1
|
Songsangvorn N, Xu Y, Lu C, Rotstein O, Brochard L, Slutsky AS, Burns KEA, Zhang H. Electrical impedance tomography-guided positive end-expiratory pressure titration in ARDS: a systematic review and meta-analysis. Intensive Care Med 2024; 50:617-631. [PMID: 38512400 PMCID: PMC11078723 DOI: 10.1007/s00134-024-07362-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/14/2024] [Indexed: 03/23/2024]
Abstract
PURPOSE Assessing efficacy of electrical impedance tomography (EIT) in optimizing positive end-expiratory pressure (PEEP) for acute respiratory distress syndrome (ARDS) patients to enhance respiratory system mechanics and prevent ventilator-induced lung injury (VILI), compared to traditional methods. METHODS We carried out a systematic review and meta-analysis, spanning literature from January 2012 to May 2023, sourced from Scopus, PubMed, MEDLINE (Ovid), Cochrane, and LILACS, evaluated EIT-guided PEEP strategies in ARDS versus conventional methods. Thirteen studies (3 randomized, 10 non-randomized) involving 623 ARDS patients were analyzed using random-effects models for primary outcomes (respiratory mechanics and mechanical power) and secondary outcomes (PaO2/FiO2 ratio, mortality, stays in intensive care unit (ICU), ventilator-free days). RESULTS EIT-guided PEEP significantly improved lung compliance (n = 941 cases, mean difference (MD) = 4.33, 95% confidence interval (CI) [2.94, 5.71]), reduced mechanical power (n = 148, MD = - 1.99, 95% CI [- 3.51, - 0.47]), and lowered driving pressure (n = 903, MD = - 1.20, 95% CI [- 2.33, - 0.07]) compared to traditional methods. Sensitivity analysis showed consistent positive effect of EIT-guided PEEP on lung compliance in randomized clinical trials vs. non-randomized studies pooled (MD) = 2.43 (95% CI - 0.39 to 5.26), indicating a trend towards improvement. A reduction in mortality rate (259 patients, relative risk (RR) = 0.64, 95% CI [0.45, 0.91]) was associated with modest improvements in compliance and driving pressure in three studies. CONCLUSIONS EIT facilitates real-time, individualized PEEP adjustments, improving respiratory system mechanics. Integration of EIT as a guiding tool in mechanical ventilation holds potential benefits in preventing ventilator-induced lung injury. Larger-scale studies are essential to validate and optimize EIT's clinical utility in ARDS management.
Collapse
Affiliation(s)
- Nickjaree Songsangvorn
- Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Department of Critical Care Medicine, Bhumibol Adulyadej Hospital, Bangkok, Thailand
| | - Yonghao Xu
- Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Cong Lu
- Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Ori Rotstein
- Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Laurent Brochard
- Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Arthur S Slutsky
- Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Karen E A Burns
- Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Haibo Zhang
- Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Arellano DH, Brito R, Morais CCA, Ruiz-Rudolph P, Gajardo AIJ, Guiñez DV, Lazo MT, Ramirez I, Rojas VA, Cerda MA, Medel JN, Illanes V, Estuardo NR, Bruhn AR, Brochard LJ, Amato MBP, Cornejo RA. Pendelluft in hypoxemic patients resuming spontaneous breathing: proportional modes versus pressure support ventilation. Ann Intensive Care 2023; 13:131. [PMID: 38117367 PMCID: PMC10733241 DOI: 10.1186/s13613-023-01230-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/10/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Internal redistribution of gas, referred to as pendelluft, is a new potential mechanism of effort-dependent lung injury. Neurally-adjusted ventilatory assist (NAVA) and proportional assist ventilation (PAV +) follow the patient's respiratory effort and improve synchrony compared with pressure support ventilation (PSV). Whether these modes could prevent the development of pendelluft compared with PSV is unknown. We aimed to compare pendelluft magnitude during PAV + and NAVA versus PSV in patients with resolving acute respiratory distress syndrome (ARDS). METHODS Patients received either NAVA, PAV + , or PSV in a crossover trial for 20-min using comparable assistance levels after controlled ventilation (> 72 h). We assessed pendelluft (the percentage of lost volume from the non-dependent lung region displaced to the dependent region during inspiration), drive (as the delta esophageal swing of the first 100 ms [ΔPes 100 ms]) and inspiratory effort (as the esophageal pressure-time product per minute [PTPmin]). We performed repeated measures analysis with post-hoc tests and mixed-effects models. RESULTS Twenty patients mechanically ventilated for 9 [5-14] days were monitored. Despite matching for a similar tidal volume, respiratory drive and inspiratory effort were slightly higher with NAVA and PAV + compared with PSV (ΔPes 100 ms of -2.8 [-3.8--1.9] cm H2O, -3.6 [-3.9--2.4] cm H2O and -2.1 [-2.5--1.1] cm H2O, respectively, p < 0.001 for both comparisons; PTPmin of 155 [118-209] cm H2O s/min, 197 [145-269] cm H2O s/min, and 134 [93-169] cm H2O s/min, respectively, p < 0.001 for both comparisons). Pendelluft magnitude was higher in NAVA (12 ± 7%) and PAV + (13 ± 7%) compared with PSV (8 ± 6%), p < 0.001. Pendelluft magnitude was strongly associated with respiratory drive (β = -2.771, p-value < 0.001) and inspiratory effort (β = 0.026, p < 0.001), independent of the ventilatory mode. A higher magnitude of pendelluft in proportional modes compared with PSV existed after adjusting for PTPmin (β = 2.606, p = 0.010 for NAVA, and β = 3.360, p = 0.004 for PAV +), and only for PAV + when adjusted for respiratory drive (β = 2.643, p = 0.009 for PAV +). CONCLUSIONS Pendelluft magnitude is associated with respiratory drive and inspiratory effort. Proportional modes do not prevent its occurrence in resolving ARDS compared with PSV.
Collapse
Affiliation(s)
- Daniel H Arellano
- Departamento de Medicina, Unidad de Pacientes Críticos, Hospital Clínico Universidad de Chile, Dr. Carlos Lorca Tobar 999, 8380456, Santiago, Chile
- Departamento de Kinesiología, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Roberto Brito
- Departamento de Medicina, Unidad de Pacientes Críticos, Hospital Clínico Universidad de Chile, Dr. Carlos Lorca Tobar 999, 8380456, Santiago, Chile
| | - Caio C A Morais
- Divisao de Pneumologia, Faculdade de Medicina, Instituto Do Coração, Hospital das Clinicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
- Departamento de Fisioterapia, Universidade Federal de Pernambuco, Recife, Brazil
| | - Pablo Ruiz-Rudolph
- Programa de Epidemiología, Facultad de Medicina, Instituto de Salud Poblacional, Universidad de Chile, Santiago, Chile
| | - Abraham I J Gajardo
- Departamento de Medicina, Unidad de Pacientes Críticos, Hospital Clínico Universidad de Chile, Dr. Carlos Lorca Tobar 999, 8380456, Santiago, Chile
- Programa de Fisiopatología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Dannette V Guiñez
- Departamento de Medicina, Unidad de Pacientes Críticos, Hospital Clínico Universidad de Chile, Dr. Carlos Lorca Tobar 999, 8380456, Santiago, Chile
| | - Marioli T Lazo
- Departamento de Medicina, Unidad de Pacientes Críticos, Hospital Clínico Universidad de Chile, Dr. Carlos Lorca Tobar 999, 8380456, Santiago, Chile
| | - Ivan Ramirez
- Escuela de Kinesiología, Universidad Diego Portales, Santiago, Chile
| | - Verónica A Rojas
- Departamento de Medicina, Unidad de Pacientes Críticos, Hospital Clínico Universidad de Chile, Dr. Carlos Lorca Tobar 999, 8380456, Santiago, Chile
| | - María A Cerda
- Departamento de Medicina, Unidad de Pacientes Críticos, Hospital Clínico Universidad de Chile, Dr. Carlos Lorca Tobar 999, 8380456, Santiago, Chile
| | - Juan N Medel
- Departamento de Medicina, Unidad de Pacientes Críticos, Hospital Clínico Universidad de Chile, Dr. Carlos Lorca Tobar 999, 8380456, Santiago, Chile
| | - Victor Illanes
- Departamento de Medicina, Unidad de Pacientes Críticos, Hospital Clínico Universidad de Chile, Dr. Carlos Lorca Tobar 999, 8380456, Santiago, Chile
| | - Nivia R Estuardo
- Departamento de Medicina, Unidad de Pacientes Críticos, Hospital Clínico Universidad de Chile, Dr. Carlos Lorca Tobar 999, 8380456, Santiago, Chile
| | - Alejandro R Bruhn
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center of Acute Respiratory Critical Illness (ARCI), Santiago, Chile
| | - Laurent J Brochard
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Marcelo B P Amato
- Divisao de Pneumologia, Faculdade de Medicina, Instituto Do Coração, Hospital das Clinicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Rodrigo A Cornejo
- Departamento de Medicina, Unidad de Pacientes Críticos, Hospital Clínico Universidad de Chile, Dr. Carlos Lorca Tobar 999, 8380456, Santiago, Chile.
- Center of Acute Respiratory Critical Illness (ARCI), Santiago, Chile.
| |
Collapse
|
3
|
Brito R, Morais CCA, Lazo MT, Guiñez DV, Gajardo AIJ, Arellano DH, Amato MBP, Cornejo RA. Dynamic relative regional lung strain estimated by computed tomography and electrical impedance tomography in ARDS patients. Crit Care 2023; 27:457. [PMID: 38001485 PMCID: PMC10668403 DOI: 10.1186/s13054-023-04748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND In the acute distress respiratory syndrome (ARDS), specific lung regions can be exposed to excessive strain due to heterogeneous disease, gravity-dependent lung collapse and injurious mechanical ventilation. Computed tomography (CT) is the gold standard for regional strain assessment. An alternative tool could be the electrical impedance tomography (EIT). We aimed to determine whether EIT-based methods can predict the dynamic relative regional strain (DRRS) between two levels of end-expiratory pressure (PEEP) in gravity-non-dependent and dependent lung regions. METHODS Fourteen ARDS patients underwent CT and EIT acquisitions (at end-inspiratory and end-expiratory) at two levels of PEEP: a low-PEEP based on ARDS-net strategy and a high-PEEP titrated according to EIT. Three EIT-based methods for DRRS were compared to relative CT-based strain: (1) the change of the ratio between EIT ventilation and end-expiratory lung impedance in arbitrary units ([ΔZAU low-PEEP/EELIAU low-PEEP]/[ΔZAU high-PEEP/EELIAU high-PEEP]), (2) the change of ΔZ/EELI ratio calibrated to mL ([ΔZml low-PEEP/EELIml low-PEEP]/[ΔZml high-PEEP/EELIml high-PEEP]) using CT data, and (3) the relative change of ∆ZAU (∆ZAU low-PEEP/∆ZAU high-PEEP). We performed linear regressions analysis and calculated bias and limits of agreement to assess the performance of DRRS by EIT in comparison with CT. RESULTS The DRRS assessed by (ΔZml low-PEEP/EELIml low-PEEP)/(ΔZml high-PEEP/EELIml high-PEEP) and ∆ZAU low-PEEP/∆ZAU high-PEEP showed good relationship and agreement with the CT method (R2 of 0.9050 and 0.8679, respectively, in non-dependent region; R2 of 0.8373 and 0.6588, respectively, in dependent region; biases ranging from - 0.11 to 0.51 and limits of agreement ranging from - 0.73 to 1.16 for both methods and lung regions). Conversely, DRRS based on EELIAU ([ΔZAU low-PEEP/EELIAU low-PEEP]/[ΔZAU high-PEEP/EELIAU high-PEEP]) exhibited a weak negative relationship and poor agreement with the CT method for both non-dependent and dependent regions (R2 ~ 0.3; bias of 3.11 and 2.08, and limits of agreement of - 2.13 to 8.34 and from - 1.49 to 5.64, respectively). CONCLUSION Changes in DRRS during a PEEP trial in ARDS patients could be monitored using EIT, based on changes in ΔZmL/EELIml and ∆ZAU. The relative change ∆ZAU offers the advantage of not requiring CT data for calibration.
Collapse
Affiliation(s)
- Roberto Brito
- Unidad de Pacientes Críticos, Departamento de Medicina, Hospital Clínico Universidad de Chile, Dr. Carlos Lorca Tobar 999, Independencia, Santiago, Chile
| | - Caio C A Morais
- Divisao de Pneumologia, Faculdade de Medicina, Instituto do Coração, Hospital das Clinicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
- Departamento de Fisioterapia, Universidade Federal de Pernambuco, Recife, Brazil
| | - Marioli T Lazo
- Unidad de Pacientes Críticos, Departamento de Medicina, Hospital Clínico Universidad de Chile, Dr. Carlos Lorca Tobar 999, Independencia, Santiago, Chile
| | - Dannette V Guiñez
- Unidad de Pacientes Críticos, Departamento de Medicina, Hospital Clínico Universidad de Chile, Dr. Carlos Lorca Tobar 999, Independencia, Santiago, Chile
| | - Abraham I J Gajardo
- Unidad de Pacientes Críticos, Departamento de Medicina, Hospital Clínico Universidad de Chile, Dr. Carlos Lorca Tobar 999, Independencia, Santiago, Chile
- Programa de Fisiopatología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Daniel H Arellano
- Unidad de Pacientes Críticos, Departamento de Medicina, Hospital Clínico Universidad de Chile, Dr. Carlos Lorca Tobar 999, Independencia, Santiago, Chile
- Departamento de Kinesiología, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marcelo B P Amato
- Divisao de Pneumologia, Faculdade de Medicina, Instituto do Coração, Hospital das Clinicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Rodrigo A Cornejo
- Unidad de Pacientes Críticos, Departamento de Medicina, Hospital Clínico Universidad de Chile, Dr. Carlos Lorca Tobar 999, Independencia, Santiago, Chile.
- Center of Acute Respiratory Critical Illness (ARCI), Santiago, Chile.
| |
Collapse
|
4
|
Abbott M, Li Y, Brochard L, Zhang H. Precision Medicine Using Simultaneous Monitoring and Assessment with Imaging and Biomarkers to Manage Mechanical Ventilation in ARDS. INTENSIVE CARE RESEARCH 2023; 3:195-203. [PMID: 37664686 PMCID: PMC10471647 DOI: 10.1007/s44231-023-00045-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/24/2023] [Indexed: 09/05/2023]
Abstract
Acute respiratory distress syndrome (ARDS) has a ~ 40% mortality rate with an increasing prevalence exacerbated by the COVID-19 pandemic. Mechanical ventilation is the primary means for life-saving support to buy time for lung healing in ARDS patients, however, it can also lead to ventilator-induced lung injury (VILI). Effective strategies to reduce or prevent VILI are necessary but are not currently delivered. Therefore, we aim at evaluating the current imaging technologies to visualize where pressure and volume being delivered to the lung during mechanical ventilation; and combining plasma biomarkers to guide management of mechanical ventilation. We searched PubMed and Medline using keywords and analyzed the literature, including both animal models and human studies, to examine the independent use of computed tomography (CT) to evaluate lung mechanics, electrical impedance tomography (EIT) to guide ventilation, ultrasound to monitor lung injury, and plasma biomarkers to indicate status of lung pathophysiology. This investigation has led to our proposal of the combination of imaging and biomarkers to precisely deliver mechanical ventilation to improve patient outcomes in ARDS.
Collapse
Affiliation(s)
- Megan Abbott
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON Canada
- Department of Physiology, University of Toronto, Toronto, ON Canada
| | - Yuchong Li
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Laurent Brochard
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON Canada
| | - Haibo Zhang
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON Canada
- Department of Physiology, University of Toronto, Toronto, ON Canada
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON Canada
| |
Collapse
|
5
|
Dynamic relative regional strain visualized by electrical impedance tomography in patients suffering from COVID-19. J Clin Monit Comput 2021; 36:975-985. [PMID: 34386896 PMCID: PMC8363090 DOI: 10.1007/s10877-021-00748-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 08/06/2021] [Indexed: 01/08/2023]
Abstract
Respiratory failure due to SARS-CoV-2 may progress rapidly. During the course of COVID-19, patients develop an increased respiratory drive, which may induce high mechanical strain a known risk factor for Patient Self-Inflicted Lung Injury (P-SILI). We developed a novel Electrical Impedance Tomography-based approach to visualize the Dynamic Relative Regional Strain (DRRS) in SARS-CoV-2 positive patients and compared these findings with measurements in lung healthy volunteers. DRRS was defined as the ratio of tidal impedance changes and end-expiratory lung impedance within each pixel of the lung region. DRRS values of the ten patients were considerably higher than those of the ten healthy volunteers. On repeated examination, patterns, magnitude and frequency distribution of DRRS were reproducible and in line with the clinical course of the patients. Lung ultrasound scores correlated with the number of pixels showing DRRS values above the derived threshold. Using Electrical Impedance Tomography we were able to generate, for the first time, images of DRRS which might indicate P-SILI in patients suffering from COVID-19. Trial Registration This observational study was registered 06.04.2020 in German Clinical Trials Register (DRKS00021276).
Collapse
|