1
|
Hespanhol JT, Nóbrega-Silva L, Bayer-Santos E. Regulation of type VI secretion systems at the transcriptional, posttranscriptional and posttranslational level. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001376. [PMID: 37552221 PMCID: PMC10482370 DOI: 10.1099/mic.0.001376] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023]
Abstract
Bacteria live in complex polymicrobial communities and are constantly competing for resources. The type VI secretion system (T6SS) is a widespread antagonistic mechanism used by Gram-negative bacteria to gain an advantage over competitors. T6SSs translocate toxic effector proteins inside target prokaryotic cells in a contact-dependent manner. In addition, some T6SS effectors can be secreted extracellularly and contribute to the scavenging scarce metal ions. Bacteria deploy their T6SSs in different situations, categorizing these systems into offensive, defensive and exploitative. The great variety of bacterial species and environments occupied by such species reflect the complexity of regulatory signals and networks that control the expression and activation of the T6SSs. Such regulation is tightly controlled at the transcriptional, posttranscriptional and posttranslational level by abiotic (e.g. pH, iron) or biotic (e.g. quorum-sensing) cues. In this review, we provide an update on the current knowledge about the regulatory networks that modulate the expression and activity of T6SSs across several species, focusing on systems used for interbacterial competition.
Collapse
Affiliation(s)
- Julia Takuno Hespanhol
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| | - Luize Nóbrega-Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| | - Ethel Bayer-Santos
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| |
Collapse
|
2
|
Blanco-Romero E, Durán D, Garrido-Sanz D, Redondo-Nieto M, Martín M, Rivilla R. Adaption of Pseudomonas ogarae F113 to the Rhizosphere Environment-The AmrZ-FleQ Hub. Microorganisms 2023; 11:microorganisms11041037. [PMID: 37110460 PMCID: PMC10146422 DOI: 10.3390/microorganisms11041037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Motility and biofilm formation are two crucial traits in the process of rhizosphere colonization by pseudomonads. The regulation of both traits requires a complex signaling network that is coordinated by the AmrZ-FleQ hub. In this review, we describe the role of this hub in the adaption to the rhizosphere. The study of the direct regulon of AmrZ and the phenotypic analyses of an amrZ mutant in Pseudomonas ogarae F113 has shown that this protein plays a crucial role in the regulation of several cellular functions, including motility, biofilm formation, iron homeostasis, and bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) turnover, controlling the synthesis of extracellular matrix components. On the other hand, FleQ is the master regulator of flagellar synthesis in P. ogarae F113 and other pseudomonads, but its implication in the regulation of multiple traits related with environmental adaption has been shown. Genomic scale studies (ChIP-Seq and RNA-Seq) have shown that in P. ogarae F113, AmrZ and FleQ are general transcription factors that regulate multiple traits. It has also been shown that there is a common regulon shared by the two transcription factors. Moreover, these studies have shown that AmrZ and FleQ form a regulatory hub that inversely regulate traits such as motility, extracellular matrix component production, and iron homeostasis. The messenger molecule c-di-GMP plays an essential role in this hub since its production is regulated by AmrZ and it is sensed by FleQ and required for its regulatory role. This regulatory hub is functional both in culture and in the rhizosphere, indicating that the AmrZ-FleQ hub is a main player of P. ogarae F113 adaption to the rhizosphere environment.
Collapse
Affiliation(s)
- Esther Blanco-Romero
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| | - David Durán
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| | - Daniel Garrido-Sanz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Miguel Redondo-Nieto
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| | - Marta Martín
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| | - Rafael Rivilla
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| |
Collapse
|
3
|
Yahya AH, Harston SR, Colton WL, Cabeen MT. Distinct Screening Approaches Uncover PA14_36820 and RecA as Negative Regulators of Biofilm Phenotypes in Pseudomonas aeruginosa PA14. Microbiol Spectr 2023; 11:e0377422. [PMID: 36971546 PMCID: PMC10100956 DOI: 10.1128/spectrum.03774-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/28/2023] [Indexed: 03/29/2023] Open
Abstract
Pseudomonas aeruginosa commonly infects hospitalized patients and the lungs of individuals with cystic fibrosis. This species is known for forming biofilms, which are communities of bacterial cells held together and encapsulated by a self-produced extracellular matrix. The matrix provides extra protection to the constituent cells, making P. aeruginosa infections challenging to treat. We previously identified a gene, PA14_16550, which encodes a DNA-binding TetR-type repressor and whose deletion reduced biofilm formation. Here, we assessed the transcriptional impact of the 16550 deletion and found six differentially regulated genes. Among them, our results implicated PA14_36820 as a negative regulator of biofilm matrix production, while the remaining 5 had modest effects on swarming motility. We also screened a transposon library in a biofilm-impaired ΔamrZ Δ16550 strain for restoration of matrix production. Surprisingly, we found that disruption or deletion of recA increased biofilm matrix production, both in biofilm-impaired and wild-type strains. Because RecA functions both in recombination and in the DNA damage response, we asked which function of RecA is important with respect to biofilm formation by using point mutations in recA and lexA to specifically disable each function. Our results implied that loss of either function of RecA impacts biofilm formation, suggesting that enhanced biofilm formation may be one physiological response of P. aeruginosa cells to loss of either RecA function. IMPORTANCE Pseudomonas aeruginosa is a notorious human pathogen well known for forming biofilms, communities of bacteria that protect themselves within a self-secreted matrix. Here, we sought to find genetic determinants that impacted biofilm matrix production in P. aeruginosa strains. We identified a largely uncharacterized protein (PA14_36820) and, surprisingly, RecA, a widely conserved bacterial DNA recombination and repair protein, as negatively regulating biofilm matrix production. Because RecA has two main functions, we used specific mutations to isolate each function and found that both functions influenced matrix production. Identifying negative regulators of biofilm production may suggest future strategies to reduce the formation of treatment-resistant biofilms.
Collapse
Affiliation(s)
- Amal H. Yahya
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Sophie R. Harston
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - William L. Colton
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Matthew T. Cabeen
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
4
|
The Alginate and Motility Regulator AmrZ is Essential for the Regulation of the Dispersion Response by Pseudomonas aeruginosa Biofilms. mSphere 2022; 7:e0050522. [PMID: 36374041 PMCID: PMC9769550 DOI: 10.1128/msphere.00505-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Dispersion is an active process exhibited by Pseudomonas aeruginosa during the late stages of biofilm development or in response to various cues, including nitric oxide and glutamate. Upon cue sensing, biofilm cells employ enzymes that actively degrade the extracellular matrix, thereby allowing individual cells to become liberated. While the mechanism by which P. aeruginosa senses and relays dispersion cues has been characterized, little is known about how dispersion cue sensing mechanisms result in matrix degradation. Considering that the alginate and motility regulator AmrZ has been reported to regulate genes that play a role in dispersion, including those affecting virulence, c-di-GMP levels, Pel and Psl abundance, and motility, we asked whether AmrZ contributes to the regulation of dispersion. amrZ was found to be significantly increased in transcript abundance under dispersion-inducing conditions, with the inactivation of amrZ impairing dispersion by P. aeruginosa biofilms in response to glutamate and nitric oxide. While the overexpression of genes encoding matrix-degrading enzymes pelA, pslG, and/or endA resulted in the dispersion of wild-type biofilms, similar conditions failed to disperse biofilms formed by dtamrZ. Likewise, the inactivation of amrZ abrogated the hyperdispersive phenotype of PAO1/pJN-bdlA_G31A biofilms, with dtamrZ-impaired dispersion being independent of the expression, production, and activation of BdlA. Instead, dispersion was found to require the AmrZ-target genes napB and PA1891. Our findings indicate that AmrZ is essential for the regulation of dispersion by P. aeruginosa biofilms, functions downstream of BdlA postdispersion cue sensing, and regulates the expression of genes contributing to biofilm matrix degradation as well as napB and PA1891. IMPORTANCE In P. aeruginosa, biofilm dispersion has been well-characterized with respect to dispersion cue perception, matrix degradation, and the consequences of dispersion. While the intracellular signaling molecule c-di-GMP has been linked to many of the phenotypic changes ascribed to dispersion, including the modulation of motility and matrix production, little is known about the regulatory mechanisms leading to matrix degradation and cells actively leaving the biofilm. In this study, we report for the first time an essential role of the transcriptional regulator AmrZ and two AmrZ-dependent genes, napB, and PA1891, in the dispersion response, thereby linking dispersion cue sensing via BdlA to the regulation of matrix degradation and to the ultimate liberation of bacterial cells from the biofilm.
Collapse
|
5
|
Liu P, Yue C, Liu L, Gao C, Lyu Y, Deng S, Tian H, Jia X. The function of small RNA in Pseudomonas aeruginosa. PeerJ 2022; 10:e13738. [PMID: 35891650 PMCID: PMC9308961 DOI: 10.7717/peerj.13738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/25/2022] [Indexed: 01/17/2023] Open
Abstract
Pseudomonas aeruginosa, the main conditional pathogen causing nosocomial infection, is a gram-negative bacterium with the largest genome among the known bacteria. The main reasons why Pseudomonas aeruginosa is prone to drug-resistant strains in clinic are: the drug-resistant genes in its genome and the drug resistance easily induced by single antibiotic treatment. With the development of high-throughput sequencing technology and bioinformatics, the functions of various small RNAs (sRNA) in Pseudomonas aeruginosa are being revealed. Different sRNAs regulate gene expression by binding to protein or mRNA to play an important role in the complex regulatory network. In this article, first, the importance and biological functions of different sRNAs in Pseudomonas aeruginosa are explored, and then the evidence and possibilities that sRNAs served as drug therapeutic targets are discussed, which may introduce new directions to develop novel disease treatment strategies.
Collapse
Affiliation(s)
- Pei Liu
- Yan’an University, Key Laboratory of Microbial Drugs Innovation and Transformation, Yan’an, Shaanxi, China
| | - Changwu Yue
- Yan’an University, Key Laboratory of Microbial Drugs Innovation and Transformation, Yan’an, Shaanxi, China
| | - Lihua Liu
- Chengdu Medical College, Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Can Gao
- Yan’an University, Key Laboratory of Microbial Drugs Innovation and Transformation, Yan’an, Shaanxi, China
| | - Yuhong Lyu
- Yan’an University, Key Laboratory of Microbial Drugs Innovation and Transformation, Yan’an, Shaanxi, China
| | - Shanshan Deng
- Chengdu Medical College, Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Hongying Tian
- Yan’an University, Key Laboratory of Microbial Drugs Innovation and Transformation, Yan’an, Shaanxi, China
| | - Xu Jia
- Chengdu Medical College, Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu, Sichuan, China,School of Basic Medical Science, Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Núñez C, López-Pliego L, Ahumada-Manuel CL, Castañeda M. Genetic Regulation of Alginate Production in Azotobacter vinelandii a Bacterium of Biotechnological Interest: A Mini-Review. Front Microbiol 2022; 13:845473. [PMID: 35401471 PMCID: PMC8988225 DOI: 10.3389/fmicb.2022.845473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/03/2022] [Indexed: 11/17/2022] Open
Abstract
Alginates are a family of polymers composed of guluronate and mannuronate monomers joined by β (1–4) links. The different types of alginates have variations in their monomer content and molecular weight, which determine the rheological properties and their applications. In industry, alginates are commonly used as additives capable of viscosifying, stabilizing, emulsifying, and gelling aqueous solutions. Recently, additional specialized biomedical uses have been reported for this polymer. Currently, the production of alginates is based on the harvesting of seaweeds; however, the composition and structure of the extracts are highly variable. The production of alginates for specialized applications requires a precise composition of monomers and molecular weight, which could be achieved using bacterial production systems such as those based on Azotobacter vinelandii, a free-living, non-pathogenic bacterium. In this mini-review, we analyze the latest advances in the regulation of alginate synthesis in this model.
Collapse
Affiliation(s)
- Cinthia Núñez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Liliana López-Pliego
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Carlos Leonel Ahumada-Manuel
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Miguel Castañeda
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- *Correspondence: Miguel Castañeda,
| |
Collapse
|
7
|
Siqueira FDS, Alves CFDS, Machado AK, Siqueira JD, Santos TD, Mizdal CR, Moreira KS, Teixeira Carvalho D, Bonez PC, Urquhart CG, Santos RCV, Sagrillo MR, Marques LDL, Back DF, de Campos MMA. Molecular docking, quorum quenching effect, antibiofilm activity and safety profile of silver-complexed sulfonamide on Pseudomonas aeruginosa. BIOFOULING 2021; 37:555-571. [PMID: 34225503 DOI: 10.1080/08927014.2021.1939019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
Microbial infections caused by sessile microorganisms are known to be a more challenging issue than infections caused by the same microorganisms in the planktonic state. Pseudomonas aeruginosa is an opportunistic pathogen and biofilm-forming agent. This species presents intense cellular communication mediated by signaling molecules. This process is known as quorum sensing (QS) and induces the transcription of specific genes that favors cell density growth and three-dimensional bacterial grouping. In this context, the discovery of compounds capable of inhibiting the action of the QS signaling molecules seems to be a promising strategy against biofilms. This work aimed to evaluate the anti-biofilm action and the in vitro safety profile of a sulfamethoxazole-Ag complex. The results obtained indicate potential anti-biofilm activity through QS inhibition. In silico tests showed that the compound acts on the las and pqs systems, which are the main regulators of biofilm formation in P. aeruginosa. Additionally, the molecule proved to be safe for human peripheral blood mononuclear cells.
Collapse
Affiliation(s)
| | | | - Alencar Kolinski Machado
- Graduate Program in Nanoscience, Franciscan University, Santa Maria, Brazil, Santa Maria, Brazil
| | | | - Thiago Dos Santos
- Research Center on Natural and Synthetic Products, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Caren Rigon Mizdal
- Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | | | - Diogo Teixeira Carvalho
- Pharmaceutical Chemistry Research Laboratory, Federal University of Alfenas, Alfenas, Brazil
| | - Pauline Codernonsi Bonez
- Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | | | | | - Michele Rorato Sagrillo
- Graduate Program in Nanoscience, Franciscan University, Santa Maria, Brazil, Santa Maria, Brazil
| | - Lenice de Lourenço Marques
- Farroupilha Federal Institute, São Vicente do Sul Campus, Zip code: 97420-000, São Vicente do Sul, Brazil
| | - Davi Fernando Back
- Graduate Program in Chemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | | |
Collapse
|
8
|
Activation of the Cell Wall Stress Response in Pseudomonas aeruginosa Infected by a Pf4 Phage Variant. Microorganisms 2020; 8:microorganisms8111700. [PMID: 33143386 PMCID: PMC7693463 DOI: 10.3390/microorganisms8111700] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas aeruginosa PAO1 has an integrated Pf4 prophage in its genome, encoding a relatively well-characterized filamentous phage, which contributes to the bacterial biofilm organization and maturation. Pf4 variants are considered as superinfectives when they can re-infect and kill the prophage-carrying host. Herein, the response of P. aeruginosa H103 to Pf4 variant infection was investigated. This phage variant caused partial lysis of the bacterial population and modulated H103 physiology. We show by confocal laser scanning microscopy that a Pf4 variant-infection altered P. aeruginosa H103 biofilm architecture either in static or dynamic conditions. Interestingly, in the latter condition, numerous cells displayed a filamentous morphology, suggesting a link between this phenotype and flow-related forces. In addition, Pf4 variant-infection resulted in cell envelope stress response, mostly mediated by the AlgU and SigX extracytoplasmic function sigma factors (ECFσ). AlgU and SigX involvement may account, at least partly, for the enhanced expression level of genes involved in the biosynthesis pathways of two matrix exopolysaccharides (Pel and alginates) and bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) metabolism.
Collapse
|
9
|
Abstract
The formation of microbial biofilms enables single planktonic cells to assume a multicellular mode of growth. During dispersion, the final step of the biofilm life cycle, single cells egress from the biofilm to resume a planktonic lifestyle. As the planktonic state is considered to be more vulnerable to antimicrobial agents and immune responses, dispersion is being considered a promising avenue for biofilm control. In this Review, we discuss conditions that lead to dispersion and the mechanisms by which native and environmental cues contribute to dispersion. We also explore recent findings on the role of matrix degradation in the dispersion process, and the distinct phenotype of dispersed cells. Last, we discuss the translational and therapeutic potential of dispersing bacteria during infection.
Collapse
Affiliation(s)
- Kendra P Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of the TTUHSC Surgery Burn Center of Research Excellence, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Karin Sauer
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA.
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, USA.
| |
Collapse
|
10
|
Untethering and Degradation of the Polysaccharide Matrix Are Essential Steps in the Dispersion Response of Pseudomonas aeruginosa Biofilms. J Bacteriol 2020; 202:JB.00575-19. [PMID: 31712279 DOI: 10.1128/jb.00575-19] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 10/31/2019] [Indexed: 01/08/2023] Open
Abstract
Biofilms are multicellular aggregates of bacteria that are encased in an extracellular matrix. The biofilm matrix of Pseudomonas aeruginosa PAO1 is composed of eDNA, proteins, and the polysaccharides Pel and Psl. This matrix is thought to be degraded during dispersion to liberate cells from the biofilms, with dispersion being apparent not only by single cells escaping from the biofilm but also leaving behind eroded or hollowed-out biofilm. However, little is known of the factors involved in matrix degradation. Here, we focused on the glycoside hydrolases PelA and PslG. We demonstrate that induction of pelA but not pslG expression resulted in dispersion. As Psl is tethered to the matrix adhesin CdrA, we furthermore explored the role of CdrA in dispersion. cdrA mutant biofilms were hyperdispersive, while lapG mutant biofilms were impaired in dispersion in response to glutamate and nitric oxide, indicating the presence of the surface-associated matrix protein CdrA impedes the dispersion response. In turn, insertional inactivation of cdrA enabled pslG-induced dispersion. Lowering of the intracellular c-di-GMP level via induction of PA2133 encoding a phosphodiesterase was not sufficient to induce dispersion by wild-type strains and strains overexpressing pslG, indicating that pslG-induced dispersion is independent of c-di-GMP modulation and, likely, LapG.IMPORTANCE Pseudomonas aeruginosa forms multicellular aggregates or biofilms encased in a matrix. We show for the first time here that dispersion by P. aeruginosa requires the endogenous expression of pelA and pslG, leading to the degradation of both Pel and Psl polysaccharides, with PslG-induced dispersion being CdrA dependent. The findings suggested that endogenously induced Psl degradation is a sequential process, initiated by untethering of CdrA-bound Psl or CdrA-dependent cell interactions to enable Psl degradation and ultimately, dispersion. Untethering likely involves CdrA release in a manner independent of c-di-GMP modulation and thus LapG. Our findings not only provide insight into matrix degrading factors contributing to dispersion but also identify key steps in the degradation of structural components of the P. aeruginosa biofilm matrix.
Collapse
|
11
|
Evolutionary Plasticity of AmrZ Regulation in Pseudomonas. mSphere 2018; 3:3/2/e00132-18. [PMID: 29669886 PMCID: PMC5907648 DOI: 10.1128/msphere.00132-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 03/26/2018] [Indexed: 11/20/2022] Open
Abstract
amrZ encodes a master regulator protein conserved across pseudomonads, which can be either a positive or negative regulator of swimming motility depending on the species examined. To better understand plasticity in the regulatory function of AmrZ, we characterized the mode of regulation for this protein for two different motility-related phenotypes in Pseudomonas stutzeri As in Pseudomonas syringae, AmrZ functions as a positive regulator of swimming motility within P. stutzeri, which suggests that the functions of this protein with regard to swimming motility have switched at least twice across pseudomonads. Shifts in mode of regulation cannot be explained by changes in AmrZ sequence alone. We further show that AmrZ acts as a positive regulator of colony spreading within this strain and that this regulation is at least partially independent of swimming motility. Closer investigation of mechanistic shifts in dual-function regulators like AmrZ could provide unique insights into how transcriptional pathways are rewired between closely related species.IMPORTANCE Microbes often display finely tuned patterns of gene regulation across different environments, with major regulatory changes controlled by a small group of "master" regulators within each cell. AmrZ is a master regulator of gene expression across pseudomonads and can be either a positive or negative regulator for a variety of pathways depending on the strain and genomic context. Here, we demonstrate that the phenotypic outcomes of regulation of swimming motility by AmrZ have switched at least twice independently in pseudomonads, so that AmrZ promotes increased swimming motility in P. stutzeri and P. syringae but represses this phenotype in Pseudomonas fluorescens and Pseudomonas aeruginosa Since examples of switches in regulatory mode are relatively rare, further investigation into the mechanisms underlying shifts in regulator function for AmrZ could provide unique insights into the evolution of bacterial regulatory proteins.
Collapse
|
12
|
Pratama AA, van Elsas JD. A novel inducible prophage from the mycosphere inhabitant Paraburkholderia terrae BS437. Sci Rep 2017; 7:9156. [PMID: 28831124 PMCID: PMC5567305 DOI: 10.1038/s41598-017-09317-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 07/20/2017] [Indexed: 11/13/2022] Open
Abstract
Bacteriophages constitute key gene transfer agents in many bacteria. Specifically, they may confer gene mobility to Paraburkholderia spp. that dwells in soil and the mycosphere. In this study, we first screened mycosphere and bulk soils for phages able to produce plaques, however found these to be below detection. Then, prophage identification methods were applied to the genome sequences of the mycosphere-derived Paraburkholderia terrae strains BS001, BS007, BS110 and BS437, next to P. phytofirmans strains BS455, BIFAS53, J1U5 and PsJN. These analyses revealed all bacterial genomes to contain considerable amounts [up to 13.3%] of prophage-like sequences. One sequence predicted to encode a complete phage was found in the genome of P. terrae BS437. Using the inducing agent mitomycin C, we produced high-titered phage suspensions. These indeed encompassed the progeny of the identified prophage (denoted ɸ437), as evidenced using phage major capsid gene molecular detection. We obtained the full sequence of phage ɸ437, which, remarkably, had undergone a reshuffling of two large gene blocks. One predicted moron gene was found, and it is currently analyzed to understand the extent of its ecological significance for the host.
Collapse
Affiliation(s)
- Akbar Adjie Pratama
- Department of Microbial Ecology, Microbial Ecology - Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, Groningen, 9747 AG, The Netherlands.
| | - Jan Dirk van Elsas
- Department of Microbial Ecology, Microbial Ecology - Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, Groningen, 9747 AG, The Netherlands.
| |
Collapse
|
13
|
Pseudomonas aeruginosa AmrZ Binds to Four Sites in the algD Promoter, Inducing DNA-AmrZ Complex Formation and Transcriptional Activation. J Bacteriol 2016; 198:2673-81. [PMID: 27185826 DOI: 10.1128/jb.00259-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/09/2016] [Indexed: 11/20/2022] Open
Abstract
During late stages of cystic fibrosis pulmonary infections, Pseudomonas aeruginosa often overproduces the exopolysaccharide alginate, protecting the bacterial community from host immunity and antimicrobials. The transcription of the alginate biosynthesis operon is under tight control by a number of factors, including AmrZ, the focus of this study. Interestingly, multiple transcription factors interact with the far-upstream region of this promoter (PalgD), in which one AmrZ binding site has been identified previously. The mechanisms of AmrZ binding and subsequent activation remain unclear and require more-detailed investigation. In this study, in-depth examinations elucidated four AmrZ binding sites, and their disruption eliminated AmrZ binding and promoter activation. Furthermore, our in vitro fluorescence resonance energy transfer experiments suggest that AmrZ holds together multiple binding sites in PalgD and thereafter induces the formation of higher-order DNA-AmrZ complexes. To determine the importance of interactions between those AmrZ oligomers in the cell, a DNA phasing experiment was performed. PalgD transcription was significantly impaired when the relative phase between AmrZ binding sites was reversed (5 bp), while a full-DNA-turn insertion (10 bp) restored promoter activity. Taken together, the investigations presented here provide a deeper mechanistic understanding of AmrZ-mediated binding to PalgD IMPORTANCE: Overproduction of the exopolysaccharide alginate provides protection to Pseudomonas aeruginosa against antimicrobial treatments and is associated with chronic P. aeruginosa infections in the lungs of cystic fibrosis patients. In this study, we combined a variety of microbiological, genetic, biochemical, and biophysical approaches to investigate the activation of the alginate biosynthesis operon promoter by a key transcription factor named AmrZ. This study has provided important new information on the mechanism of activation of this extremely complex promoter.
Collapse
|