1
|
Chatziefthimiou AD, Metcalf JS, Glover WB, Powell JT, Banack SA, Cox PA, Ladjimi M, Sultan AA, Chemaitelly H, Richer RA. Cyanotoxin accumulation and growth patterns of biocrust communities under variable environmental conditions. Toxicon X 2024; 23:100199. [PMID: 38974839 PMCID: PMC11225906 DOI: 10.1016/j.toxcx.2024.100199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 07/09/2024] Open
Abstract
Biocrusts dominate the soil surface in deserts and are composed of diverse microbial communities that provide important ecosystem services. Cyanobacteria in biocrusts produce many secondary metabolites, including the neurotoxins BMAA, AEG, DAB, anatoxin-a(S) (guanitoxin), and the microcystin hepatotoxins, all known or suspected to cause disease or illness in humans and other animals. We examined cyanobacterial growth and prevalence of these toxins in biocrusts at millimeter-scales, under a desert-relevant illumination gradient. In contrast to previous work, we showed that hydration had an overall positive effect on growth and toxin accumulation, that nitrogen was not correlated with growth or toxin production, and that phosphorus enrichment negatively affected AEG and BMAA concentrations. Excess illumination positively correlated with AEG, and negatively correlated with all other toxins and growth. Basic pH negatively affected only the accumulation of BMAA. Anatoxin-a(S) (guanitoxin) was not correlated with any tested variables, while microcystins were not detected in any of the samples. Concerning toxin pools, AEG and BMAA were good predictors of the presence of one another. In a newly conceptualized scheme, we integrate aspects of biocrust growth and toxin pool accumulations with arid-relevant desertification drivers.
Collapse
Affiliation(s)
| | - James S. Metcalf
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA
- Bowling Green State University, Bowling Green, OH, USA
| | | | - James T. Powell
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA
| | - Sandra A. Banack
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA
| | - Paul A. Cox
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA
| | - Moncef Ladjimi
- Weill Cornell Medicine – Qatar, Education City, Doha, Qatar
| | - Ali A. Sultan
- Weill Cornell Medicine – Qatar, Education City, Doha, Qatar
| | | | | |
Collapse
|
2
|
Kim SY, Rasmussen U, Rydberg S. Impact of the neurotoxin β-N-methylamino-L-alanine on the diatom Thalassiosira pseudonana using metabolomics. MARINE POLLUTION BULLETIN 2024; 202:116299. [PMID: 38581736 DOI: 10.1016/j.marpolbul.2024.116299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/14/2024] [Accepted: 03/24/2024] [Indexed: 04/08/2024]
Abstract
The neurotoxin β-N-methylamino-L-alanine (BMAA) has emerged as an environmental factor related to neurodegenerative diseases. BMAA is produced by various microorganisms including cyanobacteria and diatoms, in diverse ecosystems. In the diatom Phaeodactylum tricornutum, BMAA is known to inhibit growth. The present study investigated the impact of BMAA on the diatom Thalassiosira pseudonana by exposing it to different concentrations of exogenous BMAA. Metabolomics was predominantly employed to investigate the effect of BMAA on T. pseudonana, and MetaboAnalyst (https://www.metabo-analyst.ca/) was used to identify BMAA-associated metabolisms/pathways in T. pseudonana. Furthermore, to explore the unique response, specific metabolites were compared between treatments. When the growth was obstructed by BMAA, 17 metabolisms/pathways including nitrogen and glutathione (i.e. oxidative stress) metabolisms, were influenced in T. pseudonana. This study has further determined that 11 out of 17 metabolisms/pathways could be essentially affected by BMAA, leading to the inhibition of diatom growth.
Collapse
Affiliation(s)
- Sea-Yong Kim
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ulla Rasmussen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE 10691 Stockholm, Sweden
| | - Sara Rydberg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE 10691 Stockholm, Sweden.
| |
Collapse
|
3
|
Bishop SL, Solonenka JT, Giebelhaus RT, Bakker DTR, Li ITS, Murch SJ. Microbial Diversity Impacts Non-Protein Amino Acid Production in Cyanobacterial Bloom Cultures Collected from Lake Winnipeg. Toxins (Basel) 2024; 16:169. [PMID: 38668594 PMCID: PMC11053616 DOI: 10.3390/toxins16040169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/10/2024] [Accepted: 03/20/2024] [Indexed: 04/29/2024] Open
Abstract
Lake Winnipeg in Manitoba, Canada is heavily impacted by harmful algal blooms that contain non-protein amino acids (NPAAs) produced by cyanobacteria: N-(2-aminoethyl)glycine (AEG), β-aminomethyl-L-alanine (BAMA), β-N-methylamino-L-alanine (BMAA), and 2,4-diaminobutyric acid (DAB). Our objective was to investigate the impact of microbial diversity on NPAA production by cyanobacteria using semi-purified crude cyanobacterial cultures established from field samples collected by the Lake Winnipeg Research Consortium between 2016 and 2021. NPAAs were detected and quantified by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) using validated analytical methods, while Shannon and Simpson alpha diversity scores were determined from 16S rRNA metagenomic sequences. Alpha diversity in isolate cultures was significantly decreased compared to crude cyanobacterial cultures (p < 0.001), indicating successful semi-purification. BMAA and AEG concentrations were higher in crude compared to isolate cultures (p < 0.0001), and AEG concentrations were correlated to the alpha diversity in cultures (r = 0.554; p < 0.0001). BAMA concentrations were increased in isolate cultures (p < 0.05), while DAB concentrations were similar in crude and isolate cultures. These results demonstrate that microbial community complexity impacts NPAA production by cyanobacteria and related organisms.
Collapse
Affiliation(s)
- Stephanie L. Bishop
- Department of Chemistry, University of British Columbia, Syilx Okanagan Nation Territory, Kelowna, BC V1V 1V7, Canada; (J.T.S.); (R.T.G.); (D.T.R.B.); (I.T.S.L.); (S.J.M.)
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Julia T. Solonenka
- Department of Chemistry, University of British Columbia, Syilx Okanagan Nation Territory, Kelowna, BC V1V 1V7, Canada; (J.T.S.); (R.T.G.); (D.T.R.B.); (I.T.S.L.); (S.J.M.)
| | - Ryland T. Giebelhaus
- Department of Chemistry, University of British Columbia, Syilx Okanagan Nation Territory, Kelowna, BC V1V 1V7, Canada; (J.T.S.); (R.T.G.); (D.T.R.B.); (I.T.S.L.); (S.J.M.)
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2N4, Canada
- The Metabolomics Innovation Centre, Edmonton, AB T6G 2N4, Canada
| | - David T. R. Bakker
- Department of Chemistry, University of British Columbia, Syilx Okanagan Nation Territory, Kelowna, BC V1V 1V7, Canada; (J.T.S.); (R.T.G.); (D.T.R.B.); (I.T.S.L.); (S.J.M.)
| | - Isaac T. S. Li
- Department of Chemistry, University of British Columbia, Syilx Okanagan Nation Territory, Kelowna, BC V1V 1V7, Canada; (J.T.S.); (R.T.G.); (D.T.R.B.); (I.T.S.L.); (S.J.M.)
| | - Susan J. Murch
- Department of Chemistry, University of British Columbia, Syilx Okanagan Nation Territory, Kelowna, BC V1V 1V7, Canada; (J.T.S.); (R.T.G.); (D.T.R.B.); (I.T.S.L.); (S.J.M.)
| |
Collapse
|
4
|
Gutiérrez-García K, Whitaker MRL, Bustos-Díaz ED, Salzman S, Ramos-Aboites HE, Reitz ZL, Pierce NE, Cibrián-Jaramillo A, Barona-Gómez F. Gut microbiomes of cycad-feeding insects tolerant to β-methylamino-L-alanine (BMAA) are rich in siderophore biosynthesis. ISME COMMUNICATIONS 2023; 3:122. [PMID: 37993724 PMCID: PMC10665472 DOI: 10.1038/s43705-023-00323-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 11/24/2023]
Abstract
Ingestion of the cycad toxins β-methylamino-L-alanine (BMAA) and azoxyglycosides is harmful to diverse organisms. However, some insects are specialized to feed on toxin-rich cycads with apparent immunity. Some cycad-feeding insects possess a common set of gut bacteria, which might play a role in detoxifying cycad toxins. Here, we investigated the composition of gut microbiota from a worldwide sample of cycadivorous insects and characterized the biosynthetic potential of selected bacteria. Cycadivorous insects shared a core gut microbiome consisting of six bacterial taxa, mainly belonging to the Proteobacteria, which we were able to isolate. To further investigate selected taxa from diverging lineages, we performed shotgun metagenomic sequencing of co-cultured bacterial sub-communities. We characterized the biosynthetic potential of four bacteria from Serratia, Pantoea, and two different Stenotrophomonas lineages, and discovered a suite of biosynthetic gene clusters notably rich in siderophores. Siderophore semi-untargeted metabolomics revealed a broad range of chemically related yet diverse iron-chelating metabolites, including desferrioxamine B, suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway that remains to be identified. These results provide a foundation for future investigations into how cycadivorous insects tolerate diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores.
Collapse
Affiliation(s)
- Karina Gutiérrez-García
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Km 9.6 Libramiento Irapuato - León, Irapuato, Guanajuato, 36824, México
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD, 21218, USA
| | - Melissa R L Whitaker
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA.
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37614, USA.
| | - Edder D Bustos-Díaz
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Km 9.6 Libramiento Irapuato - León, Irapuato, Guanajuato, 36824, México
- Institute of Biology, Leiden University, Sylviusweg 72, Leiden, 2333 BE, The Netherlands
| | - Shayla Salzman
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
- University of Georgia, Entomology Department, Athens, GA, 30602, USA
| | - Hilda E Ramos-Aboites
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Km 9.6 Libramiento Irapuato - León, Irapuato, Guanajuato, 36824, México
| | - Zachary L Reitz
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Naomi E Pierce
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Angélica Cibrián-Jaramillo
- Ecological and Evolutionary Genomics Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Km 9.6 Libramiento Irapuato - León, Irapuato, Guanajuato, 36824, México
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, The Netherlands
| | - Francisco Barona-Gómez
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Km 9.6 Libramiento Irapuato - León, Irapuato, Guanajuato, 36824, México.
- Institute of Biology, Leiden University, Sylviusweg 72, Leiden, 2333 BE, The Netherlands.
| |
Collapse
|
5
|
Koksharova OA, Safronova NA. Non-Proteinogenic Amino Acid β-N-Methylamino-L-Alanine (BMAA): Bioactivity and Ecological Significance. Toxins (Basel) 2022; 14:539. [PMID: 36006201 PMCID: PMC9414260 DOI: 10.3390/toxins14080539] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/28/2022] [Accepted: 08/04/2022] [Indexed: 11/21/2022] Open
Abstract
Research interest in a non-protein amino acid β-N-methylamino-L-alanine (BMAA) arose due to the discovery of a connection between exposure to BMAA and the occurrence of neurodegenerative diseases. Previous reviews on this topic either considered BMAA as a risk factor for neurodegenerative diseases or focused on the problems of detecting BMAA in various environmental samples. Our review is devoted to a wide range of fundamental biological problems related to BMAA, including the molecular mechanisms of biological activity of BMAA and the complex relationships between producers of BMAA and the environment in various natural ecosystems. At the beginning, we briefly recall the most important facts about the producers of BMAA (cyanobacteria, microalgae, and bacteria), the pathways of BMAA biosynthesis, and reliable methods of identification of BMAA. The main distinctive feature of our review is a detailed examination of the molecular mechanisms underlying the toxicity of BMAA to living cells. A brand new aspect, not previously discussed in any reviews, is the effect of BMAA on cyanobacterial cells. These recent studies, conducted using transcriptomics and proteomics, revealed potent regulatory effects of BMAA on the basic metabolism and cell development of these ancient photoautotrophic prokaryotes. Exogenous BMAA strongly influences cell differentiation and primary metabolic processes in cyanobacteria, such as nitrogen fixation, photosynthesis, carbon fixation, and various biosynthetic processes involving 2-oxoglutarate and glutamate. Cyanobacteria were found to be more sensitive to exogenous BMAA under nitrogen-limited growth conditions. We suggest a hypothesis that this toxic diaminoacid can be used by phytoplankton organisms as a possible allelopathic tool for controlling the population of cyanobacterial cells during a period of intense competition for nitrogen and other resources in various ecosystems.
Collapse
Affiliation(s)
- Olga A. Koksharova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Square, 2, 123182 Moscow, Russia
| | - Nina A. Safronova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
6
|
Kim SY, Hedberg P, Winder M, Rydberg S. Evidence of 2,4-diaminobutyric acid (DAB) production as a defense mechanism in diatom Thalassiosira pseudonana. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 249:106210. [PMID: 35665646 DOI: 10.1016/j.aquatox.2022.106210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
The neurotoxic secondary metabolite β-N-methylamino-L-alanine (BMAA) and its structural isomer 2,4-diaminobutyric acid (DAB) are known to be produced by various phytoplankton groups. Despite the worldwide spread of these toxin producers, no obvious role and function of BMAA and DAB in diatoms have been identified. Here, we investigated the effects of biotic factors, i.e., predators and competitors, as possible causes of BMAA and/or DAB regulation in the two diatom species Phaeodactylum tricornutum and Thalassiosira pseudonana. DAB was specifically regulated in T. pseudonana by the presence of predators and competitors. The effects of DAB on both diatoms as competitors and on the copepod Tigriopus sp. as predator at individual and at population levels were examined. The toxic effects of DAB on the growth of T. pseudonana and the population of Tigriopus sp. were significant. The effect of DAB as a defensive secondary metabolite is assumed to be environmentally relevant depending on the number of the copepods. The results show a potential function of DAB that can play an important role in defense mechanisms of T. pseudonana.
Collapse
Affiliation(s)
- Sea-Yong Kim
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE 10691 Stockholm, Sweden
| | - Per Hedberg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE 10691 Stockholm, Sweden
| | - Monika Winder
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE 10691 Stockholm, Sweden
| | - Sara Rydberg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE 10691 Stockholm, Sweden.
| |
Collapse
|
7
|
Koksharova OA, Safronov NA. The effects of secondary bacterial metabolites on photosynthesis in microalgae cells. Biophys Rev 2022; 14:843-856. [PMID: 36124259 PMCID: PMC9481811 DOI: 10.1007/s12551-022-00981-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/04/2022] [Indexed: 12/26/2022] Open
Abstract
Secondary metabolites of bacteria are regulatory molecules that act as "info-chemicals" that control some metabolic processes in the cells of microorganisms. These molecules provide the function of bacteria communication in microbial communities. As primary producers of organic matter in the biosphere, microalgae play a central ecological role in various ecosystems. Photosynthesis is a central process in microalgae cells, and it is exposed to various biotic and abiotic factors. Various secondary metabolites of bacteria confer a noticeable regulatory effect on photosynthesis in microalgae cells. The main purpose of this review is to highlight recent experimental results that demonstrate the impact of several types of common bacterial metabolites (volatile organic compounds, non-protein amino acids, and peptides) on photosynthetic activity in cells of microalgae. The use of these molecules as herbicides can be of great importance both for practical applications and for basic research.
Collapse
Affiliation(s)
- O. A. Koksharova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1-40, 119991 Moscow, Russia
- Institute of Molecular Genetics of National Research Center, Kurchatov Institute”, Kurchatov Square, 2, 123182 Moscow, Russia
| | - N. A. Safronov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1-40, 119991 Moscow, Russia
| |
Collapse
|
8
|
Kim SY, Rasmussen U, Rydberg S. Effect and function of β-N-methylamino-L-alanine in the diatom Phaeodactylum tricornutum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154778. [PMID: 35341850 DOI: 10.1016/j.scitotenv.2022.154778] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
The neurotoxin β-N-methylamino-L-alanine (BMAA) is an environmental factor connected to neurodegenerative diseases. BMAA can be produced by various microorganisms (e.g. bacteria, cyanobacteria, dinoflagellates and diatoms) present in diverse ecosystems. No previous study has revealed the function of BMAA in diatoms. In the present study, we combined physiological data with metabolomic and transcriptional data in order to investigate the effect and function of BMAA in the diatom Phaeodactylum tricornutum. P. tricornutum, exposed to different concentrations of exogenous BMAA, showed concentration dependent responses. When the concentration of supplemented BMAA was sufficient to arrest the growth of P. tricornutum, oxidative stress and obstructed carbon fixation were obtained from the specific metabolite and transcriptional data. Results also indicated increased concentration of intracellular chlorophyll a and alterations in the GS-GOGAT cycle, whereas the urea cycle was suppressed. We therefore conclude that BMAA represents a toxic metabolite able to control the growth of P. tricornutum by triggering oxidative stress, and further influencing photosynthesis and nitrogen metabolisms.
Collapse
Affiliation(s)
- Sea-Yong Kim
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE 10691 Stockholm, Sweden
| | - Ulla Rasmussen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE 10691 Stockholm, Sweden
| | - Sara Rydberg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE 10691 Stockholm, Sweden.
| |
Collapse
|
9
|
Kazemi Shariat Panahi H, Dehhaghi M, Heng B, Lane DJR, Bush AI, Guillemin GJ, Tan VX. Neuropathological Mechanisms of β-N-Methylamino-L-Alanine (BMAA) with a Focus on Iron Overload and Ferroptosis. Neurotox Res 2022; 40:614-635. [PMID: 35023054 DOI: 10.1007/s12640-021-00455-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 02/08/2023]
Abstract
The incidence of neurodegenerative diseases and cyanobacterial blooms is concomitantly increasing worldwide. The cyanotoxin β-N-methylamino-L-alanine (BMAA) is produced by most of the Cyanobacteria spp. This cyanotoxin is described as a potential environmental etiology factor for some sporadic neurodegenerative diseases. Climate change and eutrophication significantly increase the frequency and intensity of cyanobacterial bloom in water bodies. This review evaluates different neuropathological mechanisms of BMAA at molecular and cellular levels and compares the related studies to provide some useful recommendations. Additionally, the structure and properties of BMAA as well as its microbial origin, especially by gut bacteria, are also briefly covered. Unlike previous reviews, we hypothesize the possible neurotoxic mechanism of BMAA through iron overload. We also discuss the involvement of BMAA in excitotoxicity, TAR DNA-binding protein 43 (TDP-43) translocation and accumulation, tauopathy, and other protein misincorporation and misfolding.
Collapse
Affiliation(s)
- Hamed Kazemi Shariat Panahi
- Neuroinflammation Group, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Mona Dehhaghi
- Neuroinflammation Group, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- PANDIS.Org, Bendigo, Australia
- Department of Microbial Biotechnology, School of Biology and Centre of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Benjamin Heng
- Neuroinflammation Group, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Gilles J Guillemin
- Neuroinflammation Group, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
- PANDIS.Org, Bendigo, Australia.
| | - Vanessa X Tan
- Neuroinflammation Group, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- PANDIS.Org, Bendigo, Australia
| |
Collapse
|
10
|
Omidi A, Pflugmacher S, Kaplan A, Kim YJ, Esterhuizen M. Reviewing Interspecies Interactions as a Driving Force Affecting the Community Structure in Lakes via Cyanotoxins. Microorganisms 2021; 9:1583. [PMID: 34442662 PMCID: PMC8401979 DOI: 10.3390/microorganisms9081583] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/26/2022] Open
Abstract
The escalating occurrence of toxic cyanobacterial blooms worldwide is a matter of concern. Global warming and eutrophication play a major role in the regularity of cyanobacterial blooms, which has noticeably shifted towards the predomination of toxic populations. Therefore, understanding the effects of cyanobacterial toxins in aquatic ecosystems and their advantages to the producers are of growing interest. In this paper, the current literature is critically reviewed to provide further insights into the ecological contribution of cyanotoxins in the variation of the lake community diversity and structure through interspecies interplay. The most commonly detected and studied cyanobacterial toxins, namely the microcystins, anatoxins, saxitoxins, cylindrospermopsins and β-N-methylamino-L-alanine, and their ecotoxicity on various trophic levels are discussed. This work addresses the environmental characterization of pure toxins, toxin-containing crude extracts and filtrates of single and mixed cultures in interspecies interactions by inducing different physiological and metabolic responses. More data on these interactions under natural conditions and laboratory-based studies using direct co-cultivation approaches will provide more substantial information on the consequences of cyanotoxins in the natural ecosystem. This review is beneficial for understanding cyanotoxin-mediated interspecies interactions, developing bloom mitigation technologies and robustly assessing the hazards posed by toxin-producing cyanobacteria to humans and other organisms.
Collapse
Affiliation(s)
- Azam Omidi
- Chair Ecological Impact Research and Ecotoxicology, Technische Universität Berlin, 10587 Berlin, Germany;
| | - Stephan Pflugmacher
- Clayton H. Riddell Faculty of Environment, Earth, and Resources, University of Manitoba, Wallace Bldg., 125 Dysart Rd, Winnipeg, MB R3T 2N2, Canada;
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel;
| | - Young Jun Kim
- Joint Laboratory of Applied Ecotoxicology, Korean Institute of Science and Technology Europe (KIST), Campus 7.1, 66123 Saarbrücken, Germany;
| | - Maranda Esterhuizen
- Joint Laboratory of Applied Ecotoxicology, Korean Institute of Science and Technology Europe (KIST), Campus 7.1, 66123 Saarbrücken, Germany;
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland
- Finland and Helsinki Institute of Sustainability Science (HELSUS), Fabianinkatu 33, 00014 Helsinki, Finland
| |
Collapse
|
11
|
Koksharova OA, Butenko IO, Pobeguts OV, Safronova NA, Govorun VM. β-N-Methylamino-L-Alanine (BMAA) Causes Severe Stress in Nostoc sp. PCC 7120 Cells under Diazotrophic Conditions: A Proteomic Study. Toxins (Basel) 2021; 13:325. [PMID: 33946501 PMCID: PMC8147232 DOI: 10.3390/toxins13050325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/07/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022] Open
Abstract
Non-proteinogenic neurotoxic amino acid β-N-methylamino-L-alanine (BMAA) is synthesized by cyanobacteria, diatoms, and dinoflagellates, and is known to be a causative agent of human neurodegenerative diseases. Different phytoplankton organisms' ability to synthesize BMAA could indicate the importance of this molecule in the interactions between microalgae in nature. We were interested in the following: what kinds of mechanisms underline BMAA's action on cyanobacterial cells in different nitrogen supply conditions. Herein, we present a proteomic analysis of filamentous cyanobacteria Nostoc sp. PCC 7120 cells that underwent BMAA treatment in diazotrophic conditions. In diazotrophic growth conditions, to survive, cyanobacteria can use only biological nitrogen fixation to obtain nitrogen for life. Note that nitrogen fixation is an energy-consuming process. In total, 1567 different proteins of Nostoc sp. PCC 7120 were identified by using LC-MS/MS spectrometry. Among them, 123 proteins belonging to different functional categories were selected-due to their notable expression differences-for further functional analysis and discussion. The presented proteomic data evidences that BMAA treatment leads to very strong (up to 80%) downregulation of α (NifD) and β (NifK) subunits of molybdenum-iron protein, which is known to be a part of nitrogenase. This enzyme is responsible for catalyzing nitrogen fixation. The genes nifD and nifK are under transcriptional control of a global nitrogen regulator NtcA. In this study, we have found that BMAA impacts in a total of 22 proteins that are under the control of NtcA. Moreover, BMAA downregulates 18 proteins that belong to photosystems I or II and light-harvesting complexes; BMAA treatment under diazotrophic conditions also downregulates five subunits of ATP synthase and enzyme NAD(P)H-quinone oxidoreductase. Therefore, we can conclude that the disbalance in energy and metabolite amounts leads to severe intracellular stress that induces the upregulation of stress-activated proteins, such as starvation-inducible DNA-binding protein, four SOS-response enzymes, and DNA repair enzymes, nine stress-response enzymes, and four proteases. The presented data provide new leads into the ecological impact of BMAA on microalgal communities that can be used in future investigations.
Collapse
Affiliation(s)
- Olga A. Koksharova
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory, 1-40, 119991 Moscow, Russia;
- Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Square, 2, 123182 Moscow, Russia
| | - Ivan O. Butenko
- Scientific-Research Institute of Physical-Chemical Medicine, 119435 Moscow, Russia; (I.O.B.); (O.V.P.); (V.M.G.)
| | - Olga V. Pobeguts
- Scientific-Research Institute of Physical-Chemical Medicine, 119435 Moscow, Russia; (I.O.B.); (O.V.P.); (V.M.G.)
| | - Nina A. Safronova
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory, 1-40, 119991 Moscow, Russia;
| | - Vadim M. Govorun
- Scientific-Research Institute of Physical-Chemical Medicine, 119435 Moscow, Russia; (I.O.B.); (O.V.P.); (V.M.G.)
| |
Collapse
|
12
|
β-Ν-Methylamino-L-alanine interferes with nitrogen assimilation in the cyanobacterium, non-BMAA producer, Synechococcus sp. TAU-MAC 0499. Toxicon 2020; 185:147-155. [PMID: 32687889 DOI: 10.1016/j.toxicon.2020.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/18/2020] [Accepted: 07/13/2020] [Indexed: 02/08/2023]
Abstract
The production of β-Ν-methylamino-L-alanine (BMAA) in cyanobacteria is triggered by nitrogen-starvation conditions and its biological role, albeit unknown, is associated with nitrogen assimilation. In the present study, the effect of BMAA (773 μg L-1) on nitrogen metabolism and physiology of the non-diazotrophic cyanobacterium and non-BMAA producer, Synechococcus sp. TAU-MAC 0499, was investigated. In order to study the combined effect of nitrogen availability and BMAA, nitrogen-starvation conditions were induced by transferring cells in nitrogen-free medium and subsequently exposing the cultures to BMAA. After short-term treatment (180 min) and in the presence of nitrogen, BMAA inhibited glutamine synthetase, which resulted in low concentration of glutamine. In the absence of nitrogen, although there was no effect on glutamine synthetase, a possible perturbation in nitrogen assimilation is reflected on the significant decrease in glutamate levels. During the long-term exposure (24-96 h), growth, photosynthetic pigments and total protein were not affected by BMAA exposure, except for an increase in protein and phycocyanin levels at 48 h in nitrogen replete conditions. Results suggest that BMAA interferes with nitrogen assimilation, in a different way, depending on the presence or absence of combined nitrogen, providing novel data on the potential biological role of BMAA.
Collapse
|
13
|
Behavior and gene expression in the brain of adult self-fertilizing mangrove rivulus fish (Kryptolebias marmoratus) after early life exposure to the neurotoxin β-N-methylamino-l-alanine (BMAA). Neurotoxicology 2020; 79:110-121. [DOI: 10.1016/j.neuro.2020.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022]
|
14
|
Koksharova OA, Butenko IO, Pobeguts OV, Safronova NA, Govorun VM. Proteomic Insights into Starvation of Nitrogen-Replete Cells of Nostoc sp. PCC 7120 under β-N-Methylamino-L-Alanine (BMAA) Treatment. Toxins (Basel) 2020; 12:toxins12060372. [PMID: 32512731 PMCID: PMC7354497 DOI: 10.3390/toxins12060372] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/16/2020] [Accepted: 06/01/2020] [Indexed: 01/05/2023] Open
Abstract
All cyanobacteria produce a neurotoxic non-protein amino acid β-N-methylamino-L-alanine (BMAA). However, the biological function of BMAA in the regulation of cyanobacteria metabolism still remains undetermined. It is known that BMAA suppresses the formation of heterocysts in diazotrophic cyanobacteria under nitrogen starvation conditions, and BMAA induces the formation of heterocyst-like cells under nitrogen excess conditions, by causing the expression of heterocyst-specific genes that are usually “silent” under nitrogen-replete conditions, as if these bacteria receive a nitrogen deficiency intracellular molecular signal. In order to find out the molecular mechanisms underlying this unexpected BMAA effect, we studied the proteome of cyanobacterium Nostoc sp. PCC 7120 grown under BMAA treatment in nitrogen-replete medium. Experiments were performed in two experimental settings: (1) in control samples consisted of cells grown without the BMAA treatment and (2) the treated samples consisted of cells grown with addition of an aqueous solution of BMAA (20 µM). In total, 1567 different proteins of Nostoc sp. PCC 7120 were identified by LC-MS/MS spectrometry. Among them, 80 proteins belonging to different functional categories were chosen for further functional analysis and interpretation of obtained proteomic data. Here, we provide the evidence that a pleiotropic regulatory effect of BMAA on the proteome of cyanobacterium was largely different under conditions of nitrogen-excess compared to its effect under nitrogen starvation conditions (that was studied in our previous work). The most significant difference in proteome expression between the BMAA-treated and untreated samples under different growth conditions was detected in key regulatory protein PII (GlnB). BMAA downregulates protein PII in nitrogen-starved cells and upregulates this protein in nitrogen-replete conditions. PII protein is a key signal transduction protein and the change in its regulation leads to the change of many other regulatory proteins, including different transcriptional factors, enzymes and transporters. Complex changes in key metabolic and regulatory proteins (RbcL, RbcS, Rca, CmpA, GltS, NodM, thioredoxin 1, RpbD, ClpP, MinD, RecA, etc.), detected in this experimental study, could be a reason for the appearance of the “starvation” state in nitrogen-replete conditions in the presence of BMAA. In addition, 15 proteins identified in this study are encoded by genes, which are under the control of NtcA—a global transcriptional regulator—one of the main protein partners and transcriptional regulators of PII protein. Thereby, this proteomic study gives a possible explanation of cyanobacterium starvation under nitrogen-replete conditions and BMAA treatment. It allows to take a closer look at the regulation of cyanobacteria metabolism affected by this cyanotoxin.
Collapse
Affiliation(s)
- Olga A. Koksharova
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1-40, 119992 Moscow, Russia;
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Square, 2, 123182 Moscow, Russia
- Correspondence: ; Tel.: +7-917-534-7543
| | - Ivan O. Butenko
- Federal Research and Clinical Centre of Physical-Chemical Medicine, 119435 Moscow, Russia; (I.O.B.); (O.V.P.); (V.M.G.)
| | - Olga V. Pobeguts
- Federal Research and Clinical Centre of Physical-Chemical Medicine, 119435 Moscow, Russia; (I.O.B.); (O.V.P.); (V.M.G.)
| | - Nina A. Safronova
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1-40, 119992 Moscow, Russia;
| | - Vadim M. Govorun
- Federal Research and Clinical Centre of Physical-Chemical Medicine, 119435 Moscow, Russia; (I.O.B.); (O.V.P.); (V.M.G.)
| |
Collapse
|
15
|
Koksharova OA, Butenko IO, Pobeguts OV, Safronova NA, Govorun VM. The First Proteomics Study of Nostoc sp. PCC 7120 Exposed to Cyanotoxin BMAA under Nitrogen Starvation. Toxins (Basel) 2020; 12:E310. [PMID: 32397431 PMCID: PMC7290344 DOI: 10.3390/toxins12050310] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 01/10/2023] Open
Abstract
The oldest prokaryotic photoautotrophic organisms, cyanobacteria, produce many different metabolites. Among them is the water-soluble neurotoxic non-protein amino acid beta-N-methylamino-L-alanine (BMAA), whose biological functions in cyanobacterial metabolism are of fundamental scientific and practical interest. An early BMAA inhibitory effect on nitrogen fixation and heterocyst differentiation was shown in strains of diazotrophic cyanobacteria Nostoc sp. PCC 7120, Nostocpunctiforme PCC 73102 (ATCC 29133), and Nostoc sp. strain 8963 under conditions of nitrogen starvation. Herein, we present a comprehensive proteomic study of Nostoc (also called Anabaena) sp. PCC 7120 in the heterocyst formation stage affecting by BMAA treatment under nitrogen starvation conditions. BMAA disturbs proteins involved in nitrogen and carbon metabolic pathways, which are tightly co-regulated in cyanobacteria cells. The presented evidence shows that exogenous BMAA affects a key nitrogen regulatory protein, PII (GlnB), and some of its protein partners, as well as glutamyl-tRNA synthetase gltX and other proteins that are involved in protein synthesis, heterocyst differentiation, and nitrogen metabolism. By taking into account the important regulatory role of PII, it becomes clear that BMAA has a severe negative impact on the carbon and nitrogen metabolism of starving Nostoc sp. PCC 7120 cells. BMAA disturbs carbon fixation and the carbon dioxide concentrating mechanism, photosynthesis, and amino acid metabolism. Stress response proteins and DNA repair enzymes are upregulated in the presence of BMAA, clearly indicating severe intracellular stress. This is the first proteomic study of the effects of BMAA on diazotrophic starving cyanobacteria cells, allowing a deeper insight into the regulation of the intracellular metabolism of cyanobacteria by this non-protein amino acid.
Collapse
Affiliation(s)
- Olga A. Koksharova
- Lomonosov Moscow State University, Belozersky Institute of Physical-Chemical Biology, Leninskie Gory, 1-40, 119992 Moscow, Russia;
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Square, 2, 123182 Moscow, Russia
| | - Ivan O. Butenko
- Federal Research and Clinical Centre of Physical-Chemical Medicine, 119435 Moscow, Russia; (I.O.B.); (O.V.P.); (V.M.G.)
| | - Olga V. Pobeguts
- Federal Research and Clinical Centre of Physical-Chemical Medicine, 119435 Moscow, Russia; (I.O.B.); (O.V.P.); (V.M.G.)
| | - Nina A. Safronova
- Lomonosov Moscow State University, Belozersky Institute of Physical-Chemical Biology, Leninskie Gory, 1-40, 119992 Moscow, Russia;
| | - Vadim M. Govorun
- Federal Research and Clinical Centre of Physical-Chemical Medicine, 119435 Moscow, Russia; (I.O.B.); (O.V.P.); (V.M.G.)
| |
Collapse
|
16
|
Zhang Y, Whalen JK. Production of the neurotoxin beta-N-methylamino-l-alanine may be triggered by agricultural nutrients: An emerging public health issue. WATER RESEARCH 2020; 170:115335. [PMID: 31812811 DOI: 10.1016/j.watres.2019.115335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/18/2019] [Accepted: 11/23/2019] [Indexed: 06/10/2023]
Abstract
Diverse taxa of cyanobacteria, dinoflagellates and diatoms produce β-N-methylamino-l-alanine (BMAA), a non-lipophilic, non-protein amino acid. BMAA is a neurotoxin in mammals. Its ingestion may be linked to human neurodegenerative diseases, namely the Amyotrophic lateral sclerosis/Parkinsonism dementia complex, based on epidemiological evidence from regions where cyanobacterial harmful algal blooms occur frequently. In controlled environments, cyanobacteria produce BMAA in response to ecophysiological cues such as nutrient availability, which may explain the elevated BMAA concentrations in freshwater environments that receive nutrient-rich agricultural runoff. This critical review paper summarizes what is known about how BMAA supports ecophysiological functions like nitrogen metabolism, photosyntheis and provides a competitive advantage to cyanobacteria in controlled and natural environments. We explain how BMAA production affected competitive interactions among the N2-fixing and non-N2-fixing populations in a freshwater cyanobacterial bloom that was stimulated by nutrient loading from the surrounding agricultural landscape. Better control of nutrients in agricultural fields is an excellent strategy to avoid the negative environmental consequences and public health concerns related to BMAA production.
Collapse
Affiliation(s)
- Yanyan Zhang
- McGill University, Department of Natural Resource Sciences, Macdonald Campus, 21, 111 Lakeshore Road, Ste-Anne-de, Bellevue, Quebec, H9X 3V9, Canada
| | - Joann K Whalen
- McGill University, Department of Natural Resource Sciences, Macdonald Campus, 21, 111 Lakeshore Road, Ste-Anne-de, Bellevue, Quebec, H9X 3V9, Canada.
| |
Collapse
|
17
|
Han NC, Bullwinkle TJ, Loeb KF, Faull KF, Mohler K, Rinehart J, Ibba M. The mechanism of β-N-methylamino-l-alanine inhibition of tRNA aminoacylation and its impact on misincorporation. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49898-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
18
|
Han NC, Bullwinkle TJ, Loeb KF, Faull KF, Mohler K, Rinehart J, Ibba M. The mechanism of β- N-methylamino-l-alanine inhibition of tRNA aminoacylation and its impact on misincorporation. J Biol Chem 2019; 295:1402-1410. [PMID: 31862734 DOI: 10.1074/jbc.ra119.011714] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/10/2019] [Indexed: 11/06/2022] Open
Abstract
β-N-methylamino-l-alanine (BMAA) is a nonproteinogenic amino acid that has been associated with neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD). BMAA has been found in human protein extracts; however, the mechanism by which it enters the proteome is still unclear. It has been suggested that BMAA is misincorporated at serine codons during protein synthesis, but direct evidence of its cotranslational incorporation is currently lacking. Here, using LC-MS-purified BMAA and several biochemical assays, we sought to determine whether any aminoacyl-tRNA synthetase (aaRS) utilizes BMAA as a substrate for aminoacylation. Despite BMAA's previously predicted misincorporation at serine codons, following a screen for amino acid activation in ATP/PPi exchange assays, we observed that BMAA is not a substrate for human seryl-tRNA synthetase (SerRS). Instead, we observed that BMAA is a substrate for human alanyl-tRNA synthetase (AlaRS) and can form BMAA-tRNAAla by escaping from the intrinsic AlaRS proofreading activity. Furthermore, we found that BMAA inhibits both the cognate amino acid activation and the editing functions of AlaRS. Our results reveal that, in addition to being misincorporated during translation, BMAA may be able to disrupt the integrity of protein synthesis through multiple different mechanisms.
Collapse
Affiliation(s)
- Nien-Ching Han
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43220
| | - Tammy J Bullwinkle
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43220
| | - Kaeli F Loeb
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43220
| | - Kym F Faull
- Pasarow Mass Spectrometry Laboratory, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California 90024-1759
| | - Kyle Mohler
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut 06520.,Systems Biology Institute, Yale University, New Haven, Connecticut 06520
| | - Jesse Rinehart
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut 06520.,Systems Biology Institute, Yale University, New Haven, Connecticut 06520
| | - Michael Ibba
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43220
| |
Collapse
|
19
|
Popova AA, Semashko TA, Kostina NV, Rasmussen U, Govorun VM, Koksharova OA. The Cyanotoxin BMAA Induces Heterocyst Specific Gene Expression in Anabaena sp. PCC 7120 under Repressive Conditions. Toxins (Basel) 2018; 10:toxins10110478. [PMID: 30453523 PMCID: PMC6266585 DOI: 10.3390/toxins10110478] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/10/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022] Open
Abstract
Cyanobacteria synthesize neurotoxic β-N-methylamino-l-alanine (BMAA). The roles of this non-protein amino acid in cyanobacterial cells are insufficiently studied. During diazotrophic growth, filamentous cyanobacteria form single differentiated cells, called heterocysts, which are separated by approximately 12–15 vegetative cells. When combined nitrogen is available, heterocyst formation is blocked and cyanobacterial filaments contain only vegetative cells. In the present study, we discovered that exogenous BMAA induces the process of heterocyst formation in filamentous cyanobacteria under nitrogen-replete conditions that normally repress cell differentiation. BMAA treated cyanobacteria form heterocyst-like dark non-fluorescent non-functional cells. It was found that glutamate eliminates the BMAA mediated derepression. Quantitative polymerase chain reaction (qPCR) permitted to detect the BMAA impact on the transcriptional activity of several genes that are implicated in nitrogen assimilation and heterocyst formation in Anabaena sp. PCC 7120. We demonstrated that the expression of several essential genes increases in the BMAA presence under repressive conditions.
Collapse
Affiliation(s)
- Alexandra A Popova
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Square, 2, 123182 Moscow, Russia.
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Prospekt 60 let Oktyabrya, 7/2, 117312 Moscow, Russia.
| | - Tatiana A Semashko
- Scientific-Research Institute of Physical-Chemical Medicine, 119435 Moscow, Russia.
| | - Natalia V Kostina
- Soil Science Faculty, Lomonosov Moscow State University, Leninskie Gory, 1-12, 119991 Moscow, Russia.
| | - Ulla Rasmussen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden.
| | - Vadim M Govorun
- Scientific-Research Institute of Physical-Chemical Medicine, 119435 Moscow, Russia.
| | - Olga A Koksharova
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Square, 2, 123182 Moscow, Russia.
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1, 40, 119992 Moscow, Russia.
| |
Collapse
|