1
|
Li Q, Yang Y, Lin X, Chu LT, Chen H, Chen L, Tang J, Zeng T. Regulation of pancreatic cancer cells by suppressing KIN17 through the PI3K/AKT/mTOR signaling pathway. Oncol Rep 2025; 53:31. [PMID: 39791213 PMCID: PMC11736091 DOI: 10.3892/or.2025.8864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/05/2024] [Indexed: 01/12/2025] Open
Abstract
Pancreatic cancer is an aggressive tumor, which is often associated with a poor clinical prognosis and resistance to conventional chemotherapy. Therefore, there is a need to identify new therapeutic markers for pancreatic cancer. Although KIN17 is a highly expressed DNA‑ and RNA‑binding protein in a number of types of human cancer, its role in pancreatic cancer development, especially in relation to progression, is currently unknown. The present study verified the upregulation of KIN17 in pancreatic cancer using The Cancer Genome Atlas and Gene Expression Omnibus databases (GSE15471, GSE71989 and GSE62165), and identified an association between the PI3K/Akt/mTOR pathway and patient prognosis using publicly available datasets (Gene Expression Profiling Interactive Analysis). Immunohistochemistry was performed to determine the association between KIN17 and the pathological features of clinical pancreatic cancer samples. Furthermore, knockdown of KIN17 was shown to inhibit the migration and invasion of pancreatic cancer cells, and to reverse epithelial‑mesenchymal transition in pancreatic cancer cells through downregulation of Vimentin and N‑cadherin, and upregulation of E‑cadherin. Through various cellular experiments, the role of KIIN17 was explored in PI3K/AKT/mTOR activity. KIN17 inhibition was shown to suppress the migration and invasion of pancreatic cancer cells through PI3K/AKT/mTOR‑mediated autophagy. Furthermore, combined with mTOR inhibition, dual inhibition could enhance autophagy, leading to anti‑migratory and anti‑invasion effects in pancreatic cancer. In conclusion, the present study indicated that KIN17 may have a role in carcinogenesis and could serve as a prognostic biomarker of pancreatic cancer, owing to its high expression. In addition, KIN17 may be considered a potential therapeutic target with its knockdown having an inhibitory effect on pancreatic cancer.
Collapse
Affiliation(s)
- Qiuyan Li
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Yuxia Yang
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Xiaocong Lin
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Lok Ting Chu
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Helian Chen
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Linsong Chen
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Jinjing Tang
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Tao Zeng
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| |
Collapse
|
2
|
Petrella S, Colombo M, Marabese M, Grasselli C, Panfili A, Chiappa M, Sancisi V, Craparotta I, Barbera MC, Cassanmagnago GA, Bolis M, Damia G. Onvansertib and Navitoclax Combination as a New Therapeutic Option for Mucinous Ovarian Carcinoma. Int J Mol Sci 2025; 26:472. [PMID: 39859203 PMCID: PMC11765470 DOI: 10.3390/ijms26020472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Mucinous epithelial ovarian cancer (mEOC) is a rare subtype of epithelial ovarian cancer, characterized by poor responses to standard platinum-based chemotherapy. Polo-like kinase 1 (PLK1) is a key regulator of mitosis and cell cycle progression and its inhibition has been recently identified as a target in mEOC. In this study, we aimed to identify further therapeutic targets in mEOC using a CRISPR/Cas9 library targeting 3015 genes, with and without treatment with onvansertib, a PLK1 inhibitor. We identified twelve genes associated with cell survival (ZC2HC1C, RPA2, KIN17, TUBG1, SMC2, CDC26, CDC42, HOXA9, TAF10, SENP1, MRPS31, and COPS2) and three genes (JUND, CARD9, and BCL2L2) in synthetic lethality with onvansertib treatment. We validated that SENP1 downregulation is important for the growth of mEOC cells through esiRNA interference and the use of a pharmacological inhibitor Momordin Ic. The downregulation of CARD9 and BCL2L2 combined with subtoxic doses of onvansertib interfered with mEOC cell growth. Interestingly, the combination of navitoclax, an inhibitor of BcL2 family members including BCL2L2, was synergistic in all four of the mEOC cell lines tested and substantially induced cell death through apoptosis. These data support the use of a combination of navitoclax and onvansertib as a new therapeutic strategy for mEOC.
Collapse
Affiliation(s)
- Serena Petrella
- Laboratory of Gynecological Preclinical Oncology, Department of Experimental Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (S.P.); (M.C.)
| | - Marika Colombo
- Laboratory of Molecular Pharmacology, Department of Experimental Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (M.C.); (M.M.)
| | - Mirko Marabese
- Laboratory of Molecular Pharmacology, Department of Experimental Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (M.C.); (M.M.)
| | - Chiara Grasselli
- Laboratory of Immunopharmacology, Department of Experimental Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (C.G.); (A.P.)
| | - Andrea Panfili
- Laboratory of Immunopharmacology, Department of Experimental Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (C.G.); (A.P.)
| | - Michela Chiappa
- Laboratory of Gynecological Preclinical Oncology, Department of Experimental Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (S.P.); (M.C.)
| | - Valentina Sancisi
- Translational Research Laboratory, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Ilaria Craparotta
- Computational Oncology Unit, Department of Experimental Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (I.C.); (M.C.B.); (G.A.C.); (M.B.)
| | - Maria C. Barbera
- Computational Oncology Unit, Department of Experimental Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (I.C.); (M.C.B.); (G.A.C.); (M.B.)
| | - Giada A. Cassanmagnago
- Computational Oncology Unit, Department of Experimental Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (I.C.); (M.C.B.); (G.A.C.); (M.B.)
| | - Marco Bolis
- Computational Oncology Unit, Department of Experimental Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (I.C.); (M.C.B.); (G.A.C.); (M.B.)
| | - Giovanna Damia
- Laboratory of Gynecological Preclinical Oncology, Department of Experimental Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (S.P.); (M.C.)
| |
Collapse
|
3
|
Huang X, Dai Z, Zeng B, Xiao X, Zahid KR, Lin X, Liu T, Zeng T. KIN17 functions in DNA damage repair and chemosensitivity by modulating RAD51 in hepatocellular carcinoma. Hum Cell 2024; 37:1489-1504. [PMID: 38935235 DOI: 10.1007/s13577-024-01096-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
The limited response of hepatocellular carcinoma (HCC) to chemotherapy drugs has always been a bottleneck in therapy. DNA damage repair is a major reason for chemoresistance. Previous studies have confirmed that KIN17 affects chemosensitivity. In this study, we examined the impact of KIN17 on chemotherapy response and DNA repair in HCC cells treated with oxaliplatin (L-OHP). We evaluated the expression and biological roles of KIN17 in HCC using bioinformatic analysis. The correlation between KIN17 and RAD51, particularly their nuclear expression levels, was evaluated using immunofluorescence, immunoblotting after nucleocytoplasmic separation in HCC cells, and immunohistochemistry of mouse xenograft tumors and human HCC tissues. The results indicated a significant increase in KIN17 expression in HCC tissues compared to normal tissues. The GSEA analysis revealed that upregulation of KIN17 was significantly associated with DNA damage repair. Knockdown of KIN17 led to increased DNA damage and reduced cellular survival after exposure to L-OHP. On the other hand, overexpression of KIN17 was linked to decreased DNA damage and improved cell survival following L-OHP treatment. Further experiments indicated that KIN17 affects the expression of RAD51, particularly in the nucleus. KIN17 plays a crucial role in influencing the sensitivity of HCC to chemotherapy by triggering the DNA repair response. Increased expression of KIN17 is associated with a poor prognosis for HCC patients, indicating that KIN17 could serve as a prognostic marker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Xueran Huang
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, P. R. China
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, Guangdong, P. R. China
| | - Zichang Dai
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Biyun Zeng
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, Guangdong, P. R. China
| | - Xiangyan Xiao
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, P. R. China
| | - Kashif Rafiq Zahid
- Department of Radiation Oncology, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Xiaocong Lin
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, 524023, Guangdong, P. R. China.
| | - Tiancai Liu
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, Guangdong, P. R. China.
| | - Tao Zeng
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, P. R. China.
| |
Collapse
|
4
|
Su R, Chu LT, Chen Z, Lin X, Peng M, Huang X, Xiao X, Zeng T. Identification and quantification of serum KIN17 protein based on ELISA assay and exploring its clinical diagnostic value in liver cancer. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4724-4732. [PMID: 38949046 DOI: 10.1039/d4ay00793j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
It has been well-elaborated that KIN17 protein is closely related to the expression, development and prognosis of liver cancer; however, till date, there has been no study about detecting the KIN17 protein in serum, which is important to developing clinical applications. The objective of this work is to detect serum KIN17 protein by the ELISA method and to explore the diagnostic significance of the KIN17 protein in liver cancer. First, we verified the ELISA method for serum KIN17 measurement according to five aspects: accuracy, precision, specificity, stability and detection limit. Results illustrate that the recovery rate of the ELISA method can be controlled between 90% and 110%, the variation coefficient of intra-assay can be controlled within 16%, and the variation coefficient of inter-assay can be controlled within 10%. There is no non-specific reaction with common tumor markers, and the detection limit can reach 0.125 ng mL-1. The results show that the KIN17 protein can be detected by ELISA, and there is a significant rise in KIN17 concentration in a liver cancer group compared with a healthy group, whose average concentrations are 1.730 ng mL-1 and 0.3897 ng mL-1, respectively. On this basis, we hypothesize that the serum KIN17 protein can serve as a potential biomarker of liver cancer and be measurable with the verified ELISA system after specific ultrafiltration and centrifugation, which is of great significance for the diagnosis and treatment of liver cancer.
Collapse
Affiliation(s)
- Ruiqi Su
- Department of Medical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China.
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, P. R. China
| | - Lok Ting Chu
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong, P. R. China
| | - Zhenkai Chen
- Department of Medical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China.
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, P. R. China
| | - Xiaocong Lin
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong, P. R. China
| | - Minghui Peng
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, P. R. China
| | - Xueran Huang
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, P. R. China
| | - Xiangyan Xiao
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, P. R. China
| | - Tao Zeng
- Department of Medical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China.
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, P. R. China
| |
Collapse
|
5
|
Xiao X, Lin X, Ting CL, Huang X, Zeng B, Liu T, Zeng T. Extraction-free, immuno-RPA-CRISPR/Cas13a-based one-pot detection of glypican-3 directly from extracellular vesicles. Anal Chim Acta 2024; 1297:342385. [PMID: 38438232 DOI: 10.1016/j.aca.2024.342385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Glypican-3 (GPC3) is a heparan sulfate proteoglycan (HSPG) that binds to the cell membrane via glycosylphosphatidylinositol (GPI). It is not found in healthy adult liver but is overexpressed in human hepatocellular carcinoma (HCC). The protein marker GPC3 on extracellular vesicles (GPC3+ EVs) is also useful for HCC detection. Nevertheless, the absence of practical and dependable quantitative techniques to evaluate EVs proteins prevents their clinical implementation. RESULTS Here, using an immuno-recombinase polymerase amplification (immuno-RPA) process and dual amplification of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas13a, we firstly create an extraction-free one-pot immuno-RPA-CRISPR (opiCRISPR) for the direct and extremely sensitive detection of EVs proteins. The EVs protein-targeted detection probe is amplified by RPA to generate a long repetitive sequence containing multiple CRISPR RNA (crRNA) targeting barcodes, and the signal is further amplified by the CRISPR-Cas13a side-chain cleavage activity to generate a fluorescent signal. The results show that circulating extracellular vesicle GPC3 (eGPC3) levels are a reliable marker for GPC3 expression in tumor, opening up new avenues for tumor diagnosis. SIGNIFICANCE AND NOVELTY We created an eGPC3 assay based on the CRISPR-Cas13a system, and successfully study the significance of extracellular vesicle GPC3 markers in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Xiangyan Xiao
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China; Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Xiaocong Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guang Dong Medical University, 524023, Zhanjiang, PR China
| | - Chu Lok Ting
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guang Dong Medical University, 524023, Zhanjiang, PR China
| | - Xueran Huang
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Biyun Zeng
- School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, PR China
| | - Tiancai Liu
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, PR China.
| | - Tao Zeng
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China.
| |
Collapse
|
6
|
Connell M, Xie Y, Deng X, Chen R, Zhu S. Kin17 regulates proper cortical localization of Miranda in Drosophila neuroblasts by regulating Flfl expression. Cell Rep 2024; 43:113823. [PMID: 38386552 PMCID: PMC10980573 DOI: 10.1016/j.celrep.2024.113823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 10/16/2022] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
During asymmetric division of Drosophila larval neuroblasts, the fate determinant Prospero (Pros) and its adaptor Miranda (Mira) are segregated to the basal cortex through atypical protein kinase C (aPKC) phosphorylation of Mira and displacement from the apical cortex, but Mira localization after aPKC phosphorylation is not well understood. We identify Kin17, a DNA replication and repair protein, as a regulator of Mira localization during asymmetric cell division. Loss of Kin17 leads to aberrant localization of Mira and Pros to the centrosome, cytoplasm, and nucleus. We provide evidence to show that the mislocalization of Mira and Pros is likely due to reduced expression of Falafel (Flfl), a component of protein phosphatase 4 (PP4), and defects in dephosphorylation of serine-96 of Mira. Our work reveals that Mira is likely dephosphorylated by PP4 at the centrosome to ensure proper basal localization of Mira after aPKC phosphorylation and that Kin17 regulates PP4 activity by regulating Flfl expression.
Collapse
Affiliation(s)
- Marisa Connell
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Yonggang Xie
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Xiaobing Deng
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Rui Chen
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Sijun Zhu
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
7
|
Huang X, Dai Z, Li Q, Lin X, Huang Q, Zeng T. Roles and regulatory mechanisms of KIN17 in cancers (Review). Oncol Lett 2023; 25:137. [PMID: 36909374 PMCID: PMC9996293 DOI: 10.3892/ol.2023.13723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/30/2023] [Indexed: 02/19/2023] Open
Abstract
KIN17, which is known as a DNA and RNA binding protein, is highly expressed in numerous types of human cancers and was discovered to participate in several vital cell behaviors, including DNA replication, damage repair, regulation of cell cycle and RNA processing. Furthermore, KIN17 is associated with cancer cell proliferation, migration, invasion and cell cycle regulation by regulating pathways including the p38 MAPK, NF-κB-Snail and TGF-β/Smad2 signaling pathways. In addition, knockdown of KIN17 was found to enhance the sensitivity of tumor cells to chemotherapeutic agents. Immunohistochemical analysis revealed that there were significant differences in the expression of KIN17 between cancer tissues and adjacent tissues. Both the Kaplan-Meier survival analysis and multivariate Cox regression analysis indicated that KIN17 is aberrantly high expressed in various tumor tissues and is also associated with poor prognosis in patients with various tumor types. Taken together, KIN17 has key roles in tumorigenesis and cancer development. Investigating the relationship between KIN17 and neoplasms will provide a vital theoretical basis for KIN17 to serve as a diagnostic and prognostic biomarker for cancer patients and as a potential target for cancer therapy.
Collapse
Affiliation(s)
- Xueran Huang
- Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Zichang Dai
- Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qiuyan Li
- Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China.,Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Xiaocong Lin
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Qiyuan Huang
- Clinical Biobank Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Tao Zeng
- Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| |
Collapse
|
8
|
Dai Z, Huang Q, Huang X, Zhu C, Zahid KR, Liu T, Li Q, Wu C, Peng M, Xiao X, Raza U, Yu N, Zeng T. KIN17 promotes cell migration and invasion through stimulating the TGF-β/Smad2 pathway in hepatocellular carcinoma. Mol Carcinog 2023; 62:369-384. [PMID: 36468848 DOI: 10.1002/mc.23492] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 12/10/2022]
Abstract
KIN17 DNA and RNA binding protein (Kin17) is involved in the regulation of tumorigenesis of diverse human cancers. However, its role in the cancer progression and metastasis in hepatocellular carcinoma (HCC) remains largely unknown. Bioinformatics and immunohistochemistry staining were used to investigate the expression pattern of KIN17 and its prognostic value in HCC patients. The transwell, wound-healing assay was employed to determine the effects of KIN17 on migration and invasion of HCC cells in vitro. The tail veins model was employed to determine the effects of KIN17 on lung metastasis in vivo. The biological mechanisms involved in cell migration and invasion regulated by KIN17 were determined with Western blot analysis method. KIN17 expression was significantly increased in HCC tissues compared with adjacent normal tissues, with particularly higher in portal vein tumor thrombus and intrahepatic metastasis tissues. Patients with higher KIN17 expression experienced poor overall and disease free survival. KIN17 knockdown in HuH7 and HepG2 cells significantly reduced cell migration and invasion abilities, whereas its overexpression promoted migration and invasion in MHCC-97L and HepG2 cells in vitro and in vivo. In HuH7 and HepG2 cells, KIN17 knockdown inhibited the TGF-β/Smad2 pathway. In contrast, KIN17 overexpression stimulated TGF-β/Smad2 pathway in MHCC-97L and HepG2 cells, along with the genes involved in the epithelial-mesenchymal transition. These findings suggest that KIN17 promotes migration and invasion in HCC cells by stimulating the TGF-β/Smad2 pathway. KIN17 could be a promising prognostic biomarker, as well as a potential therapeutic target in HCC.
Collapse
Affiliation(s)
- Zichang Dai
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, P. R. China.,Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, P. R. China
| | - Qiyuan Huang
- Department of Clinical Biobank Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Xueran Huang
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, P. R. China
| | - Chuiyu Zhu
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Kashif Rafiq Zahid
- Department of Radiation Oncology, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Tiancai Liu
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Qiuyan Li
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, P. R. China
| | - Chunmei Wu
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, P. R. China
| | - Minghui Peng
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, P. R. China
| | - Xiangyan Xiao
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, P. R. China
| | - Umar Raza
- Department of Biological Sciences, PWD Campus, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Nan Yu
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Tao Zeng
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, P. R. China
| |
Collapse
|
9
|
Hashemi M, Arani HZ, Orouei S, Fallah S, Ghorbani A, Khaledabadi M, Kakavand A, Tavakolpournegari A, Saebfar H, Heidari H, Salimimoghadam S, Entezari M, Taheriazam A, Hushmandi K. EMT mechanism in breast cancer metastasis and drug resistance: Revisiting molecular interactions and biological functions. Biomed Pharmacother 2022; 155:113774. [DOI: 10.1016/j.biopha.2022.113774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 12/24/2022] Open
|
10
|
Wang WM, Shen H, Liu ZN, Chen YY, Hou LJ, Ding Y. Interaction between tumor microenvironment, autophagy, and epithelial-mesenchymal transition in tumor progression. Cancer Treat Res Commun 2022; 32:100592. [PMID: 35728404 DOI: 10.1016/j.ctarc.2022.100592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Tumor microenvironment (TME) is the ecosystem surrounding a tumor to influence tumor cells' growth, metastasis and immunological battlefield, in which the tumor systems fight against the body system. TME has been considered as the essential link between the tumorigenesis and development of neoplasm. Both nutrients intake and tumor progression to malignancy require the participation of components in TME. Epithelial-mesenchymal transition (EMT) is a key step in the metastasis of tumor cells. Cells that lost polarity and acquired migration ability are prone to metastasize. Autophagy is an important self-protective mechanism in tumor cells and a necessity for the tumor cells to respond to harmful stress. Protective autophagy benefits tumor cells while abnormal autophagy leads to cell injury or death. EMT and autophagy are directly regulated by TME. To date, there are numerous studies on TME, autophagy and EMT separately, but few on their complex interrelationships. This review aims to comprehensively analyze the existing mechanisms and convincing evidence so far to seek novel therapeutic strategies and research directions.
Collapse
Affiliation(s)
- Wen-Ming Wang
- Laboratory of Pathophysiology, Weifang Medical University, Weifang, Shandong, 261053, China
| | - Hua Shen
- Department of Mathematics and Statistics, University of Calgary, Alberta T2N 1N4, Canada
| | - Zi-Ning Liu
- Laboratory of Pathophysiology, Weifang Medical University, Weifang, Shandong, 261053, China
| | - Yuan-Yuan Chen
- Laboratory of Pathophysiology, Weifang Medical University, Weifang, Shandong, 261053, China
| | - Li-Jun Hou
- Laboratory of Pathophysiology, Weifang Medical University, Weifang, Shandong, 261053, China.
| | - Yi Ding
- Laboratory of Pathophysiology, Weifang Medical University, Weifang, Shandong, 261053, China; Key Laboratory of Applied Pharmacology, Weifang Medical University, Weifang, Shandong, 261053, China.
| |
Collapse
|
11
|
Wang R, Wang R, Tian J, Wang J, Tang H, Wu T, Wang H. BTG2 as a tumor target for the treatment of luminal A breast cancer. Exp Ther Med 2022; 23:339. [PMID: 35401805 PMCID: PMC8988138 DOI: 10.3892/etm.2022.11269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/24/2021] [Indexed: 11/27/2022] Open
Abstract
As one of the most common breast cancer subtypes, luminal A breast cancer is sensitive to endocrine-based therapy and insensitive to chemotherapy. Patients with luminal A subtype of breast cancer have a relatively good prognosis compared with that of patients with other subtypes of breast cancer. However, with the increased incidence in endocrine resistance and severe side effects, simple endocrine therapy has become unsuitable for the treatment of luminal A breast cancer. Therefore, identifying novel therapeutic targets for luminal A breast cancer may accelerate the development of an effective therapeutic strategy. The bioinformatical analysis of the current study, which included KEGG and GO analyses of the GSE20437 dataset containing 24 healthy and 18 breast cancer tissue samples, identified key target genes associated with breast cancer. Moreover, survival analysis results revealed that a low expression of BTG2 was significantly associated with the low survival rate of patients with breast cancer, indicated that B-cell translocation gene 2 (BTG2) may be a potential target in breast cancer. However, BTG2 may be cancer type-dependent, as overexpression of BTG2 has been demonstrated to suppress the proliferation of pancreatic and lung cancer cells, but promote the proliferation of bladder cancer cells. Since the association between BTG2 and luminal A-subtype breast cancer remains unclear, it is important to understand the biological function of BTG2 in luminal A breast cancer. Based on the expression levels of estrogen receptor, progesterone receptor and human epidermal growth factor receptor, MCF-7 cells were selected in the present study as a luminal A breast cancer cell type. MTT, Transwell invasion and wound healing assays revealed that overexpression of BTG2 suppressed the levels of MCF-7 cell proliferation, migration and invasion. In addition, the downregulation of BTG2 at the mRNA and protein level was also confirmed in luminal A breast tumor tissue, which was consistent with the results in vitro. These results indicated that BTG2 may act as an effective target for the treatment of luminal A breast cancer.
Collapse
Affiliation(s)
- Runzhi Wang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, Shandong 266021, P.R. China
| | - Ronghua Wang
- Department of Pharmacy, The Affiliated Weihai Second Municipal Hospital of Qingdao University, Weihai, Shandong 264200, P.R. China
| | - Jinjun Tian
- Department of Pharmacy, The Affiliated Weihai Second Municipal Hospital of Qingdao University, Weihai, Shandong 264200, P.R. China
| | - Jian Wang
- Department of Breast Center, The Affiliated Weihai Second Municipal Hospital of Qingdao University, Weihai, Shandong 264200, P.R. China
| | - Huaxiao Tang
- Department of Pathology, The Affiliated Weihai Second Municipal Hospital of Qingdao University, Weihai, Shandong 264200, P.R. China
| | - Tao Wu
- Department of Pharmacy, The Affiliated Weihai Second Municipal Hospital of Qingdao University, Weihai, Shandong 264200, P.R. China
| | - Hui Wang
- Department of Pharmacy, The Affiliated Weihai Second Municipal Hospital of Qingdao University, Weihai, Shandong 264200, P.R. China
| |
Collapse
|
12
|
Huang Q, Zahid KR, Chen J, Pang X, Zhong M, Huang H, Pan W, Yin J, Raza U, Zeng J, Zhu X, Zeng T. KIN17 promotes tumor metastasis by activating EMT signaling in luminal-A breast cancer. Thorac Cancer 2021; 12:2013-2023. [PMID: 34008927 PMCID: PMC8258367 DOI: 10.1111/1759-7714.14004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/20/2022] Open
Abstract
Background Breast cancer (BC), the most common cause of cancer death in women, overtook lung cancer as the leading cause of cancer worldwide in 2020. Although many studies have proposed KIN17 as a biomarker of tumorigenesis in different cancer types, its role in tumor metastasis, particularly in BC metastasis, has been underexplored. This study aimed to explore the role of KIN17 in BC metastasis. Methods Survival analyses was performed to identify the association between KIN17 expression and BC patient survival in silico. Using lentivirus constructs, we developed bidirectional KIN17 expression (KD, knockdown; OE, overexpression) cellular models of luminal‐A (Lum‐A) breast cancer MCF‐7 cells. We performed in vitro wound healing, transwell with and without Matrigel assays, and in vivo tail‐vein metastasis assay to evaluate the migration and invasion abilities of MCF‐7 with stable KIN17 knockdown or overexpression. Western blotting was performed to compare the changes in protein expression. Results We found that KIN17 expression was associated with poor overall survival (OS), relapse‐free survival (RFS), distant metastasis‐free survival (DMFS) and post‐progression survival (PPS), particularly in Lum‐A breast cancer patients. Later, we found that KIN17 knockdown inhibited migration and invasion of MCF‐7 cells via regulating EMT‐associated signaling pathways in vitro and decreases metastatic spread of the disease in vivo. In contrast, KIN17 overexpression promoted migration and invasion of MCF‐7 cells in vitro and increased the metastatic spread of the disease in vivo. Conclusions Overall, our findings provide preliminary data which suggests KIN17 of importance to target in metastatic Lum‐A patients.
Collapse
Affiliation(s)
- Qiyuan Huang
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.,Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Kashif Rafiq Zahid
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Jinsi Chen
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Xiangxiong Pang
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.,Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Meifeng Zhong
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Hongling Huang
- Department of Basic Medicine, Medical College of Jiaying University, Meizhou, China
| | - Weifeng Pan
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Jingxin Yin
- School of Basic Medicine, Nanjing Medical University, Nanjing, China
| | - Umar Raza
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Jiamin Zeng
- Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xinhong Zhu
- Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Tao Zeng
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|