1
|
Luo M, Zhao J, Merilä J, Barrett RDH, Guo B, Hu J. The interplay between epigenomic and transcriptomic variation during ecotype divergence in stickleback. BMC Biol 2025; 23:70. [PMID: 40038570 PMCID: PMC11881503 DOI: 10.1186/s12915-025-02176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 02/21/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Populations colonizing contrasting environments are likely to undergo adaptive divergence and evolve ecotypes with locally adapted phenotypes. While diverse molecular mechanisms underlying ecotype divergence have been identified, less is known about their interplay and degree of divergence. RESULTS Here we integrated epigenomic and transcriptomic data to explore the interactions among gene expression, alternative splicing, DNA methylation, and microRNA expression to gauge the extent to which patterns of divergence at the four molecular levels are aligned in a case of postglacial divergence between marine and freshwater ecotypes of nine-spined sticklebacks (Pungitius pungitius). Despite significant genome-wide associations between epigenomic and transcriptomic variation, we found largely non-parallel patterns of ecotype divergence across epigenomic and transcriptomic levels, with predominantly nonoverlapping (ranging from 43.40 to 87.98%) sets of differentially expressed, spliced and methylated genes, and candidate genes targeted by differentially expressed miRNA between the ecotypes. Furthermore, we found significant variation in the extent of ecotype divergence across different molecular mechanisms, with differential methylation and differential splicing showing the highest and lowest extent of divergence between ecotypes, respectively. Finally, we found a significant enrichment of genes associated with ecotype divergence in differential methylation. CONCLUSIONS Our results suggest a nuanced relationship between epigenomic and transcriptomic processes, with alignment at the genome-wide level masking relatively independent effects of different molecular mechanisms on ecotype divergence at the gene level.
Collapse
Affiliation(s)
- Man Luo
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Junjie Zhao
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Juha Merilä
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Area of Ecology and Biodiversity, The School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | | | - Baocheng Guo
- Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management & Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Juntao Hu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Fischer D, Tapio M, Bitz O, Iso-Touru T, Kause A, Tapio I. Fine-tuning GBS data with comparison of reference and mock genome approaches for advancing genomic selection in less studied farmed species. BMC Genomics 2025; 26:111. [PMID: 39910437 PMCID: PMC11796084 DOI: 10.1186/s12864-025-11296-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 01/27/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Diversifying animal cultivation demands efficient genotyping for enabling genomic selection, but non-model species lack efficient genotyping solutions. The aim of this study was to optimize a genotyping-by-sequencing (GBS) double-digest RAD-sequencing (ddRAD) pipeline. Bovine data was used to automate the bioinformatic analysis. The application of the optimization was demonstrated on non-model European whitefish data. RESULTS DdRAD data generation was designed for a reliable estimation of relatedness and is scalable to up to 384 samples. The GBS sequencing yielded approximately one million reads for each of the around 100 assessed samples. Optimizing various strategies to create a de-novo reference genome for variant calling (mock reference) showed that using three samples outperformed other building strategies with single or very large number of samples. Adjustments to most pipeline tuning parameters had limited impact on high-quality data, except for the identity criterion for merging mock reference genome clusters. For each species, over 15k GBS variants based on the mock reference were obtained and showed comparable results with the ones called using an existing reference genome. Repeatability analysis showed high concordance over replicates, particularly in bovine while in European whitefish data repeatability did not exceed earlier observations. CONCLUSIONS The proposed cost-effective ddRAD strategy, coupled with an efficient bioinformatics workflow, enables broad adoption of ddRAD GBS across diverse farmed species. While beneficial, a reference genome is not obligatory. The integration of Snakemake streamlines the pipeline usage on computer clusters and supports customization. This user-friendly solution facilitates genotyping for both model and non-model species.
Collapse
Affiliation(s)
- Daniel Fischer
- Applied Statistical Methods, Natural Resources, Natural Resources Institute Finland (Luke), Jokioinen, 31600, Finland.
| | - Miika Tapio
- Genomics and Breeding, Production Systems, Natural Resources Institute Finland (Luke), Jokioinen, 31600, Finland
| | - Oliver Bitz
- Genomics and Breeding, Production Systems, Natural Resources Institute Finland (Luke), Jokioinen, 31600, Finland
| | - Terhi Iso-Touru
- Genomics and Breeding, Production Systems, Natural Resources Institute Finland (Luke), Jokioinen, 31600, Finland
| | - Antti Kause
- Genomics and Breeding, Production Systems, Natural Resources Institute Finland (Luke), Jokioinen, 31600, Finland
| | - Ilma Tapio
- Genomics and Breeding, Production Systems, Natural Resources Institute Finland (Luke), Jokioinen, 31600, Finland
| |
Collapse
|
3
|
Yi X, Wang D, Reid K, Feng X, Löytynoja A, Merilä J. Sex chromosome turnover in hybridizing stickleback lineages. Evol Lett 2024; 8:658-668. [PMID: 39328282 PMCID: PMC11424075 DOI: 10.1093/evlett/qrae019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/13/2024] [Accepted: 04/19/2024] [Indexed: 09/28/2024] Open
Abstract
Recent discoveries of sex chromosome diversity across the tree of life have challenged the canonical model of conserved sex chromosome evolution and evoked new theories on labile sex chromosomes that maintain less differentiation and undergo frequent turnover. However, theories of labile sex chromosome evolution lack direct empirical support due to the paucity of case studies demonstrating ongoing sex chromosome turnover in nature. Two divergent lineages (viz. WL & EL) of nine-spined sticklebacks (Pungitius pungitius) with different sex chromosomes (linkage group [LG] 12 in the EL, unknown in the WL) hybridize in a natural secondary contact zone in the Baltic Sea, providing an opportunity to study ongoing turnover between coexisting sex chromosomes. In this study, we first identify an 80 kbp genomic region on LG3 as the sex-determining region (SDR) using whole-genome resequencing data of family crosses of a WL population. We then verify this region as the SDR in most other WL populations and demonstrate a potentially ongoing sex chromosome turnover in admixed marine populations where the evolutionarily younger and homomorphic LG3 sex chromosome replaces the older and heteromorphic LG12 sex chromosome. The results provide a rare glimpse of sex chromosome turnover in the wild and indicate the possible existence of additional yet undiscovered sex chromosome diversity in Pungitius sticklebacks.
Collapse
Affiliation(s)
- Xueling Yi
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Dandan Wang
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Kerry Reid
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Xueyun Feng
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ari Löytynoja
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Juha Merilä
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Yi X, Kemppainen P, Reid K, Chen Y, Rastas P, Fraimout A, Merilä J. Heterogeneous genomic architecture of skeletal armour traits in sticklebacks. J Evol Biol 2024; 37:995-1008. [PMID: 39073424 DOI: 10.1093/jeb/voae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/28/2024] [Accepted: 07/27/2024] [Indexed: 07/30/2024]
Abstract
Whether populations adapt to similar selection pressures using the same underlying genetic variants depends on population history and the distribution of standing genetic variation at the metapopulation level. Studies of sticklebacks provide a case in point: when colonizing and adapting to freshwater habitats, three-spined sticklebacks (Gasterosteus aculeatus) with high gene flow tend to fix the same adaptive alleles in the same major loci, whereas nine-spined sticklebacks (Pungitius pungitius) with limited gene flow tend to utilize a more heterogeneous set of loci. In accordance with this, we report results of quantitative trait locus (QTL) analyses using a backcross design showing that lateral plate number variation in the western European nine-spined sticklebacks mapped to 3 moderate-effect QTL, contrary to the major-effect QTL in three-spined sticklebacks and different from the 4 QTL previously identified in the eastern European nine-spined sticklebacks. Furthermore, several QTL were identified associated with variation in lateral plate size, and 3 moderate-effect QTL with body size. Together, these findings indicate more heterogenous and polygenic genetic underpinnings of skeletal armour variation in nine-spined than three-spined sticklebacks, indicating limited genetic parallelism underlying armour trait evolution in the family Gasterostidae.
Collapse
Affiliation(s)
- Xueling Yi
- Area of Ecology and Biodiversity, School of Biological Sciences, University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Petri Kemppainen
- Area of Ecology and Biodiversity, School of Biological Sciences, University of Hong Kong, Hong Kong, Hong Kong SAR
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Programme, University of Helsinki, Helsinki, Finland
| | - Kerry Reid
- Area of Ecology and Biodiversity, School of Biological Sciences, University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Ying Chen
- Area of Ecology and Biodiversity, School of Biological Sciences, University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Pasi Rastas
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Antoine Fraimout
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Programme, University of Helsinki, Helsinki, Finland
| | - Juha Merilä
- Area of Ecology and Biodiversity, School of Biological Sciences, University of Hong Kong, Hong Kong, Hong Kong SAR
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Programme, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Wang D, Rastas P, Yi X, Löytynoja A, Kivikoski M, Feng X, Reid K, Merilä J. Improved assembly of the Pungitius pungitius reference genome. G3 (BETHESDA, MD.) 2024; 14:jkae126. [PMID: 38861393 PMCID: PMC11304971 DOI: 10.1093/g3journal/jkae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/13/2024]
Abstract
The nine-spined stickleback (Pungitius pungitius) has been increasingly used as a model system in studies of local adaptation and sex chromosome evolution but its current reference genome assembly is far from perfect, lacking distinct sex chromosomes. We generated an improved assembly of the nine-spined stickleback reference genome (98.3% BUSCO completeness) with the aid of linked-read mapping. While the new assembly (v8) was of similar size as the earlier version (v7), we were able to assign 4.4 times more contigs to the linkage groups and improve the contiguity of the genome. Moreover, the new assembly contains a ∼22.8 Mb Y-linked scaffold (LG22) consisting mainly of previously assigned X-contigs, putative Y-contigs, putative centromere contigs, and highly repetitive elements. The male individual showed an even mapping depth on LG12 (pseudo X chromosome) and LG22 (Y-linked scaffold) in the segregating sites, suggesting near-pure X and Y representation in the v8 assembly. A total of 26,803 genes were annotated, and about 33% of the assembly was found to consist of repetitive elements. The high proportion of repetitive elements in LG22 (53.10%) suggests it can be difficult to assemble the complete sequence of the species' Y chromosome. Nevertheless, the new assembly is a significant improvement over the previous version and should provide a valuable resource for genomic studies of stickleback fishes.
Collapse
Affiliation(s)
- Dandan Wang
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, 999077, Hong Kong SAR
| | - Pasi Rastas
- Institute of Biotechnology, University of Helsinki, Helsinki FI-00014, Finland
| | - Xueling Yi
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, 999077, Hong Kong SAR
| | - Ari Löytynoja
- Institute of Biotechnology, University of Helsinki, Helsinki FI-00014, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| | - Mikko Kivikoski
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
- Department of Computer Science, University of Helsinki, Helsinki FI-00014, Finland
| | - Xueyun Feng
- Institute of Biotechnology, University of Helsinki, Helsinki FI-00014, Finland
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| | - Kerry Reid
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, 999077, Hong Kong SAR
| | - Juha Merilä
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, 999077, Hong Kong SAR
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| |
Collapse
|
6
|
de Jong TV, Pan Y, Rastas P, Munro D, Tutaj M, Akil H, Benner C, Chen D, Chitre AS, Chow W, Colonna V, Dalgard CL, Demos WM, Doris PA, Garrison E, Geurts AM, Gunturkun HM, Guryev V, Hourlier T, Howe K, Huang J, Kalbfleisch T, Kim P, Li L, Mahaffey S, Martin FJ, Mohammadi P, Ozel AB, Polesskaya O, Pravenec M, Prins P, Sebat J, Smith JR, Solberg Woods LC, Tabakoff B, Tracey A, Uliano-Silva M, Villani F, Wang H, Sharp BM, Telese F, Jiang Z, Saba L, Wang X, Murphy TD, Palmer AA, Kwitek AE, Dwinell MR, Williams RW, Li JZ, Chen H. A revamped rat reference genome improves the discovery of genetic diversity in laboratory rats. CELL GENOMICS 2024; 4:100527. [PMID: 38537634 PMCID: PMC11019364 DOI: 10.1016/j.xgen.2024.100527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/26/2023] [Accepted: 02/29/2024] [Indexed: 04/09/2024]
Abstract
The seventh iteration of the reference genome assembly for Rattus norvegicus-mRatBN7.2-corrects numerous misplaced segments and reduces base-level errors by approximately 9-fold and increases contiguity by 290-fold compared with its predecessor. Gene annotations are now more complete, improving the mapping precision of genomic, transcriptomic, and proteomics datasets. We jointly analyzed 163 short-read whole-genome sequencing datasets representing 120 laboratory rat strains and substrains using mRatBN7.2. We defined ∼20.0 million sequence variations, of which 18,700 are predicted to potentially impact the function of 6,677 genes. We also generated a new rat genetic map from 1,893 heterogeneous stock rats and annotated transcription start sites and alternative polyadenylation sites. The mRatBN7.2 assembly, along with the extensive analysis of genomic variations among rat strains, enhances our understanding of the rat genome, providing researchers with an expanded resource for studies involving rats.
Collapse
Affiliation(s)
- Tristan V de Jong
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yanchao Pan
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Pasi Rastas
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Daniel Munro
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA; Department of Integrative Structural and Computational Biology, Scripps Research, San Diego, CA, USA
| | - Monika Tutaj
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Huda Akil
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Chris Benner
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Denghui Chen
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Apurva S Chitre
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - William Chow
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | - Vincenza Colonna
- Institute of Genetics and Biophysics, National Research Council, Naples, Italy; Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Clifton L Dalgard
- Department of Anatomy, Physiology & Genetics, The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Wendy M Demos
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Peter A Doris
- The Brown Foundation Institute of Molecular Medicine, Center for Human Genetics, University of Texas Health Science Center, Houston, TX, USA
| | - Erik Garrison
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hakan M Gunturkun
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Victor Guryev
- Genome Structure and Ageing, University of Groningen, UMC, Groningen, the Netherlands
| | - Thibaut Hourlier
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus in Hinxton, Cambridgeshire, UK
| | - Kerstin Howe
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | - Jun Huang
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ted Kalbfleisch
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Louisville, KY, USA
| | - Panjun Kim
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ling Li
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA; Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Spencer Mahaffey
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Fergal J Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus in Hinxton, Cambridgeshire, UK
| | - Pejman Mohammadi
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Ayse Bilge Ozel
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Michal Pravenec
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Pjotr Prins
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jonathan Sebat
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Jennifer R Smith
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Leah C Solberg Woods
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Boris Tabakoff
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alan Tracey
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | | | - Flavia Villani
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Hongyang Wang
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Burt M Sharp
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Francesca Telese
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Zhihua Jiang
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Laura Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Xusheng Wang
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA; Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Terence D Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Anne E Kwitek
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Melinda R Dwinell
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jun Z Li
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
| | - Hao Chen
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
7
|
Feng X, Merilä J, Löytynoja A. Secondary Contact, Introgressive Hybridization, and Genome Stabilization in Sticklebacks. Mol Biol Evol 2024; 41:msae031. [PMID: 38366566 PMCID: PMC10903534 DOI: 10.1093/molbev/msae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/20/2023] [Accepted: 02/09/2024] [Indexed: 02/18/2024] Open
Abstract
Advances in genomic studies have revealed that hybridization in nature is pervasive and raised questions about the dynamics of different genetic and evolutionary factors following the initial hybridization event. While recent research has proposed that the genomic outcomes of hybridization might be predictable to some extent, many uncertainties remain. With comprehensive whole-genome sequence data, we investigated the genetic introgression between 2 divergent lineages of 9-spined sticklebacks (Pungitius pungitius) in the Baltic Sea. We found that the intensity and direction of selection on the introgressed variation has varied across different genomic elements: while functionally important regions displayed reduced rates of introgression, promoter regions showed enrichment. Despite the general trend of negative selection, we identified specific genomic regions that were enriched for introgressed variants, and within these regions, we detected footprints of selection, indicating adaptive introgression. Geographically, we found the selection against the functional changes to be strongest in the vicinity of the secondary contact zone and weaken as a function of distance from the initial contact. Altogether, the results suggest that the stabilization of introgressed variation in the genomes is a complex, multistage process involving both negative and positive selection. In spite of the predominance of negative selection against introgressed variants, we also found evidence for adaptive introgression variants likely associated with adaptation to Baltic Sea environmental conditions.
Collapse
Affiliation(s)
- Xueyun Feng
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00014, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Juha Merilä
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00014, Finland
- Area of Ecology and Biodiversity, The School of Biological Sciences, Kadoorie Biological Sciences Building, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Ari Löytynoja
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
8
|
Zhang C, Reid K, Sands AF, Fraimout A, Schierup MH, Merilä J. De Novo Mutation Rates in Sticklebacks. Mol Biol Evol 2023; 40:msad192. [PMID: 37648662 PMCID: PMC10503787 DOI: 10.1093/molbev/msad192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023] Open
Abstract
Mutation rate is a fundamental parameter in population genetics. Apart from being an important scaling parameter for demographic and phylogenetic inference, it allows one to understand at what rate new genetic diversity is generated and what the expected level of genetic diversity is in a population at equilibrium. However, except for well-established model organisms, accurate estimates of de novo mutation rates are available for a very limited number of organisms from the wild. We estimated mutation rates (µ) in two marine populations of the nine-spined stickleback (Pungitius pungitius) with the aid of several 2- and 3-generational family pedigrees, deep (>50×) whole-genome resequences and a high-quality reference genome. After stringent filtering, we discovered 308 germline mutations in 106 offspring translating to µ = 4.83 × 10-9 and µ = 4.29 × 10-9 per base per generation in the two populations, respectively. Up to 20% of the mutations were shared by full-sibs showing that the level of parental mosaicism was relatively high. Since the estimated µ was 3.1 times smaller than the commonly used substitution rate, recalibration with µ led to substantial increase in estimated divergence times between different stickleback species. Our estimates of the de novo mutation rate should provide a useful resource for research focused on fish population genetics and that of sticklebacks in particular.
Collapse
Affiliation(s)
- Chaowei Zhang
- Area of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Kerry Reid
- Area of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Arthur F Sands
- Area of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Antoine Fraimout
- Area of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Research Program in Organismal & Evolutionary Biology, Faculty Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | | - Juha Merilä
- Area of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Research Program in Organismal & Evolutionary Biology, Faculty Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Predicting recombination frequency from map distance. Heredity (Edinb) 2023; 130:114-121. [PMID: 36566319 PMCID: PMC9981558 DOI: 10.1038/s41437-022-00585-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/25/2022] Open
Abstract
Map distance is one of the key measures in genetics and indicates the expected number of crossovers between two loci. Map distance is estimated from the observed recombination frequency using mapping functions, the most widely used of those, Haldane and Kosambi, being developed at the time when the number of markers was low and unobserved crossovers had a substantial effect on the recombination fractions. In contemporary high-density marker data, the probability of multiple crossovers between adjacent loci is negligible and different mapping functions yield the same result, that is, the recombination frequency between adjacent loci is equal to the map distance in Morgans. However, high-density linkage maps contain an interpretation problem: the map distance over a long interval is additive and its association with recombination frequency is not defined. Here, we demonstrate with high-density linkage maps from humans and stickleback fishes that the inverses of Haldane's and Kosambi's mapping functions systematically underpredict recombination frequencies from map distance. To remedy this, we formulate a piecewise function that yields more accurate predictions of recombination frequency from map distance. Our results demonstrate that the association between map distance and recombination frequency is context-dependent and without a universal solution.
Collapse
|
10
|
Sundell T, Kammonen JI, Mustanoja E, Biard V, Kunnasranta M, Niemi M, Nykänen M, Nyman T, Palo JU, Valtonen M, Paulin L, Jernvall J, Auvinen P. Genomic evidence uncovers inbreeding and supports translocations in rescuing the genetic diversity of a landlocked seal population. CONSERV GENET 2023. [DOI: 10.1007/s10592-022-01497-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AbstractFragmentation of isolated populations increases the risk of inbreeding and loss of genetic diversity. The endemic Saimaa ringed seal (Pusa hispida saimensis) is one of the most endangered pinnipeds in the world with a population of only ~ 400 individuals. The current genetic diversity of this subspecies, isolated in Lake Saimaa in Finland for ca. 1000 generations, is alarmingly low. We performed whole-genome sequencing on Saimaa ringed seals (N = 30) and analyzed the level of homozygosity and genetic composition across the individual genomes. Our results show that the Saimaa ringed seal population has a high number of runs of homozygosity (RoH) compared with the neighboring Baltic ringed seal (Pusa hispida botnica) reference population (p < 0.001). There is also a tendency for stillborn seal pups to have more pronounced RoH. Since the population is divided into semi-isolated subpopulations within the Lake Saimaa exposing the population to deleterious genomic effects, our results support augmented gene flow as a genetic conservation action. Based on our results suggesting inbreeding depression in the population, we recommend Pihlajavesi as a potential source and Southern Saimaa as a potential recipient subpopulation for translocating individuals. The Saimaa ringed seal is a recognized subspecies and therefore translocations should be considered only within the lake to avoid an unpredictable risk of disease, the introduction of deleterious alleles, and severe ecological issues for the population.
Collapse
|
11
|
Feng X, Merilä J, Löytynoja A. Complex population history affects admixture analyses in nine-spined sticklebacks. Mol Ecol 2022; 31:5386-5401. [PMID: 35962788 PMCID: PMC9828525 DOI: 10.1111/mec.16651] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 01/12/2023]
Abstract
Introgressive hybridization is an important process in evolution but challenging to identify, undermining the efforts to understand its role and significance. On the contrary, many analytical methods assume direct descent from a single common ancestor, and admixture among populations can violate their assumptions and lead to seriously biased results. A detailed analysis of 888 whole-genome sequences of nine-spined sticklebacks (Pungitius pungitius) revealed a complex pattern of population ancestry involving multiple waves of gene flow and introgression across northern Europe. The two recognized lineages were found to have drastically different histories, and their secondary contact zone was wider than anticipated, displaying a smooth gradient of foreign ancestry with some curious deviations from the expected pattern. Interestingly, the freshwater isolates provided peeks into the past and helped to understand the intermediate states of evolutionary processes. Our analyses and findings paint a detailed picture of the complex colonization history of northern Europe and provide backdrop against which introgression and its role in evolution can be investigated. However, they also expose the challenges in analyses of admixed populations and demonstrate how hidden admixture and colonization history misleads the estimation of admixture proportions and population split times.
Collapse
Affiliation(s)
- Xueyun Feng
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Juha Merilä
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Area of Ecology and Biodiversity, Kadoorie Science Building, The University of Hong Kong, Hong Kong, SAR, China
| | - Ari Löytynoja
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Walve R, Salmela L. HGGA: hierarchical guided genome assembler. BMC Bioinformatics 2022; 23:167. [PMID: 35525918 PMCID: PMC9077837 DOI: 10.1186/s12859-022-04701-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 04/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND De novo genome assembly typically produces a set of contigs instead of the complete genome. Thus additional data such as genetic linkage maps, optical maps, or Hi-C data is needed to resolve the complete structure of the genome. Most of the previous work uses the additional data to order and orient contigs. RESULTS Here we introduce a framework to guide genome assembly with additional data. Our approach is based on clustering the reads, such that each read in each cluster originates from nearby positions in the genome according to the additional data. These sets are then assembled independently and the resulting contigs are further assembled in a hierarchical manner. We implemented our approach for genetic linkage maps in a tool called HGGA. CONCLUSIONS Our experiments on simulated and real Pacific Biosciences long reads and genetic linkage maps show that HGGA produces a more contiguous assembly with less contigs and from 1.2 to 9.8 times higher NGA50 or N50 than a plain assembly of the reads and 1.03 to 6.5 times higher NGA50 or N50 than a previous approach integrating genetic linkage maps with contig assembly. Furthermore, also the correctness of the assembly remains similar or improves as compared to an assembly using only the read data.
Collapse
Affiliation(s)
- Riku Walve
- Department of Computer Science, Helsinki Institute for Information Technology HIIT, University of Helsinki, Helsinki, Finland
| | - Leena Salmela
- Department of Computer Science, Helsinki Institute for Information Technology HIIT, University of Helsinki, Helsinki, Finland.
| |
Collapse
|