1
|
Benovics M, Seidlová L, Papežík P, Seifertová M, Nejat F, Vetešník L, Voříšková K, Šimková A. Population genetic structure of Dactylogyrus vistulae, a gill parasite of cyprinoid fish in the Western Palearctic. Int J Parasitol 2025:S0020-7519(25)00072-4. [PMID: 40209887 DOI: 10.1016/j.ijpara.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/20/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025]
Abstract
Monogenean parasites with a broad host range and direct life cycle provide insight into population genetic structure and dispersal processes. Dactylogyrus vistulae infects over 50 cyprinoid fish species across the western Palearctic, making it an ideal model for assessing host and geographic influences on parasite population structure. Herein, we utilized 20 microsatellite loci and mitochondrial COI sequences to analyze the genetic variability and structure of D. vistulae populations, with a deeper focus on Czech river systems. Low allelic variance was observed across most populations, except in the Aoos River, Greece, where high genetic diversity suggests either a large population size or an ancestral refugium. Moderate variance was detected in the Middle East, though some Anatolian populations exhibited reduced diversity, likely due to recent colonization. Czech populations showed weak genetic structuring despite occupying distinct river basins, likely due to fish translocations. Mitochondrial COI analysis revealed up to 18.5% haplotype divergence, with the highest diversity in the Padano-Venetian, Caspian Sea, and Dalmatian districts. Dalmatian haplotypes formed a distinct haplogroup, though genetic similarities between Padano-Venetian and Dalmatian populations suggest historical connections or fish host introductions. These results support a south-to-north D. vistulae dispersal through the Balkans, associated with cyprinoid fish migration. This study highlights the roles of host dispersal, environmental factors, and human influence in shaping fish parasite population structure, emphasizing the need for further genomic and ecological research.
Collapse
Affiliation(s)
- M Benovics
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic; Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia.
| | - L Seidlová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| | - P Papežík
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia.
| | - M Seifertová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| | - F Nejat
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| | - L Vetešník
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic; Institute of Vertebrate Biology, Czech Academy of Sciences Květná 8, 603 65 Brno, Czech Republic.
| | - K Voříšková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| | - A Šimková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| |
Collapse
|
2
|
Fahey PS, Dimon RJ, van der Merwe MM, Bragg JG, Rossetto M. Floristic classifications and bioregionalizations are not predictors of intra-specific evolutionary patterns. Nat Commun 2024; 15:10770. [PMID: 39737937 PMCID: PMC11685442 DOI: 10.1038/s41467-024-54930-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/22/2024] [Indexed: 01/01/2025] Open
Abstract
The relationship between intra-specific and inter-specific patterns and processes over evolutionary time is key to ecological investigations. We examine this relationship taking an approach of focussing on the association between vegetation and floristic classifications, summaries of inter-specific processes, and intra-specific genetic structuring. Applying an innovative, multispecies, and standardised population genomic approach, we test the relationship between vegetation mapping schemes and structuring of genetic variation across a large, environmentally heterogenous region in eastern Australia. We show that intra-specific genetic variation shows limited correspondence to vegetation and floristic classifications and is better explained by distance between sampled populations and the location of biogeographical features which limit gene flow. Mapping schemes with contiguous mapping classes, particularly larger ones, were more predictive of genetic lineages, whether based on environmental factors or not, than geographically non-contiguous schemes. We conclude that vegetation and floristic classifications are not closely correlated with intra-specific genetic patterns, showing that intra-specific processes are not recapitulated by inter-specific floristic assembly processes. This study showcases the need to implement landscape level evolutionary patterns, based on species specific datasets, in restoration and conservation activities.
Collapse
Affiliation(s)
- Patrick S Fahey
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland, 4072, Australia.
- Research Centre for Ecosystem Resilience, Botanic Gardens of Sydney, Sydney, New South Wales, 2000, Australia.
- Queensland Herbarium & Biodiversity Science, Department of the Environment, Tourism, Science & Innovation, Toowong, Queensland, 4066, Australia.
| | - Richard J Dimon
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland, 4072, Australia
- Research Centre for Ecosystem Resilience, Botanic Gardens of Sydney, Sydney, New South Wales, 2000, Australia
| | - Marlien M van der Merwe
- Research Centre for Ecosystem Resilience, Botanic Gardens of Sydney, Sydney, New South Wales, 2000, Australia
| | - Jason G Bragg
- Research Centre for Ecosystem Resilience, Botanic Gardens of Sydney, Sydney, New South Wales, 2000, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, 2033, Australia
| | - Maurizio Rossetto
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland, 4072, Australia.
- Research Centre for Ecosystem Resilience, Botanic Gardens of Sydney, Sydney, New South Wales, 2000, Australia.
| |
Collapse
|
3
|
Hull KL, Greenwood MP, Lloyd M, Brink-Hull M, Bester-van der Merwe AE, Rhode C. Drivers of genomic diversity and phenotypic development in early phases of domestication in Hermetia illucens. INSECT MOLECULAR BIOLOGY 2024; 33:756-776. [PMID: 38963286 DOI: 10.1111/imb.12940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 06/17/2024] [Indexed: 07/05/2024]
Abstract
The black soldier fly (BSF), Hermetia illucens, has the ability to efficiently bioremediate organic waste into usable bio-compounds. Understanding the impact of domestication and mass rearing on fitness and production traits is therefore important for sustainable production. This study aimed to assess patterns of genomic diversity and its association to phenotypic development across early generations of mass rearing under two selection strategies: selection for greater larval mass (SEL lines) and no direct artificial selection (NS lines). Genome-wide single nucleotide polymorphism (SNP) data were generated using 2bRAD sequencing, while phenotypic traits relating to production and population fitness were measured. Declining patterns of genomic diversity were observed across three generations of captive breeding, with the lowest diversity recorded for the F3 generation of both selection lines, most likely due to founder effects. The SEL cohort displayed statistically significantly greater larval weight com the NS lines with pronounced genetic and phenotypic directional changes across generations. Furthermore, lower genetic and phenotypic diversity, particularly for fitness traits, were evident for SEL lines, illustrating the trade-off between selecting for mass and the resulting decline in population fitness. SNP-based heritability was significant for growth, but was low or non-significant for fitness traits. Genotype-phenotype correlations were observed for traits, but individual locus effect sizes where small and very few of these loci demonstrated a signature for selection. Pronounced genetic drift, due to small effective population sizes, is likely overshadowing the impacts of selection on genomic diversity and consequently phenotypic development. The results hold particular relevance for genetic management and selective breeding for BSF in future.
Collapse
Affiliation(s)
- Kelvin L Hull
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | | | - Melissa Lloyd
- Research and Development Department, Insect Technology Group Holdings UK Ltd., Guildford, UK
| | - Marissa Brink-Hull
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | | | - Clint Rhode
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
4
|
Payet SD, Underwood J, Berry O, Saunders T, Travers MJ, Wakefield CB, Miller K, Newman SJ. Population genomics informs the management of harvested snappers across north-western Australia. Sci Rep 2024; 14:26598. [PMID: 39496708 PMCID: PMC11535392 DOI: 10.1038/s41598-024-77424-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024] Open
Abstract
Failure to consider population structure when managing harvested fishes increases the risk of stock depletion, yet empirical estimates of population structure are often lacking for important fishery species. In this study, we characterise genetic variation in single nucleotide polymorphisms (SNPs) to assess population structure for three harvested species of tropical snappers across the broad (up to 300 km wide) and extensive (~ 4000 km) continental shelf of north-western Australia. Comparisons across ~ 300 individuals per species, showed remarkably similar patterns of genetic structure among Lutjanus sebae (red emperor), L. malabaricus (saddletail snapper) and Pristipomoides multidens (goldband snapper) despite subtle differences in biological and ecological traits. Low levels of genetic subdivision were reflected in an isolation by distance relationship where genetic connectivity increased with geographic proximity. This indicates extensive but not unlimited dispersal across the north-western Australian shelf. Our findings provide evidence of connectivity between current management areas, violating the assumption of multiple independent stocks. Spatial stock assessment models may be more suitable for the management of these species however demographic connectivity rates cannot be accurately estimated from the conventional population genetic approaches applied in this study. We recommend that managers aim to maintain adequate spawning biomass across current management areas, and assess stocks at finer scales, where practical.
Collapse
Affiliation(s)
- Samuel D Payet
- Western Australian Fisheries and Marine Research Laboratories, Department of Primary Industries and Regional Development, Government of Western Australia, 39 Northside Drive, Hillarys, Western Australia, 6025, Australia.
| | - Jim Underwood
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Level 3, The University of Western Australia, Fairway, Crawley, WA, 6009, Australia
| | - Oliver Berry
- CSIRO Environomics Future Science Platform, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Thor Saunders
- Department of Primary Industry and Resources, Northern Territory Government, 33 Vaughan St, Berrimah, NT, 0828, Australia
| | - Michael J Travers
- Western Australian Fisheries and Marine Research Laboratories, Department of Primary Industries and Regional Development, Government of Western Australia, 39 Northside Drive, Hillarys, Western Australia, 6025, Australia
| | - Corey B Wakefield
- Western Australian Fisheries and Marine Research Laboratories, Department of Primary Industries and Regional Development, Government of Western Australia, 39 Northside Drive, Hillarys, Western Australia, 6025, Australia
| | - Karen Miller
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Level 3, The University of Western Australia, Fairway, Crawley, WA, 6009, Australia
| | - Stephen J Newman
- Western Australian Fisheries and Marine Research Laboratories, Department of Primary Industries and Regional Development, Government of Western Australia, 39 Northside Drive, Hillarys, Western Australia, 6025, Australia
| |
Collapse
|
5
|
Abstract
Genomic data are becoming increasingly affordable and easy to collect, and new tools for their analysis are appearing rapidly. Conservation biologists are interested in using this information to assist in management and planning but are typically limited financially and by the lack of genomic resources available for non-model taxa. It is therefore important to be aware of the pitfalls as well as the benefits of applying genomic approaches. Here, we highlight recent methods aimed at standardizing population assessments of genetic variation, inbreeding, and forms of genetic load and methods that help identify past and ongoing patterns of genetic interchange between populations, including those subjected to recent disturbance. We emphasize challenges in applying some of these methods and the need for adequate bioinformatic support. We also consider the promises and challenges of applying genomic approaches to understand adaptive changes in natural populations to predict their future adaptive capacity.
Collapse
Affiliation(s)
- Thomas L Schmidt
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia;
| | - Joshua A Thia
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia;
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia;
| |
Collapse
|
6
|
Robledo D, Ogwang J, Byakora E, Schulze JN, Benda KK, Fraslin C, Salisbury S, Solimo M, Mayega JF, Peter B, Masembe C, Houston R, Mukiibi R. Genetic diversity and population structure of farmed and wild Nile tilapia (Oreochromis niloticus) in Uganda: The potential for aquaculture selection and breeding programs. Genomics 2024; 116:110781. [PMID: 38182036 DOI: 10.1016/j.ygeno.2024.110781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/17/2023] [Accepted: 01/01/2024] [Indexed: 01/07/2024]
Abstract
Nile tilapia is one of the most important aquaculture species globally, providing high-quality animal protein for human nutrition and a source of income to sustain the livelihoods of many people in low- and middle-income countries. This species is native to Africa and nowadays farmed throughout the world. However, the genetic makeup of its native populations remains poorly characterized. Additionally, there has been important introgression and movement of farmed (as well as wild) strains connected to tilapia aquaculture in Africa, yet the relationship between wild and farmed populations is unknown in most of the continent. Genetic characterization of the species in Africa has the potential to support the conservation of the species as well as supporting selective breeding to improve the indigenous strains for sustainable and profitable aquaculture production. In the current study, a total of 382 fish were used to investigate the genetic structure, diversity, and ancestry within and between Ugandan Nile tilapia populations from three major lakes including Lake Albert (L. Albert), Lake Kyoga (L. Kyoga) and Lake Victoria (L. Victoria), and 10 hatchery farms located in the catchment regions of these lakes. Our results showed clear genetic structure of the fish sourced from the lakes, with L. Kyoga and L. Albert populations showing higher genetic similarity. We also observed noticeable genetic structure among farmed populations, with most of them being genetically similar to L. Albert and L. Kyoga fish. Admixture results showed a higher (2.55-52.75%) contribution of L. Albert / L. Kyoga stocks to Uganda's farmed fish than the stock from L. Victoria (2.12-28.02%). We observed relatively high genetic diversity across both wild and farmed populations, but some farms had sizable numbers of highly inbred fish, raising concerns about management practices. In addition, we identified a genomic region on chromosome 5, harbouring the key innate immune gene BPI and the key growth gene GHRH, putatively under selection in the Ugandan Nile tilapia population. This region overlaps with the genomic region previously identified to be associated with growth rate in farmed Nile tilapia.
Collapse
Affiliation(s)
- Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Joel Ogwang
- National Animal Genetics Resources Centre and Data Bank (NAGRC&DB), P.O. Box 183, Nsamizi Road, Entebbe, Uganda
| | - Ezra Byakora
- National Animal Genetics Resources Centre and Data Bank (NAGRC&DB), P.O. Box 183, Nsamizi Road, Entebbe, Uganda
| | - Jennifer Nascimento Schulze
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK; Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, Kiel 24105, Germany
| | - Katali Kirungi Benda
- National Animal Genetics Resources Centre and Data Bank (NAGRC&DB), P.O. Box 183, Nsamizi Road, Entebbe, Uganda
| | - Clemence Fraslin
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Sarah Salisbury
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Moses Solimo
- National Animal Genetics Resources Centre and Data Bank (NAGRC&DB), P.O. Box 183, Nsamizi Road, Entebbe, Uganda
| | - Johnson Francis Mayega
- Department of Zoology, Entomology and Fisheries Sciences, College of Natural Sciences, Makerere University, P.O. Box, 7062, Kampala, Uganda
| | - Beine Peter
- National Animal Genetics Resources Centre and Data Bank (NAGRC&DB), P.O. Box 183, Nsamizi Road, Entebbe, Uganda
| | - Charles Masembe
- Department of Zoology, Entomology and Fisheries Sciences, College of Natural Sciences, Makerere University, P.O. Box, 7062, Kampala, Uganda
| | - Ross Houston
- Benchmark Genetics, 1 Pioneer Building, Edinburgh Technopole, Penicuik EH26 0GB, United Kingdom
| | - Robert Mukiibi
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK.
| |
Collapse
|
7
|
Narum S, Kelley J, Sibbett B. Editorial 2024. Mol Ecol Resour 2024; 24:e13912. [PMID: 38095538 DOI: 10.1111/1755-0998.13912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
|
8
|
Ulmo‐Diaz G, Engman A, McLarney WO, Lasso Alcalá CA, Hendrickson D, Bezault E, Feunteun E, Prats‐Léon FL, Wiener J, Maxwell R, Mohammed RS, Kwak TJ, Benchetrit J, Bougas B, Babin C, Normandeau E, Djambazian HHV, Chen S, Reiling SJ, Ragoussis J, Bernatchez L. Panmixia in the American eel extends to its tropical range of distribution: Biological implications and policymaking challenges. Evol Appl 2023; 16:1872-1888. [PMID: 38143897 PMCID: PMC10739100 DOI: 10.1111/eva.13599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 12/26/2023] Open
Abstract
The American eel (Anguilla rostrata) has long been regarded as a panmictic fish and has been confirmed as such in the northern part of its range. In this paper, we tested for the first time whether panmixia extends to the tropical range of the species. To do so, we first assembled a reference genome (975 Mbp, 19 chromosomes) combining long (PacBio and Nanopore and short (Illumina paired-end) reads technologies to support both this study and future research. To test for population structure, we estimated genotype likelihoods from low-coverage whole-genome sequencing of 460 American eels, collected at 21 sampling sites (in seven geographic regions) ranging from Canada to Trinidad and Tobago. We estimated genetic distance between regions, performed ADMIXTURE-like clustering analysis and multivariate analysis, and found no evidence of population structure, thus confirming that panmixia extends to the tropical range of the species. In addition, two genomic regions with putative inversions were observed, both geographically widespread and present at similar frequencies in all regions. We discuss the implications of lack of genetic population structure for the species. Our results are key for the future genomic research in the American eel and the implementation of conservation measures throughout its geographic range. Additionally, our results can be applied to fisheries management and aquaculture of the species.
Collapse
Affiliation(s)
- Gabriela Ulmo‐Diaz
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecCanada
| | - Augustin Engman
- University of Tennessee Institute of Agriculture, School of Natural ResourcesKnoxvilleTennesseeUSA
| | | | | | - Dean Hendrickson
- Department of Integrative Biology and Biodiversity CollectionsUniversity of Texas at AustinAustinTexasUSA
| | - Etienne Bezault
- UMR 8067 BOREA, Biologie Organismes Écosystèmes Aquatiques (MNHN, CNRS, SU, IRD, UCN, UA)Université des AntillesPointe‐à‐PitreGuadeloupe
- Caribaea Initiative, Département de BiologieUniversité Des Antilles‐Campus de FouillolePointe‐à‐PitreGuadeloupeFrance
| | - Eric Feunteun
- UMR 7208 BOREABiologie Organismes Écosystèmes Aquatiques (MNHN, CNRS, SU,IRD, UCN, UA)Station Marine de DinardRennesFrance
- EPHE‐PSLCGEL (Centre de Géoécologie Littorale)DinardFrance
| | | | - Jean Wiener
- Fondation pour la Protection de la Biodiversité Marine (FoProBiM)CaracolHaiti
| | - Robert Maxwell
- Inland Fisheries SectionLouisiana Department of Wildlife and FisheriesLouisianaUSA
| | - Ryan S. Mohammed
- The University of the West Indies (UWI)St. AugustineTrinidad and Tobago
- Present address:
Department of Biological SciencesAuburn UniversityAuburnAlabamaUSA
| | - Thomas J. Kwak
- US Geological SurveyNorth Carolina Cooperative Fish and Wildlife Research UnitDepartment of Applied EcologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | | | - Bérénice Bougas
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecCanada
| | - Charles Babin
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecCanada
| | - Eric Normandeau
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecCanada
| | - Haig H. V. Djambazian
- McGIll Genome Centre, Department of Human GeneticsVictor Phillip Dahdaleh Institute of Genomic MedicineMcGill UniversityMontrealQuebecCanada
| | - Shu‐Huang Chen
- McGIll Genome Centre, Department of Human GeneticsVictor Phillip Dahdaleh Institute of Genomic MedicineMcGill UniversityMontrealQuebecCanada
| | - Sarah J. Reiling
- McGIll Genome Centre, Department of Human GeneticsVictor Phillip Dahdaleh Institute of Genomic MedicineMcGill UniversityMontrealQuebecCanada
| | - Jiannis Ragoussis
- McGIll Genome Centre, Department of Human GeneticsVictor Phillip Dahdaleh Institute of Genomic MedicineMcGill UniversityMontrealQuebecCanada
| | - Louis Bernatchez
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecCanada
| |
Collapse
|
9
|
Deville D, Kawai K, Fujita H, Umino T. Genetic divergences and hybridization within the Sebastes inermis complex. PeerJ 2023; 11:e16391. [PMID: 38025733 PMCID: PMC10656903 DOI: 10.7717/peerj.16391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
The Sebastes inermis complex includes three sympatric species (Sebastes cheni, viz Sebastes inermis, and Sebastes ventricosus) with clear ecomorphological differences, albeit incomplete reproductive isolation. The presence of putative morphological hybrids (PMH) with plausibly higher fitness than the parent species indicates the need to confirm whether hybridization occurs within the complex. In this sense, we assessed the dynamics of genetic divergence and hybridization within the species complex using a panel of 10 microsatellite loci, and sequences of the mitochondrial control region (D-loop) and the intron-free rhodopsin (RH1) gene. The analyses revealed the presence of three distinct genetic clusters, large genetic distances using D-loop sequences, and distinctive mutations within the RH1 gene. These results are consistent with the descriptions of the three species. Two microsatellite loci had signatures of divergent selection, indicating that they are linked to genomic regions that are crucial for speciation. Furthermore, nonsynonymous mutations within the RH1 gene detected in S. cheni and "Kumano" (a PMH) suggest dissimilar adaptations related to visual perception in dim-light environments. The presence of individuals with admixed ancestry between two species confirmed hybridization. The presence of nonsynonymous mutations within the RH1 gene and the admixed ancestry of the "Kumano" morphotype highlight the potential role of hybridization in generating novelties within the species complex. We discuss possible outcomes of hybridization within the species complex, considering hybrid fitness and assortative mating. Overall, our findings indicate that the genetic divergence of each species is maintained in the presence of hybridization, as expected in a scenario of speciation-with-gene-flow.
Collapse
Affiliation(s)
- Diego Deville
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Hiroshima, Japón
| | - Kentaro Kawai
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Hiroshima, Japón
| | - Hiroki Fujita
- Seto Marine Biological Laboratory, Field Science Education and Research Center, Kyoto University, Shirahama, Wakayama, Japan
| | - Tetsuya Umino
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Hiroshima, Japón
| |
Collapse
|
10
|
Bhowmik N, Seaborn T, Ringwall KA, Dahlen CR, Swanson KC, Hulsman Hanna LL. Genetic Distinctness and Diversity of American Aberdeen Cattle Compared to Common Beef Breeds in the United States. Genes (Basel) 2023; 14:1842. [PMID: 37895190 PMCID: PMC10606367 DOI: 10.3390/genes14101842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/10/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
American Aberdeen (AD) cattle in the USA descend from an Aberdeen Angus herd originally brought to the Trangie Agricultural Research Centre, New South Wales, AUS. Although put under specific selection pressure for yearling growth rate, AD remain genomically uncharacterized. The objective was to characterize the genetic diversity and structure of purebred and crossbred AD cattle relative to seven common USA beef breeds using available whole-genome SNP data. A total of 1140 animals consisting of 404 purebred (n = 8 types) and 736 admixed individuals (n = 10 types) was used. Genetic diversity metrics, an analysis of molecular variance, and a discriminant analysis of principal components were employed. When linkage disequilibrium was not accounted for, markers influenced basic diversity parameter estimates, especially for AD cattle. Even so, intrapopulation and interpopulation estimates separate AD cattle from other purebred types (e.g., Latter's pairwise FST ranged from 0.1129 to 0.2209), where AD cattle were less heterozygous and had lower allelic richness than other purebred types. The admixed AD-influenced cattle were intermediate to other admixed types for similar parameters. The diversity metrics separation and differences support strong artificial selection pressures during and after AD breed development, shaping the evolution of the breed and making them genomically distinct from similar breeds.
Collapse
Affiliation(s)
- Nayan Bhowmik
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Travis Seaborn
- School of Natural Resource Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Kris A. Ringwall
- Dickinson Research Extension Center, North Dakota State University, Dickinson, ND 58601, USA
| | - Carl R. Dahlen
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Kendall C. Swanson
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | | |
Collapse
|
11
|
Hu G, Do DN, Manafiazar G, Kelvin AA, Sargolzaei M, Plastow G, Wang Z, Miar Y. Population genomics of American mink using genotype data. Front Genet 2023; 14:1175408. [PMID: 37274788 PMCID: PMC10234291 DOI: 10.3389/fgene.2023.1175408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/14/2023] [Indexed: 06/07/2023] Open
Abstract
Understanding the genetic structure of the target population is critically important to develop an efficient genomic selection program in domestic animals. In this study, 2,973 American mink of six color types from two farms (Canadian Centre for Fur Animal Research (CCFAR), Truro, NS and Millbank Fur Farm (MFF), Rockwood, ON) were genotyped with the Affymetrix Mink 70K panel to compute their linkage disequilibrium (LD) patterns, effective population size (Ne), genetic diversity, genetic distances, and population differentiation and structure. The LD pattern represented by average r 2, decreased to <0.2 when the inter-marker interval reached larger than 350 kb and 650 kb for CCFAR and MFF, respectively, and suggested at least 7,700 and 4,200 single nucleotide polymorphisms (SNPs) be used to obtain adequate accuracy for genomic selection programs in CCFAR and MFF respectively. The Ne for five generations ago was estimated to be 76 and 91 respectively. Our results from genetic distance and diversity analyses showed that American mink of the various color types had a close genetic relationship and low genetic diversity, with most of the genetic variation occurring within rather than between color types. Three ancestral genetic groups was considered the most appropriate number to delineate the genetic structure of these populations. Black (in both CCFAR and MFF) and pastel color types had their own ancestral clusters, while demi, mahogany, and stardust color types were admixed with the three ancestral genetic groups. This study provided essential information to utilize the first medium-density SNP panel for American mink in their genomic studies.
Collapse
Affiliation(s)
- Guoyu Hu
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Duy Ngoc Do
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Ghader Manafiazar
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Alyson A. Kelvin
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
| | - Mehdi Sargolzaei
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
- Select Sires Inc, Plain City, OH, United States
| | - Graham Plastow
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Zhiquan Wang
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Younes Miar
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| |
Collapse
|
12
|
Cullingham C, Peery RM, Miller JM. A roadmap to robust discriminant analysis of principal components. Mol Ecol Resour 2023; 23:519-522. [PMID: 36282622 DOI: 10.1111/1755-0998.13724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 10/31/2022]
Abstract
Identification of population structure is a common goal for a variety of applications, including conservation, wildlife management, and medical genetics. The outcome of these analyses can have far reaching implications; therefore, it is important to ensure an understanding of the strengths and weaknesses of the methodologies used. Increasing in popularity, the discriminant analysis of principal components (DAPC) method incorporates combinations of genetic variables (alleles) into a model that differentiates individuals into genetic clusters. However, users may not have a full understanding of how to best parameterize the model. In this issue of Thia (Molecular Ecology Resources, 2022) looks under the hood of the DAPC. Using simulated data, he demonstrates the importance of careful parameter selection in developing a DAPC model, what the implications are for over-fitting the model, and finally, how best to evaluate the results of DAPC models. This work highlights the issues that can arise when over-parameterizing the DAPC model when gene flow is high among clusters and provides important guidelines to ensure researchers are making conclusions that are biologically relevant.
Collapse
Affiliation(s)
| | - Rhiannon M Peery
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Joshua M Miller
- Biological Sciences, MacEwan University, Edmonton, Alberta, Canada
| |
Collapse
|