univ Montpellier, CNRS, Ifremer, IRD, Sète, France
| |
Collapse
|
25
|
Tedersoo L, Bahram M, Zinger L, Nilsson RH, Kennedy PG, Yang T, Anslan S, Mikryukov V. Best practices in metabarcoding of fungi: From experimental design to results. Mol Ecol 2022; 31:2769-2795. [PMID: 35395127 DOI: 10.1111/mec.16460] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/07/2022] [Accepted: 03/30/2022] [Indexed: 02/06/2023]
Abstract
The development of high-throughput sequencing (HTS) technologies has greatly improved our capacity to identify fungi and unveil their ecological roles across a variety of ecosystems. Here we provide an overview of current best practices in metabarcoding analysis of fungal communities, from experimental design through molecular and computational analyses. By reanalysing published data sets, we demonstrate that operational taxonomic units (OTUs) outperform amplified sequence variants (ASVs) in recovering fungal diversity, a finding that is particularly evident for long markers. Additionally, analysis of the full-length ITS region allows more accurate taxonomic placement of fungi and other eukaryotes compared to the ITS2 subregion. Finally, we show that specific methods for compositional data analyses provide more reliable estimates of shifts in community structure. We conclude that metabarcoding analyses of fungi are especially promising for integrating fungi into the full microbiome and broader ecosystem functioning context, recovery of novel fungal lineages and ancient organisms as well as barcoding of old specimens including type material.
Collapse
Affiliation(s)
- Leho Tedersoo
- Mycology and Microbiology Center, University of Tartu, Tartu, Estonia.,College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Bahram
- Mycology and Microbiology Center, University of Tartu, Tartu, Estonia.,Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Lucie Zinger
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École normale supérieure, CNRS, INSERM, Université PSL, Paris, France.,Naturalis Biodiversity Center, Leiden, The Netherlands
| | - R Henrik Nilsson
- Department of Biological and Environmental Sciences, Gothenburg Global Biodiversity Centre, University of Gothenburg, Göteborg, Sweden
| | - Peter G Kennedy
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA
| | - Teng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Sten Anslan
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Vladimir Mikryukov
- Mycology and Microbiology Center, University of Tartu, Tartu, Estonia.,Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
26
|
Ji F, Han D, Yan L, Yan S, Zha J, Shen J. Assessment of benthic invertebrate diversity and river ecological status along an urbanized gradient using environmental DNA metabarcoding and a traditional survey method. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150587. [PMID: 34582852 DOI: 10.1016/j.scitotenv.2021.150587] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Benthic invertebrate diversity is one of the most commonly used bioindicators for assessing aquatic ecosystem health in river systems. Although an increasing number of studies have focused on assessing benthic invertebrate diversity using environmental DNA metabarcoding and traditional survey methods, benthic invertebrate diversity and ecological status assessments performed across different landscapes within river systems have not been well documented. Here, the diversity and ecological status of benthic invertebrates and the influence of water quality on the invertebrate assemblage distribution along an urbanization gradient in rivers from the Jingjinji (JJJ) region, China, were investigated using eDNA metabarcoding and the traditional method. With the combination of the two methods, 395 benthic invertebrates from 6 phyla, 27 orders, 94 families, and 222 genera were identified. The species richness of the benthic invertebrate community in the mountain area was significantly higher than that in the urban and agricultural areas. Compared to the traditional results, eDNA metabarcoding obtained a significantly greater number of species from every sampling site (P = 0.000) and detected a notably higher abundance in Annelida (P = 0.000). Furthermore, the nonmetric multidimensional scaling (NMDS) and permutational multivariate analysis of variance (PERMANOVA) based on the Bray-Curtis dissimilarity index indicated that the benthic invertebrate communities from the different habitats were discriminated more accurately and easily using eDNA metabarcoding (P = 0.038) than with the traditional method (P = 0.829). Additionally, the assemblages identified by eDNA metabarcoding were more closely linked to water quality and could be realistically used to assess the ecological status of rivers. Our findings highlight that eDNA metabarcoding could represent a rapid and reliable method for estimating benthic invertebrate diversity and ecological status in river systems.
Collapse
Affiliation(s)
- Fenfen Ji
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dingyi Han
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Yan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Saihong Yan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jianzhong Shen
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
27
|
Marques V, Castagné P, Polanco A, Borrero-Pérez GH, Hocdé R, Guérin PÉ, Juhel JB, Velez L, Loiseau N, Letessier TB, Bessudo S, Valentini A, Dejean T, Mouillot D, Pellissier L, Villéger S. Use of environmental DNA in assessment of fish functional and phylogenetic diversity. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2021; 35:1944-1956. [PMID: 34224158 DOI: 10.1111/cobi.13802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/19/2021] [Accepted: 05/03/2021] [Indexed: 06/13/2023]
Abstract
Assessing the impact of global changes and protection effectiveness is a key step in monitoring marine fishes. Most traditional census methods are demanding or destructive. Nondisturbing and nonlethal approaches based on video and environmental DNA are alternatives to underwater visual census or fishing. However, their ability to detect multiple biodiversity factors beyond traditional taxonomic diversity is still unknown. For bony fishes and elasmobranchs, we compared the performance of eDNA metabarcoding and long-term remote video to assess species' phylogenetic and functional diversity. We used 10 eDNA samples from 30 L of water each and 25 hr of underwater videos over 4 days on Malpelo Island (pacific coast of Colombia), a remote marine protected area. Metabarcoding of eDNA detected 66% more molecular operational taxonomic units (MOTUs) than species on video. We found 66 and 43 functional entities with a single eDNA marker and videos, respectively, and higher functional richness for eDNA than videos. Despite gaps in genetic reference databases, eDNA also detected a higher fish phylogenetic diversity than videos; accumulation curves showed how 1 eDNA transect detected as much phylogenetic diversity as 25 hr of video. Environmental DNA metabarcoding can be used to affordably, efficiently, and accurately census biodiversity factors in marine systems. Although taxonomic assignments are still limited by species coverage in genetic reference databases, use of MOTUs highlights the potential of eDNA metabarcoding once reference databases have expanded.
Collapse
Affiliation(s)
- Virginie Marques
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Montpellier, France
- CEFE, Univ. Montpellier, CNRS, EPHE-PSL University, IRD, Univ Paul Valery Montpellier 3, Montpellier, France
| | - Paul Castagné
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Andréa Polanco
- Instituto de Investigaciones Marinas y Costeras-INVEMAR, Colombia, Museo de Historia Natural Marina de Colombia (MHNMC), Programa de Biodiversidad y Ecosistemas Marinos, Santa Marta, Colombia
| | - Giomar Helena Borrero-Pérez
- Instituto de Investigaciones Marinas y Costeras-INVEMAR, Colombia, Museo de Historia Natural Marina de Colombia (MHNMC), Programa de Biodiversidad y Ecosistemas Marinos, Santa Marta, Colombia
| | - Régis Hocdé
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Pierre-Édouard Guérin
- CEFE, Univ. Montpellier, CNRS, EPHE-PSL University, IRD, Univ Paul Valery Montpellier 3, Montpellier, France
| | | | - Laure Velez
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Nicolas Loiseau
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | | | - Sandra Bessudo
- Fundación Malpelo y Otros Ecosistemas Marinos, Bogotá, Colombia
| | | | | | - David Mouillot
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Montpellier, France
- Institut Universitaire de France, Paris, France
| | - Loïc Pellissier
- Landscape Ecology, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | | |
Collapse
|
28
|
Trouche B, Brandt MI, Belser C, Orejas C, Pesant S, Poulain J, Wincker P, Auguet JC, Arnaud-Haond S, Maignien L. Diversity and Biogeography of Bathyal and Abyssal Seafloor Bacteria and Archaea Along a Mediterranean-Atlantic Gradient. Front Microbiol 2021; 12:702016. [PMID: 34790173 PMCID: PMC8591283 DOI: 10.3389/fmicb.2021.702016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/22/2021] [Indexed: 11/28/2022] Open
Abstract
Seafloor sediments cover the majority of planet Earth and microorganisms inhabiting these environments play a central role in marine biogeochemical cycles. Yet, description of the biogeography and distribution of sedimentary microbial life is still too sparse to evaluate the relative contribution of processes driving this distribution, such as the levels of drift, connectivity, and specialization. To address this question, we analyzed 210 archaeal and bacterial metabarcoding libraries from a standardized and horizon-resolved collection of sediment samples from 18 stations along a longitudinal gradient from the eastern Mediterranean to the western Atlantic. Overall, we found that biogeographic patterns depended on the scale considered: while at local scale the selective influence of contemporary environmental conditions appeared strongest, the heritage of historic processes through dispersal limitation and drift became more apparent at regional scale, and ended up superseding contemporary influences at inter-regional scale. When looking at environmental factors, the structure of microbial communities was correlated primarily with water depth, with a clear transition between 800 and 1,200 meters below sea level. Oceanic basin, water temperature, and sediment depth were other important explanatory parameters of community structure. Finally, we propose increasing dispersal limitation and ecological drift with sediment depth as a probable factor for the enhanced divergence of deeper horizons communities.
Collapse
Affiliation(s)
- Blandine Trouche
- Univ Brest, CNRS, IFREMER, Microbiology of Extreme Environments Laboratory (LM2E), Plouzané, France
| | | | - Caroline Belser
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Évry, Université Paris-Saclay, Evry, France
| | - Covadonga Orejas
- Centro Oceanográfico de Baleares, Instituto Español de Oceanografía, Palma de Mallorca, Spain
| | - Stéphane Pesant
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, United Kingdom
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Évry, Université Paris-Saclay, Evry, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Évry, Université Paris-Saclay, Evry, France
| | | | | | - Loïs Maignien
- Univ Brest, CNRS, IFREMER, Microbiology of Extreme Environments Laboratory (LM2E), Plouzané, France.,Marine Biological Laboratory, Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole, MA, United States
| |
Collapse
|
29
|
Ikegami H, Noguchi S, Fukuda K, Akata K, Yamasaki K, Kawanami T, Mukae H, Yatera K. Refinement of microbiota analysis of specimens from patients with respiratory infections using next-generation sequencing. Sci Rep 2021; 11:19534. [PMID: 34599245 PMCID: PMC8486753 DOI: 10.1038/s41598-021-98985-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Next-generation sequencing (NGS) technologies have been applied in bacterial flora analysis. However, there is no standardized protocol, and the optimal clustering threshold for estimating bacterial species in respiratory infection specimens is unknown. This study was conducted to investigate the optimal threshold for clustering 16S ribosomal RNA gene sequences into operational taxonomic units (OTUs) by comparing the results of NGS technology with those of the Sanger method, which has a higher accuracy of sequence per single read than NGS technology. This study included 45 patients with pneumonia with aspiration risks and 35 patients with lung abscess. Compared to Sanger method, the concordance rates of NGS technology (clustered at 100%, 99%, and 97% homology) with the predominant phylotype were 78.8%, 71.3%, and 65.0%, respectively. With respect to the specimens dominated by the Streptococcus mitis group, containing several important causative agents of pneumonia, Bray Curtis dissimilarity revealed that the OTUs obtained at 100% clustering threshold (versus those obtained at 99% and 97% thresholds; medians of 0.35, 0.69, and 0.71, respectively) were more similar to those obtained by the Sanger method, with statistical significance (p < 0.05). Clustering with 100% sequence identity is necessary when analyzing the microbiota of respiratory infections using NGS technology.
Collapse
Affiliation(s)
- Hiroaki Ikegami
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu-city, Fukuoka, 807-8555, Japan
| | - Shingo Noguchi
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu-city, Fukuoka, 807-8555, Japan
| | - Kazumasa Fukuda
- Department of Microbiology, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Kentaro Akata
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu-city, Fukuoka, 807-8555, Japan
| | - Kei Yamasaki
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu-city, Fukuoka, 807-8555, Japan
| | - Toshinori Kawanami
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu-city, Fukuoka, 807-8555, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazuhiro Yatera
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu-city, Fukuoka, 807-8555, Japan.
| |
Collapse
|
30
|
Creedy TJ, Andújar C, Meramveliotakis E, Noguerales V, Overcast I, Papadopoulou A, Morlon H, Vogler AP, Emerson BC, Arribas P. Coming of age for COI metabarcoding of whole organism community DNA: Towards bioinformatic harmonisation. Mol Ecol Resour 2021; 22:847-861. [PMID: 34496132 PMCID: PMC9292290 DOI: 10.1111/1755-0998.13502] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/28/2021] [Accepted: 08/23/2021] [Indexed: 11/26/2022]
Abstract
Metabarcoding of DNA extracted from community samples of whole organisms (whole organism community DNA, wocDNA) is increasingly being applied to terrestrial, marine and freshwater metazoan communities to provide rapid, accurate and high resolution data for novel molecular ecology research. The growth of this field has been accompanied by considerable development that builds on microbial metabarcoding methods to develop appropriate and efficient sampling and laboratory protocols for whole organism metazoan communities. However, considerably less attention has focused on ensuring bioinformatic methods are adapted and applied comprehensively in wocDNA metabarcoding. In this study we examined over 600 papers and identified 111 studies that performed COI metabarcoding of wocDNA. We then systematically reviewed the bioinformatic methods employed by these papers to identify the state‐of‐the‐art. Our results show that the increasing use of wocDNA COI metabarcoding for metazoan diversity is characterised by a clear absence of bioinformatic harmonisation, and the temporal trends show little change in this situation. The reviewed literature showed (i) high heterogeneity across pipelines, tasks and tools used, (ii) limited or no adaptation of bioinformatic procedures to the nature of the COI fragment, and (iii) a worrying underreporting of tasks, software and parameters. Based upon these findings we propose a set of recommendations that we think the metabarcoding community should consider to ensure that bioinformatic methods are appropriate, comprehensive and comparable. We believe that adhering to these recommendations will improve the long‐term integrative potential of wocDNA COI metabarcoding for biodiversity science.
Collapse
Affiliation(s)
- Thomas J Creedy
- Department of Life Sciences, Natural History Museum, London, UK
| | - Carmelo Andújar
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), S.C. La Laguna, Spain
| | | | - Victor Noguerales
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), S.C. La Laguna, Spain.,Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Isaac Overcast
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieur, CNRS, INSERM, Université PSL, Paris, France
| | - Anna Papadopoulou
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Hélène Morlon
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieur, CNRS, INSERM, Université PSL, Paris, France
| | - Alfried P Vogler
- Department of Life Sciences, Natural History Museum, London, UK.,Department of Life Sciences, Imperial College London Silwood Park Campus, Ascot, UK
| | - Brent C Emerson
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), S.C. La Laguna, Spain
| | - Paula Arribas
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), S.C. La Laguna, Spain
| |
Collapse
|
31
|
Günther B, Marre S, Defois C, Merzi T, Blanc P, Peyret P, Arnaud-Haond S. Capture by hybridization for full-length barcode-based eukaryotic and prokaryotic biodiversity inventories of deep sea ecosystems. Mol Ecol Resour 2021; 22:623-637. [PMID: 34486815 DOI: 10.1111/1755-0998.13500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/04/2021] [Accepted: 09/01/2021] [Indexed: 01/04/2023]
Abstract
Biodiversity inventory of marine systems remains limited due to unbalanced access to the three ocean dimensions. The use of environmental DNA (eDNA) for metabarcoding allows fast and effective biodiversity inventory and is forecast as a future biodiversity research and biomonitoring tool. However, in poorly understood ecosystems, eDNA results remain difficult to interpret due to large gaps in reference databases and PCR bias limiting the detection of some major phyla. Here, we aimed to circumvent these limitations by avoiding PCR and recollecting larger DNA fragments to improve assignment of detected taxa through phylogenetic reconstruction. We applied capture by hybridization (CBH) to enrich DNA from deep-sea sediment samples and compared the results with those obtained through an up-to-date metabarcoding PCR-based approach (MTB). Originally developed for bacterial communities and targeting 16S rDNA, the CBH approach was applied to 18S rDNA to improve the detection of species forming benthic communities of eukaryotes, with a particular focus on metazoans. The results confirmed the possibility of extending CBH to metazoans with two major advantages: (i) CBH revealed a broader spectrum of prokaryotic, eukaryotic, and particularly metazoan diversity, and (ii) CBH allowed much more robust phylogenetic reconstructions of full-length barcodes with up to 1900 base pairs. This is particularly important for taxa whose assignment is hampered by gaps in reference databases. This study provides a database and probes to apply 18S CBH to diverse marine systems, confirming this promising new tool to improve biodiversity assessments in data-poor ecosystems such as those in the deep sea.
Collapse
Affiliation(s)
- Babett Günther
- MARBEC, Universite of Montpellier, CNRS, Ifremer, IRD, Sète, France
| | - Sophie Marre
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, Clermont-Ferrand, France
| | - Clémence Defois
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, Clermont-Ferrand, France
| | - Thomas Merzi
- Total SE, Centre Scientifique et Technique Jean Feger, Pau, France
| | - Philippe Blanc
- Total SE, Centre Scientifique et Technique Jean Feger, Pau, France
| | - Pierre Peyret
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, Clermont-Ferrand, France
| | | |
Collapse
|
32
|
Günther B, Fromentin JM, Metral L, Arnaud-Haond S. Metabarcoding confirms the opportunistic foraging behaviour of Atlantic bluefin tuna and reveals the importance of gelatinous prey. PeerJ 2021; 9:e11757. [PMID: 34447617 PMCID: PMC8366523 DOI: 10.7717/peerj.11757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/21/2021] [Indexed: 12/22/2022] Open
Abstract
Studies of the diet, feeding habits and trophic activity of top marine predators are essential for understanding their trophodynamics. The main direct method used for such studies thus far has been morphological inventories of stomach contents. This approach presents limitations such as missing gelatinous prey, which are usually digested too quickly to be detectable. Here, we analysed the stomachs of 48 Atlantic bluefin tuna (Thunnus thynnus, approximately 15 to 60 kg, including juveniles and adult fishes) collected from the Mediterranean Sea through the metabarcoding of two gene regions (cytochrome c oxidase subunit I (COI) and the ribosomal 18S-V1V2 region). The identified prey taxa and their relative read abundances (RRAs) estimated using COI results were in line with the findings of morphologically based inventories simultaneously performed on the same set of tuna samples. In both cases (and with the same rankings), the prey taxa included anchovy (Engraulis encrasicolus, here detected in more than 80% of samples, RRA = 43%), sardine (Sardina pilchardus, also approximately 80%, RRA = 30%), sprat (Sprattus sprattus, approximately 66%, RRA = 8%), mackerel (Scomber colias, approximately 44%, RRA = 7%) and cephalopods (approximately 15%, RRA = 1.4%). Another striking result was the detection, based on 18S (with which vertebrates were detected as the most abundant group, RRA = 61.6%), of a high prevalence and diversity of gelatinous organisms (RRA = 27.1%), including cnidarians (6.7%), salps (11.7%), and ctenophores (8.7%), the latter increasing with the size of the predator. These results thus support the hypothesis of the role of gelatinous prey in the diet of Atlantic bluefin tuna, suggesting that this species is even more generalist and opportunistic than previously thought. This study further confirms that DNA metabarcoding can be a powerful tool for assessing the diet and trophodynamics of top marine predators.
Collapse
Affiliation(s)
- Babett Günther
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Sète, France
| | | | - Luisa Metral
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Sète, France
| | | |
Collapse
|
33
|
Brandt MI, Pradillon F, Trouche B, Henry N, Liautard-Haag C, Cambon-Bonavita MA, Cueff-Gauchard V, Wincker P, Belser C, Poulain J, Arnaud-Haond S, Zeppilli D. Evaluating sediment and water sampling methods for the estimation of deep-sea biodiversity using environmental DNA. Sci Rep 2021; 11:7856. [PMID: 33846371 PMCID: PMC8041860 DOI: 10.1038/s41598-021-86396-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Despite representing one of the largest biomes on earth, biodiversity of the deep seafloor is still poorly known. Environmental DNA metabarcoding offers prospects for fast inventories and surveys, yet requires standardized sampling approaches and careful choice of environmental substrate. Here, we aimed to optimize the genetic assessment of prokaryote (16S), protistan (18S V4), and metazoan (18S V1-V2, COI) communities, by evaluating sampling strategies for sediment and aboveground water, deployed simultaneously at one deep-sea site. For sediment, while size-class sorting through sieving had no significant effect on total detected alpha diversity and resolved similar taxonomic compositions at the phylum level for all markers studied, it effectively increased the detection of meiofauna phyla. For water, large volumes obtained from an in situ pump (~ 6000 L) detected significantly more metazoan diversity than 7.5 L collected in sampling boxes. However, the pump being limited by larger mesh sizes (> 20 µm), only captured a fraction of microbial diversity, while sampling boxes allowed access to the pico- and nanoplankton. More importantly, communities characterized by aboveground water samples significantly differed from those characterized by sediment, whatever volume used, and both sample types only shared between 3 and 8% of molecular units. Together, these results underline that sediment sieving may be recommended when targeting metazoans, and aboveground water does not represent an alternative to sediment sampling for inventories of benthic diversity.
Collapse
Affiliation(s)
- Miriam I. Brandt
- grid.121334.60000 0001 2097 0141MARBEC, IFREMER, IRD, CNRS, Univ Montpellier, Sète, France
| | - Florence Pradillon
- grid.4825.b0000 0004 0641 9240Centre Brest, Laboratoire Environnement Profond (REM/EEP/LEP), IFREMER, CS10070, 29280 Plouzané, France
| | - Blandine Trouche
- grid.4825.b0000 0004 0641 9240IFREMER, CNRS, Laboratoire de Microbiologie Des Environnements Extrêmes (LM2E), Univ Brest, Plouzané, France
| | - Nicolas Henry
- grid.462844.80000 0001 2308 1657CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, Sorbonne University, 29680 Roscoff, France
| | - Cathy Liautard-Haag
- grid.121334.60000 0001 2097 0141MARBEC, IFREMER, IRD, CNRS, Univ Montpellier, Sète, France
| | - Marie-Anne Cambon-Bonavita
- grid.4825.b0000 0004 0641 9240IFREMER, CNRS, Laboratoire de Microbiologie Des Environnements Extrêmes (LM2E), Univ Brest, Plouzané, France
| | - Valérie Cueff-Gauchard
- grid.4825.b0000 0004 0641 9240IFREMER, CNRS, Laboratoire de Microbiologie Des Environnements Extrêmes (LM2E), Univ Brest, Plouzané, France
| | - Patrick Wincker
- grid.434728.e0000 0004 0641 2997Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ of Évry, Paris-Saclay University, 91057 Evry, France
| | - Caroline Belser
- grid.434728.e0000 0004 0641 2997Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ of Évry, Paris-Saclay University, 91057 Evry, France
| | - Julie Poulain
- grid.434728.e0000 0004 0641 2997Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ of Évry, Paris-Saclay University, 91057 Evry, France
| | - Sophie Arnaud-Haond
- grid.121334.60000 0001 2097 0141MARBEC, IFREMER, IRD, CNRS, Univ Montpellier, Sète, France
| | - Daniela Zeppilli
- grid.4825.b0000 0004 0641 9240Centre Brest, Laboratoire Environnement Profond (REM/EEP/LEP), IFREMER, CS10070, 29280 Plouzané, France
| |
Collapse
|