1
|
Tian R, Zhang Y, Kang H, Zhang F, Jin Z, Wang J, Zhang P, Zhou X, Lanyon JM, Sneath HL, Woolford L, Fan G, Li S, Seim I. Sirenian genomes illuminate the evolution of fully aquatic species within the mammalian superorder afrotheria. Nat Commun 2024; 15:5568. [PMID: 38956050 PMCID: PMC11219930 DOI: 10.1038/s41467-024-49769-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 06/12/2024] [Indexed: 07/04/2024] Open
Abstract
Sirenians of the superorder Afrotheria were the first mammals to transition from land to water and are the only herbivorous marine mammals. Here, we generated a chromosome-level dugong (Dugong dugon) genome. A comparison of our assembly with other afrotherian genomes reveals possible molecular adaptations to aquatic life by sirenians, including a shift in daily activity patterns (circadian clock) and tolerance to a high-iodine plant diet mediated through changes in the iodide transporter NIS (SLC5A5) and its co-transporters. Functional in vitro assays confirm that sirenian amino acid substitutions alter the properties of the circadian clock protein PER2 and NIS. Sirenians show evidence of convergent regression of integumentary system (skin and its appendages) genes with cetaceans. Our analysis also uncovers gene losses that may be maladaptive in a modern environment, including a candidate gene (KCNK18) for sirenian cold stress syndrome likely lost during their evolutionary shift in daily activity patterns. Genomes from nine Australian locations and the functionally extinct Okinawan population confirm and date a genetic break ~10.7 thousand years ago on the Australian east coast and provide evidence of an associated ecotype, and highlight the need for whole-genome resequencing data from dugong populations worldwide for conservation and genetic management.
Collapse
Affiliation(s)
- Ran Tian
- Integrative Biology Laboratory, Nanjing Normal University, Nanjing, 210023, China
| | - Yaolei Zhang
- BGI Research, Qingdao, 266555, China
- BGI Research, Shenzhen, 518083, China
- Qingdao Key Laboratory of Marine Genomics BGI Research, Qingdao, 266555, China
| | - Hui Kang
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
- The Innovation Research Center for Aquatic Mammals, and Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Fan Zhang
- Integrative Biology Laboratory, Nanjing Normal University, Nanjing, 210023, China
| | - Zhihong Jin
- Integrative Biology Laboratory, Nanjing Normal University, Nanjing, 210023, China
| | - Jiahao Wang
- BGI Research, Qingdao, 266555, China
- BGI Research, Shenzhen, 518083, China
| | - Peijun Zhang
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Janet M Lanyon
- School of the Environment, The University of Queensland, Lucia, 4072, Australia
| | - Helen L Sneath
- School of the Environment, The University of Queensland, Lucia, 4072, Australia
| | - Lucy Woolford
- School of Veterinary Sciences, The University of Adelaide, Roseworthy, 5371, Australia
| | - Guangyi Fan
- BGI Research, Qingdao, 266555, China.
- BGI Research, Shenzhen, 518083, China.
- Qingdao Key Laboratory of Marine Genomics BGI Research, Qingdao, 266555, China.
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, 518083, China.
| | - Songhai Li
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China.
- The Innovation Research Center for Aquatic Mammals, and Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Inge Seim
- Integrative Biology Laboratory, Nanjing Normal University, Nanjing, 210023, China.
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China.
| |
Collapse
|
2
|
Hartley GA, Frankenberg SR, Robinson NM, MacDonald AJ, Hamede RK, Burridge CP, Jones ME, Faulkner T, Shute H, Rose K, Brewster R, O'Neill RJ, Renfree MB, Pask AJ, Feigin CY. Genome of the endangered eastern quoll (Dasyurus viverrinus) reveals signatures of historical decline and pelage color evolution. Commun Biol 2024; 7:636. [PMID: 38796620 PMCID: PMC11128018 DOI: 10.1038/s42003-024-06251-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/26/2024] [Indexed: 05/28/2024] Open
Abstract
The eastern quoll (Dasyurus viverrinus) is an endangered marsupial native to Australia. Since the extirpation of its mainland populations in the 20th century, wild eastern quolls have been restricted to two islands at the southern end of their historical range. Eastern quolls are the subject of captive breeding programs and attempts have been made to re-establish a population in mainland Australia. However, few resources currently exist to guide the genetic management of this species. Here, we generated a reference genome for the eastern quoll with gene annotations supported by multi-tissue transcriptomes. Our assembly is among the most complete marsupial genomes currently available. Using this assembly, we infer the species' demographic history, identifying potential evidence of a long-term decline beginning in the late Pleistocene. Finally, we identify a deletion at the ASIP locus that likely underpins pelage color differences between the eastern quoll and the closely related Tasmanian devil (Sarcophilus harrisii).
Collapse
Affiliation(s)
- Gabrielle A Hartley
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
| | | | - Natasha M Robinson
- Fenner School of Environment & Society, Australian National University, Canberra, ACT, 2601, Australia
| | - Anna J MacDonald
- Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
- Australian Antarctic Division, Department of Climate Change, Energy, the Environment and Water, Kingston, TAS, 7050, Australia
| | - Rodrigo K Hamede
- School of Natural Sciences, University of Tasmania, Hobart, TAS, 7005, Australia
| | | | - Menna E Jones
- School of Natural Sciences, University of Tasmania, Hobart, TAS, 7005, Australia
| | - Tim Faulkner
- Australian Reptile Park & Aussie Ark, Somersby, NSW, 2250, Australia
| | - Hayley Shute
- Australian Reptile Park & Aussie Ark, Somersby, NSW, 2250, Australia
| | - Karrie Rose
- Australian Registry of Wildlife Health, Taronga Conservation Society Australia, Mosman, NSW, 2088, Australia
| | - Rob Brewster
- WWF-Australia, PO Box 528, Sydney, NSW, 2001, Australia
| | - Rachel J O'Neill
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Marilyn B Renfree
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Andrew J Pask
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Department of Sciences, Museums Victoria, Carlton, VIC, 3053, Australia
| | - Charles Y Feigin
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia.
- Department of Environment and Genetics, La Trobe University, Bundoora, VIC, 3086, Australia.
| |
Collapse
|
3
|
Steinbinder J, Sachslehner AP, Holthaus KB, Eckhart L. Comparative genomics of monotremes provides insights into the early evolution of mammalian epidermal differentiation genes. Sci Rep 2024; 14:1437. [PMID: 38228724 PMCID: PMC10791643 DOI: 10.1038/s41598-024-51926-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/11/2024] [Indexed: 01/18/2024] Open
Abstract
The function of the skin as a barrier against the environment depends on the differentiation of epidermal keratinocytes into highly resilient corneocytes that form the outermost skin layer. Many genes encoding structural components of corneocytes are clustered in the epidermal differentiation complex (EDC), which has been described in placental and marsupial mammals as well as non-mammalian tetrapods. Here, we analyzed the genomes of the platypus (Ornithorhynchus anatinus) and the echidna (Tachyglossus aculeatus) to determine the gene composition of the EDC in the basal clade of mammals, the monotremes. We report that mammal-specific subfamilies of EDC genes encoding small proline-rich proteins (SPRRs) and late cornified envelope proteins as well as single-copy EDC genes such as involucrin are conserved in monotremes, suggesting that they have originated in stem mammals. Monotremes have at least one gene homologous to the group of filaggrin (FLG), FLG2 and hornerin (HRNR) in placental mammals, but no clear one-to-one pairwise ortholog of either FLG, FLG2 or HRNR. Caspase-14, a keratinocyte differentiation-associated protease implicated in the processing of filaggrin, is encoded by at least 3 gene copies in the echidna. Our results reveal evolutionarily conserved and clade-specific features of the genetic regulation of epidermal differentiation in monotremes.
Collapse
Affiliation(s)
- Julia Steinbinder
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | | | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
4
|
He H, Yang H, Foo R, Chan W, Zhu F, Liu Y, Zhou X, Ma L, Wang LF, Zhai W. Population genomic analysis reveals distinct demographics and recent adaptation in the black flying fox (Pteropus alecto). J Genet Genomics 2023; 50:554-562. [PMID: 37182682 DOI: 10.1016/j.jgg.2023.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
As the only mammalian group capable of powered flight, bats have many unique biological traits. Previous comparative genomic studies in bats have focused on long-term evolution. However, the micro-evolutionary processes driving recent evolution are largely under-explored. Using resequencing data from 50 black flying foxes (Pteropus alecto), one of the model species for bats, we find that black flying fox has much higher genetic diversity and lower levels of linkage disequilibrium than most of the mammalian species. Demographic inference reveals strong population fluctuations (>100 fold) coinciding with multiple historical events including the last glacial change and Toba super eruption, suggesting that the black flying fox is a very resilient species with strong recovery abilities. While long-term adaptation in the black flying fox is enriched in metabolic genes, recent adaptation in the black flying fox has a unique landscape where recently selected genes are not strongly enriched in any functional category. The demographic history and mode of adaptation suggest that black flying fox might be a well-adapted species with strong evolutionary resilience. Taken together, this study unravels a vibrant landscape of recent evolution for the black flying fox and sheds light on several unique evolutionary processes for bats comparing to other mammalian groups.
Collapse
Affiliation(s)
- Haopeng He
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hechuan Yang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Randy Foo
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; Singhealth Duke-NUS Global Health Institute, Singapore 169857, Singapore
| | - Wharton Chan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; Singhealth Duke-NUS Global Health Institute, Singapore 169857, Singapore
| | - Feng Zhu
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; Singhealth Duke-NUS Global Health Institute, Singapore 169857, Singapore
| | - Yunsong Liu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liang Ma
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; Singhealth Duke-NUS Global Health Institute, Singapore 169857, Singapore.
| | - Weiwei Zhai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| |
Collapse
|
5
|
Suvorov A. Modalities of aging in organisms with different strategies of resource allocation. Ageing Res Rev 2022; 82:101770. [PMID: 36330930 PMCID: PMC10435286 DOI: 10.1016/j.arr.2022.101770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/17/2022] [Accepted: 10/24/2022] [Indexed: 01/31/2023]
Abstract
Although the progress of aging research relies heavily on a theoretical framework, today there is no consensus on many critical questions in aging biology. I hypothesize that a systematic analysis of the intersection of different evolutionary mechanisms of aging with diverse resource allocation strategies in different organisms may reconcile aging hypotheses. The application of disposable soma, mutation accumulation, antagonistic pleiotropy, and life-history theory is considered across organisms with asexual reproduction, organisms with sexual reproduction and indeterminate growth in different conditions of extrinsic mortality, and organisms with determinate growth, with endotherms/homeotherms as a subgroup. This review demonstrates that different aging mechanisms are complementary to each other, and in organisms with different resource allocation strategies they form aging modalities ranging from immortality to suicidal programs. It also revamps the role of growth arrest in aging. Growth arrest evolved in many different groups of organisms as a result of resource reallocation from growth to reproduction (e.g., semelparous animals, holometabolic insects), or from growth to nutrient storage (endotherms/homeotherms). Growth arrest in different animal lineages has similar molecular mechanisms and similar consequences for longevity due to the conflict between growth-promoting and growth-suppressing programs and suppression of regenerative capacity.
Collapse
Affiliation(s)
- Alexander Suvorov
- Environmental Health Sciences, University of Massachusetts, Amherst 240B Goessmann, 686 Noth Pleasant Str., Amherst, MA 01003, USA.
| |
Collapse
|
6
|
Tian R, Guo H, Jin Z, Zhang F, Zhao J, Seim I. Molecular evolution of vision-related genes may contribute to marsupial photic niche adaptations. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.982073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Vision plays an essential role in the life of many animals. While most mammals are night-active (nocturnal), many have adapted to novel light environments. This includes diurnal (day-active) and crepuscular (twilight-active) species. Here, we used integrative approaches to investigate the molecular evolution of 112 vision-related genes across 19 genomes representing most marsupial orders. We found that four genes (GUCA1B, GUCY2F, RGR, and SWS2) involved in retinal phototransduction likely became functionally redundant in the ancestor of marsupials, a group of largely obligate nocturnal mammals. We also show evidence of rapid evolution and positive selection of bright-light vision genes in the common ancestor of Macropus (kangaroos, wallaroos, and wallabies). Macropus-specific amino acid substitutions in opsin genes (LWS and SWS1), in particular, may be an adaptation for crepuscular vision in this genus via opsin spectral sensitivity tuning. Our study set the stage for functional genetics studies and provides a stepping stone to future research efforts that fully capture the visual repertoire of marsupials.
Collapse
|
7
|
Feigin C, Frankenberg S, Pask A. A Chromosome-Scale Hybrid Genome Assembly of the Extinct Tasmanian Tiger (Thylacinus cynocephalus). Genome Biol Evol 2022; 14:evac048. [PMID: 35349647 PMCID: PMC9007325 DOI: 10.1093/gbe/evac048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
The extinct Tasmanian tiger or thylacine (Thylacinus cynocephalus) was a large marsupial carnivore native to Australia. Once ranging across parts of the mainland, the species remained only on the island of Tasmania by the time of European colonization. It was driven to extinction in the early 20th century and is an emblem of native species loss in Australia. The thylacine was a striking example of convergent evolution with placental canids, with which it shared a similar skull morphology. Consequently, it has been the subject of extensive study. While the original thylacine assemblies published in 2018 enabled the first exploration of the species' genome biology, further progress is hindered by the lack of high-quality genomic resources. Here, we present a new chromosome-scale hybrid genome assembly for the thylacine, which compares favorably with many recent de novo marsupial genomes. In addition, we provide homology-based gene annotations, characterize the repeat content of the thylacine genome, and show that consistent with demographic decline, the species possessed a low rate of heterozygosity even compared to extant, threatened marsupials.
Collapse
Affiliation(s)
- Charles Feigin
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- Department of Molecular Biology, Princeton University, New Jersey, USA
| | - Stephen Frankenberg
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Andrew Pask
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- Department of Sciences, Museums Victoria, Carlton, Victoria, Australia
| |
Collapse
|
8
|
Shilovsky GA, Putyatina TS, Markov AV. Altruism and Phenoptosis as Programs Supported by Evolution. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1540-1552. [PMID: 34937533 PMCID: PMC8678581 DOI: 10.1134/s0006297921120038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 11/22/2022]
Abstract
Phenoptosis is a programmed death that has emerged in the process of evolution, sometimes taking the form of an altruistic program. In particular, it is believed to be a weapon against the spread of pandemics in the past and an obstacle in fighting pandemics in the present (COVID). However, on the evolutionary scale, deterministic death is not associated with random relationships (for example, bacteria with a particular mutation), but is a product of higher nervous activity or a consequence of established hierarchy that reaches its maximal expression in eusocial communities of Hymenoptera and highly social communities of mammals. Unlike a simple association of individuals, eusociality is characterized by the appearance of non-reproductive individuals as the highest form of altruism. In contrast to primitive programs for unicellular organisms, higher multicellular organisms are characterized by the development of behavior-based phenoptotic programs, especially in the case of reproduction-associated limitation of lifespan. Therefore, we can say that the development of altruism in the course of evolution of sociality leads in its extreme manifestation to phenoptosis. Development of mathematical models for the emergence of altruism and programmed death contributes to our understanding of mechanisms underlying these paradoxical counterproductive (harmful) programs. In theory, this model can be applied not only to insects, but also to other social animals and even to the human society. Adaptive death is an extreme form of altruism. We consider altruism and programmed death as programmed processes in the mechanistic and adaptive sense, respectively. Mechanistically, this is a program existing as a predetermined chain of certain responses, regardless of its adaptive value. As to its adaptive value (regardless of the degree of "phenoptoticity"), this is a characteristic of organisms that demonstrate high levels of kinship, social organization, and physical association typical for higher-order individuals, e.g., unicellular organisms forming colonies with some characteristics of multicellular animals or colonies of multicellular animals displaying features of supraorganisms.
Collapse
Affiliation(s)
- Gregory A Shilovsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051, Russia
| | - Tatyana S Putyatina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexander V Markov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Borissiak Paleontological Institute, Russian Academy of Sciences, Moscow, 117997, Russia
| |
Collapse
|