1
|
Rakhe N, Bhatt LK. Valosin-containing protein: A potential therapeutic target for cardiovascular diseases. Ageing Res Rev 2024; 101:102511. [PMID: 39313037 DOI: 10.1016/j.arr.2024.102511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024]
Abstract
Valosin-containing protein (VCP), also known as p97, plays a crucial role in various cellular processes, including protein degradation, endoplasmic reticulum-associated degradation, and cell cycle regulation. While extensive research has been focused on VCP's involvement in protein homeostasis and its implications in neurodegenerative diseases, emerging evidence suggests a potential link between VCP and cardiovascular health. VCP is a key regulator of mitochondrial function, and its overexpression or mutations lead to pathogenic diseases and cellular stress responses. The present review explores VCP's roles in numerous cardiovascular disorders including myocardial ischemia/reperfusion injury, cardiac hypertrophy, and heart failure. The review dwells on the roles of VCP in modifying mitochondrial activity, promoting S-nitrosylation, regulating mTOR signalling and demonstrating cardioprotective effects. Further research into VCP might lead to novel interventions for cardiovascular disease, particularly those involving ischemia/reperfusion injury and hypertrophy.
Collapse
Affiliation(s)
- Nameerah Rakhe
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
| |
Collapse
|
2
|
Sun X, Tang X, Qiu H. Cardiac-Specific Suppression of Valosin-Containing Protein Induces Progressive Heart Failure and Premature Mortality Correlating with Temporal Dysregulations in mTOR Complex 2 and Protein Phosphatase 1. Int J Mol Sci 2024; 25:6445. [PMID: 38928151 PMCID: PMC11203954 DOI: 10.3390/ijms25126445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Valosin-containing protein (VCP), an ATPase-associated protein, is emerging as a crucial regulator in cardiac pathologies. However, the pivotal role of VCP in the heart under physiological conditions remains undetermined. In this study, we tested a hypothesis that sufficient VCP expression is required for cardiac development and physiological cardiac function. Thus, we generated a cardiac-specific VCP knockout (KO) mouse model and assessed the consequences of VCP suppression on the heart through physiological and molecular studies at baseline. Our results reveal that homozygous KO mice are embryonically lethal, whereas heterozygous KO mice with a reduction in VCP by ~40% in the heart are viable at birth but progressively develop heart failure and succumb to mortality at the age of 10 to 12 months. The suppression of VCP induced a selective activation of the mammalian target of rapamycin complex 1 (mTORC1) but not mTORC2 at the early age of 12 weeks. The prolonged suppression of VCP increased the expression (by ~2 folds) and nuclear translocation (by >4 folds) of protein phosphatase 1 (PP1), a key mediator of protein dephosphorylation, accompanied by a remarked reduction (~80%) in AKTSer473 phosphorylation in VCP KO mouse hearts at a later age but not the early stage. These temporal molecular alterations were highly associated with the progressive decline in cardiac function. Overall, our findings shed light on the essential role of VCP in the heart under physiological conditions, providing new insights into molecular mechanisms in the development of heart failure.
Collapse
Affiliation(s)
- Xiaonan Sun
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA 30303, USA; (X.S.); (X.T.)
| | - Xicong Tang
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA 30303, USA; (X.S.); (X.T.)
- Cardiovascular Translational Research Center, Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA
| | - Hongyu Qiu
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA 30303, USA; (X.S.); (X.T.)
- Cardiovascular Translational Research Center, Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA
- Clinical Translational Sciences (CTS) and Bio5 Institution, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
3
|
Shi X, O'Connor M, Qiu H. Valosin-containing protein acts as a target and mediator of S-nitrosylation in the heart through distinct mechanisms. Redox Biol 2024; 72:103166. [PMID: 38685170 PMCID: PMC11061752 DOI: 10.1016/j.redox.2024.103166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 04/21/2024] [Indexed: 05/02/2024] Open
Abstract
S-nitrosylation (SNO) is an emerging paradigm of redox signaling protecting cells against oxidative stress in the heart. Our previous studies demonstrated that valosin-containing protein (VCP), an ATPase-associated protein, is a vital mediator protecting the heart against cardiac stress and ischemic injury. However, the molecular regulations conferred by VCP in the heart are not fully understood. In this study, we explored the potential role of VCP in cardiac protein SNO using multiple cardiac-specific genetically modified mouse models and various analytical techniques including biotin switch assay, liquid chromatography, mass spectrometry, and western blotting. Our results showed that cardiac-specific overexpression of VCP led to an overall increase in the levels of SNO-modified cardiac proteins in the transgenic (TG) vs. wild-type (WT) mice. Mass spectrometry analysis identified mitochondrial proteins involved in respiration, metabolism, and detoxification as primary targets of SNO modification in VCP-overexpressing mouse hearts. Particularly, we found that VCP itself underwent SNO modification at a specific cysteine residue in its N-domain. Additionally, our study demonstrated that glyceraldehyde 3-phosphate dehydrogenase (GAPDH), a key enzyme in glycolysis, also experienced increased SNO in response to VCP overexpression. While deletion of inducible nitric oxide synthase (iNOS) in VCP TG mice did not affect VCP SNO, it did abolish SNO modification in mitochondrial complex proteins, suggesting a dual mechanism of regulation involving both iNOS-dependent and independent pathways. Overall, our findings shed light on post-translational modification of VCP in the heart, unveiling a previously unrecognized role for VCP in regulating cardiac protein SNO and offering new insights into its function in cardiac protection.
Collapse
Affiliation(s)
- Xiaomeng Shi
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA, 30303, USA
| | - Molly O'Connor
- Cardiovascular Translational Research Center, Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, 85004, USA
| | - Hongyu Qiu
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA, 30303, USA; Cardiovascular Translational Research Center, Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, 85004, USA.
| |
Collapse
|
4
|
Barik P, Kuo WW, Kuo CH, Hsieh DJY, Day CH, Daddam J, Chen MYC, Padma VV, Shibu MA, Huang CY. Rewiring of IGF1 secretion and enhanced IGF1R signaling induced by co-chaperone carboxyl-terminus of Hsp70 interacting protein in adipose-derived stem cells provide augmented cardioprotection in aging-hypertensive rats. Aging (Albany NY) 2023; 15:14019-14038. [PMID: 38085649 PMCID: PMC10756089 DOI: 10.18632/aging.205287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/04/2023] [Indexed: 12/21/2023]
Abstract
Aging-associated cardiovascular diseases depend on the longitudinal deterioration of stem cell dynamics. The entire mechanism behind it is not completely understood. However, many studies suggest that endocrine pathways, particularly the insulin-like growth factor-1(IGF1) signaling pathway are involved in cardioprotection, especially in stem-cell treatments. Here, we investigated the role of a co-chaperone, carboxyl-terminus of Hsp70 interacting protein (CHIP) in the aspects of growth factor secretion and receptor stabilization in mesenchymal stem cells (MSCs). Briefly, we overexpressed CHIP in rat adipose-derived stem cells (rADSCs) and explored the consequences in vitro, and in vivo, in spontaneously hypertensive rats (SHR). Our data revealed that CHIP overexpression in rADSCs promoted the secretion of insulin-like growth factor-1 (IGF1) and IGF binding protein-3 (IGFBP3) as per immunoblot/cytokine array analysis. We also found that these results were dependent on the nuclear translocation of signal transducer and activator of transcription 3 (STAT3) in rADSCs. Further, the CHIP co-chaperone was also involved in the stabilization of the receptor of IGF1 (IGF1R); interactions between the beta transmembrane region of IGF1R, and the tetracopeptide repeat (TPR) domain of CHIP were evident. Importantly, after the transplantation of lentiviral CHIP overexpression of rADSCs (rADSCsCHIP-WT) into nine months aging-SHR led to an increase in their cardiac function - increased ejection fraction and fractional shortening (≈15% vs. control SHR) - as well as a decrease in their heart size and heart rate, respectively. Altogether, our results support the use of CHIP overexpressing stem cells for the mitigation of cardiac hypertrophy and remodeling associated with late-stage hypertension.
Collapse
Affiliation(s)
- Parthasarathi Barik
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Dennis Jine-Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | | | - Jayasimharayalu Daddam
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | | | - V. Vijaya Padma
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | | | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
5
|
Voisard P, Diofano F, Glazier AA, Rottbauer W, Just S. CRISPR/Cas9-Mediated Constitutive Loss of VCP (Valosin-Containing Protein) Impairs Proteostasis and Leads to Defective Striated Muscle Structure and Function In Vivo. Int J Mol Sci 2022; 23:ijms23126722. [PMID: 35743185 PMCID: PMC9223409 DOI: 10.3390/ijms23126722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Valosin-containing protein (VCP) acts as a key regulator of cellular protein homeostasis by coordinating protein turnover and quality control. Mutations in VCP lead to (cardio-)myopathy and neurodegenerative diseases such as inclusion body myopathy with Paget’s disease of the bone and frontotemporal dementia (IBMPFD) or amyotrophic lateral sclerosis (ALS). To date, due to embryonic lethality, no constitutive VCP knockout animal model exists. Here, we generated a constitutive CRISPR/Cas9-induced vcp knockout zebrafish model. Similar to the phenotype of vcp morphant knockdown zebrafish embryos, we found that vcp-null embryos displayed significantly impaired cardiac and skeletal muscle function. By ultrastructural analysis of skeletal muscle cells and cardiomyocytes, we observed severely disrupted myofibrillar organization and accumulation of inclusion bodies as well as mitochondrial degeneration. vcp knockout was associated with a significant accumulation of ubiquitinated proteins, suggesting impaired proteasomal function. Additionally, markers of unfolded protein response (UPR)/ER-stress and autophagy-related mTOR signaling were elevated in vcp-deficient embryos, demonstrating impaired proteostasis in VCP-null zebrafish. In conclusion, our findings demonstrate the successful generation of a stable constitutive vcp knockout zebrafish line that will enable characterization of the detailed mechanistic underpinnings of vcp loss, particularly the impact of disturbed protein homeostasis on organ development and function in vivo.
Collapse
Affiliation(s)
- Philipp Voisard
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (P.V.); (F.D.); (A.A.G.)
| | - Federica Diofano
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (P.V.); (F.D.); (A.A.G.)
| | - Amelia A. Glazier
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (P.V.); (F.D.); (A.A.G.)
| | - Wolfgang Rottbauer
- Department of Internal Medicine II, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany;
| | - Steffen Just
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (P.V.); (F.D.); (A.A.G.)
- Correspondence: ; Tel.: +49-731-500-45118; Fax: +49-731-500-45159
| |
Collapse
|
6
|
Bi X, Zhang Y, Yu Y, Yuan J, Xu S, Liu F, Ye J, Liu P. MiRNA-339-5p promotes isoproterenol-induced cardiomyocyte hypertrophy by targeting VCP to activate the mTOR signaling. Cell Biol Int 2021; 46:288-299. [PMID: 34854520 DOI: 10.1002/cbin.11731] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/09/2021] [Accepted: 11/27/2021] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) regulate multiple biological processes and participate in various cardiovascular diseases. This study aims to investigate the role of miR-339-5p in cardiomyocyte hypertrophy and the involved mechanism. Neonatal rat cardiomyocytes (NRCMs) were cultured and stimulated with isoproterenol (ISO). The hypertrophic responses were monitored by measuring the cell surface area and expression of hypertrophic markers including β-myosin heavy chain (β-MHC) and atrial natriuretic factor (ANF). Bioinformatic prediction tools and dual-luciferase reporter assay were performed to identify the target gene of miR-339-5p. Quantitative real-time polymerase chain reaction and western blot analysis were used to determine the levels of miR-339-5p and its downstream effectors. Our data showed that miR-339-5p was upregulated during cardiomyocyte hypertrophy triggered by ISO. MiR-339-5p overexpression resulted in enlargement of cell size and increased the levels of hypertrophic markers. In contrast, inhibition of miR-339-5p significantly attenuated ISO-induced hypertrophic responses of NRCMs. Valosin-containing protein (VCP), a suppressor of cardiac hypertrophy via inhibiting mechanistic target of rapamycin (mTOR) signaling, was validated as a target of miR-339-5p. MiR-339-5p suppressed VCP protein expression, leading to elevated phosphorylation of mTOR and ribosomal protein S6 kinase (S6K). VCP depletion activated the mTOR/S6K cascade and could compromise the anti-hypertrophic effects of miR-339-5p inhibitor. Additionally, the hypertrophic responses caused by miR-339-5p was alleviated in the presence of mTOR inhibitor rapamycin. In conclusion, our research revealed that miR-339-5p promoted ISO-induced cardiomyocyte hypertrophy by targeting VCP to activate the mTOR signaling, suggesting a promising therapeutic intervention by interfering miR-339-5p.
Collapse
Affiliation(s)
- Xueying Bi
- Department of Pharmacology and Toxicology, Sun Yat-Sen University, Guangdong, Guangzhou, China
| | - Yuhong Zhang
- Department of Pharmacology and Toxicology, Sun Yat-Sen University, Guangdong, Guangzhou, China
| | - Youhui Yu
- Department of Pharmacology and Toxicology, Sun Yat-Sen University, Guangdong, Guangzhou, China
| | - Jing Yuan
- Department of Pharmacology and Toxicology, Sun Yat-Sen University, Guangdong, Guangzhou, China
| | - Siting Xu
- Department of Pharmacology and Toxicology, Sun Yat-Sen University, Guangdong, Guangzhou, China
| | - Fang Liu
- Department of Pharmacology and Toxicology, Sun Yat-Sen University, Guangdong, Guangzhou, China
| | - Jiantao Ye
- Department of Pharmacology and Toxicology, Sun Yat-Sen University, Guangdong, Guangzhou, China
| | - Peiqing Liu
- Department of Pharmacology and Toxicology, Sun Yat-Sen University, Guangdong, Guangzhou, China
| |
Collapse
|
7
|
Sun X, Zhou N, Ma B, Wu W, Stoll S, Lai L, Qin G, Qiu H. Functional Inhibition of Valosin-Containing Protein Induces Cardiac Dilation and Dysfunction in a New Dominant-Negative Transgenic Mouse Model. Cells 2021; 10:2891. [PMID: 34831118 PMCID: PMC8616236 DOI: 10.3390/cells10112891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/20/2022] Open
Abstract
Valosin-containing protein (VCP) was found to play a vital protective role against cardiac stresses. Genetic mutations of VCP are associated with human dilated cardiomyopathy. However, the essential role of VCP in the heart during the physiological condition remains unknown since the VCP knockout in mice is embryonically lethal. We generated a cardiac-specific dominant-negative VCP transgenic (DN-VCP TG) mouse to determine the effects of impaired VCP activity on the heart. Using echocardiography, we showed that cardiac-specific overexpression of DN-VCP induced a remarkable cardiac dilation and progressively declined cardiac function during the aging transition. Mechanistically, DN-VCP did not affect the endogenous VCP (EN-VCP) expression but significantly reduced cardiac ATPase activity in the DN-VCP TG mouse hearts, indicating a functional inhibition. DN-VCP significantly impaired the aging-related cytoplasmic/nuclear shuffling of EN-VCP and its co-factors in the heart tissues and interrupted the balance of the VCP-cofactors interaction between the activating co-factors, ubiquitin fusion degradation protein 1 (UFD-1)/nuclear protein localization protein 4 (NPL-4) complex, and its inhibiting co-factor P47, leading to the binding preference with the inhibitory co-factor, resulting in functional repression of VCP. This DN-VCP TG mouse provides a unique functional-inactivation model for investigating VCP in the heart in physiological and pathological conditions.
Collapse
Affiliation(s)
- Xiaonan Sun
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA 30303, USA; (X.S.); (B.M.); (W.W.); (L.L.)
| | - Ning Zhou
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92318, USA; (N.Z.); (S.S.)
| | - Ben Ma
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA 30303, USA; (X.S.); (B.M.); (W.W.); (L.L.)
| | - Wenqian Wu
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA 30303, USA; (X.S.); (B.M.); (W.W.); (L.L.)
| | - Shaunrick Stoll
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92318, USA; (N.Z.); (S.S.)
| | - Lo Lai
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA 30303, USA; (X.S.); (B.M.); (W.W.); (L.L.)
| | - Gangjian Qin
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Hongyu Qiu
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA 30303, USA; (X.S.); (B.M.); (W.W.); (L.L.)
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92318, USA; (N.Z.); (S.S.)
| |
Collapse
|
8
|
Hsp22 Deficiency Induces Age-Dependent Cardiac Dilation and Dysfunction by Impairing Autophagy, Metabolism, and Oxidative Response. Antioxidants (Basel) 2021; 10:antiox10101550. [PMID: 34679684 PMCID: PMC8533440 DOI: 10.3390/antiox10101550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/19/2021] [Accepted: 09/27/2021] [Indexed: 02/04/2023] Open
Abstract
Heat shock protein 22 (Hsp22) is a small heat shock protein predominantly expressed in skeletal and cardiac muscle. Previous studies indicate that Hsp22 plays a vital role in protecting the heart against cardiac stress. However, the essential role of Hsp22 in the heart under physiological conditions remains largely unknown. In this study, we used an Hsp22 knockout (KO) mouse model to determine whether loss of Hsp22 impairs cardiac growth and function with increasing age under physiological conditions. Cardiac structural and functional alterations at baseline were measured using echocardiography and invasive catheterization in Hsp22 KO mice during aging transition compared to their age-matched wild-type (WT) littermates. Our results showed that Hsp22 deletion induced progressive cardiac dilation along with declined function during the aging transition. Mechanistically, the loss of Hsp22 impaired BCL-2-associated athanogene 3 (BAG3) expression and its associated cardiac autophagy, undermined cardiac energy metabolism homeostasis and increased oxidative damage. This study showed that Hsp22 played an essential role in the non-stressed heart during the early stage of aging, which may bring new insight into understanding the pathogenesis of age-related dilated cardiomyopathy.
Collapse
|
9
|
Wani A, Zhu J, Ulrich JD, Eteleeb A, Sauerbeck AD, Reitz SJ, Arhzaouy K, Ikenaga C, Yuede CM, Pittman SK, Wang F, Li S, Benitez BA, Cruchaga C, Kummer TT, Harari O, Chou TF, Schröder R, Clemen CS, Weihl CC. Neuronal VCP loss of function recapitulates FTLD-TDP pathology. Cell Rep 2021; 36:109399. [PMID: 34289347 PMCID: PMC8383344 DOI: 10.1016/j.celrep.2021.109399] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/06/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
The pathogenic mechanism by which dominant mutations in VCP cause multisystem proteinopathy (MSP), a rare neurodegenerative disease that presents as fronto-temporal lobar degeneration with TDP-43 inclusions (FTLD-TDP), remains unclear. To explore this, we inactivate VCP in murine postnatal forebrain neurons (VCP conditional knockout [cKO]). VCP cKO mice have cortical brain atrophy, neuronal loss, autophago-lysosomal dysfunction, and TDP-43 inclusions resembling FTLD-TDP pathology. Conditional expression of a single disease-associated mutation, VCP-R155C, in a VCP null background similarly recapitulates features of VCP inactivation and FTLD-TDP, suggesting that this MSP mutation is hypomorphic. Comparison of transcriptomic and proteomic datasets from genetically defined patients with FTLD-TDP reveal that progranulin deficiency and VCP insufficiency result in similar profiles. These data identify a loss of VCP-dependent functions as a mediator of FTLD-TDP and reveal an unexpected biochemical similarity with progranulin deficiency.
Collapse
Affiliation(s)
- Abubakar Wani
- Department of Neurology, Hope Center for Neurological Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Jiang Zhu
- Department of Neurology, Hope Center for Neurological Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Jason D Ulrich
- Department of Neurology, Hope Center for Neurological Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Abdallah Eteleeb
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew D Sauerbeck
- Department of Neurology, Hope Center for Neurological Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Sydney J Reitz
- Department of Neurology, Hope Center for Neurological Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Khalid Arhzaouy
- Department of Neurology, Hope Center for Neurological Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Chiseko Ikenaga
- Department of Neurology, Hope Center for Neurological Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Carla M Yuede
- Department of Neurology, Hope Center for Neurological Diseases, Washington University School of Medicine, St. Louis, MO, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Sara K Pittman
- Department of Neurology, Hope Center for Neurological Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Feng Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Shan Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Bruno A Benitez
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Terrance T Kummer
- Department of Neurology, Hope Center for Neurological Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Oscar Harari
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Rolf Schröder
- Institute of Neuropathology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph S Clemen
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany; Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Conrad C Weihl
- Department of Neurology, Hope Center for Neurological Diseases, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
10
|
Abstract
Cells respond to stress by activating a variety of defense signaling pathways, including cell survival and cell death pathways. Although cell survival signaling helps the cell to recover from acute insults, cell death or senescence pathways induced by chronic insults can lead to unresolved pathologies. Arterial hypertension results from chronic physiological maladaptation against various stressors represented by abnormal circulating or local neurohormonal factors, mechanical stress, intracellular accumulation of toxic molecules, and dysfunctional organelles. Hypertension and aging share common mechanisms that mediate or prolong chronic cell stress, such as endoplasmic reticulum stress and accumulation of protein aggregates, oxidative stress, metabolic mitochondrial stress, DNA damage, stress-induced senescence, and proinflammatory processes. This review discusses common adaptive signaling mechanisms against these stresses including unfolded protein responses, antioxidant response element signaling, autophagy, mitophagy, and mitochondrial fission/fusion, STING (signaling effector stimulator of interferon genes)-mediated responses, and activation of pattern recognition receptors. The main molecular mechanisms by which the vasculature copes with hypertensive and aging stressors are presented and recent advancements in stress-adaptive signaling mechanisms as well as potential therapeutic targets are discussed.
Collapse
Affiliation(s)
- Stephanie M. Cicalese
- These authors contributed equally and are considered co-first authors
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Josiane Fernandes da Silva
- These authors contributed equally and are considered co-first authors
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Fernanda Priviero
- These authors contributed equally and are considered co-first authors
- Cardiovascular Translational Research Center and Department of Cell Biology and Anatomy, University of South Carolina, Columbia, South Carolina, USA
| | - R. Clinton Webb
- Cardiovascular Translational Research Center and Department of Cell Biology and Anatomy, University of South Carolina, Columbia, South Carolina, USA
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Rita C. Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| |
Collapse
|
11
|
Emerging role of VCP/p97 in cardiovascular diseases: novel insights and therapeutic opportunities. Biochem Soc Trans 2021; 49:485-494. [PMID: 33439255 PMCID: PMC7925001 DOI: 10.1042/bst20200981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 12/22/2022]
Abstract
Valosin-containing protein (VCP/p97) is a member of the conserved type II AAA+ (ATPases associated with diverse cellular activities) family of proteins with multiple biological functions, especially in protein homeostasis. Mutations in VCP/p97 are reportedly related to unique autosomal dominant diseases, which may worsen cardiac function. Although the structure of VCP/p97 has been clearly characterized, with reports of high abundance in the heart, research focusing on the molecular mechanisms underpinning the roles of VCP/p97 in the cardiovascular system has been recently undertaken over the past decades. Recent studies have shown that VCP/p97 deficiency affects myocardial fibers and induces heart failure, while overexpression of VCP/p97 eliminates ischemia/reperfusion injury and relieves pathological cardiac hypertrophy caused by cardiac pressure overload, which is related to changes in the mitochondria and calcium overload. However, certain studies have drawn opposing conclusions, including the mitigation of ischemia/reperfusion injury via inhibition of VCP/p97 ATPase activity. Nevertheless, these emerging studies shed light on the role of VCP/p97 and its therapeutic potential in cardiovascular diseases. In other words, VCP/p97 may be involved in the development of cardiovascular disease, and is anticipated to be a new therapeutic target. This review summarizes current findings regarding VCP/p97 in the cardiovascular system for the first time, and discusses the role of VCP/p97 in cardiovascular disease.
Collapse
|
12
|
Exosomes Released from CaSR-Stimulated PMNs Reduce Ischaemia/Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3010548. [PMID: 33505580 PMCID: PMC7815400 DOI: 10.1155/2021/3010548] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/30/2020] [Accepted: 12/25/2020] [Indexed: 12/31/2022]
Abstract
Ischemia-reperfusion (I/R) injury caused by acute myocardial infarction (AMI) can initiate a strong inflammatory response. Polymorphonuclear cells (PMNs) are the most important inflammatory cells. Our previous studies found that the calcium-sensing receptor (CaSR) regulates the proinflammatory effects of PMNs. However, the role and mechanism of CaSR-regulated PMNs in I/R injury remain uncertain. A rat AMI model was developed in this study and showed that the expression of CaSR on PMNs increased in AMI; however, the levels of Bcl-xl and SOD in myocardial tissue decreased, while Bax and MDA levels increased. Then, after coculture with CaSR-stimulated PMNs, the expression of Bcl-xl in cardiomyocytes significantly increased, Bax expression and the apoptotic rate decreased, and ROS production was significantly inhibited. At the same time, the cardiomyocyte damage caused by hypoxia-reoxygenation was reduced. Furthermore, we found that exosomes derived from PMNs could be taken up by cardiomyocytes. Additionally, the exosomes secreted by CaSR-stimulated PMNs had the same effect on cardiomyocytes as CaSR-stimulated PMNs, while the increased phosphorylation level of AKT in cardiomyocytes could be revered by AKT transduction pathway inhibitors. Subsequently, we identified the exosomes derived from CaSR-stimulated PMNs by second-generation sequencing technology, and increased expression of lncRNA ENSRNOT00000039868 was noted. The data show that this lncRNA can prevent the hypoxia-reoxygenation injury by upregulating the expression of PDGFD in cardiomyocytes. In vivo, exosomes from CaSR-stimulated PMNs played a significant role against AMI and reperfusion injury in myocardial tissue. Thus, we propose that exosomes derived from CaSR-stimulated PMNs can reduce I/R injury in AMI, and this effect may be related to the AKT signaling pathway.
Collapse
|
13
|
Zhou N, Chen X, Xi J, Ma B, Leimena C, Stoll S, Qin G, Wang C, Qiu H. Novel genomic targets of valosin-containing protein in protecting pathological cardiac hypertrophy. Sci Rep 2020; 10:18098. [PMID: 33093614 PMCID: PMC7582185 DOI: 10.1038/s41598-020-75128-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/12/2020] [Indexed: 12/22/2022] Open
Abstract
Pressure overload-induced cardiac hypertrophy, such as that caused by hypertension, is a key risk factor for heart failure. However, the underlying molecular mechanisms remain largely unknown. We previously reported that the valosin-containing protein (VCP), an ATPase-associated protein newly identified in the heart, acts as a significant mediator of cardiac protection against pressure overload-induced pathological cardiac hypertrophy. Still, the underlying molecular basis for the protection is unclear. This study used a cardiac-specific VCP transgenic mouse model to understand the transcriptomic alterations induced by VCP under the cardiac stress caused by pressure overload. Using RNA sequencing and comprehensive bioinformatic analysis, we found that overexpression of the VCP in the heart was able to normalize the pressure overload-stimulated hypertrophic signals by activating G protein-coupled receptors, particularly, the olfactory receptor family, and inhibiting the transcription factor controlling cell proliferation and differentiation. Moreover, VCP overexpression restored pro-survival signaling through regulating alternative splicing alterations of mitochondrial genes. Together, our study revealed a novel molecular regulation mediated by VCP under pressure overload that may bring new insight into the mechanisms involved in protecting against hypertensive heart failure.
Collapse
Affiliation(s)
- Ning Zhou
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA.,Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Xin Chen
- Center for Genomics and Department of Basic Sciences, School of Medicine, Loma Linda University, 11021 Campus Street, AH 120/104, Loma Linda, CA, 92350, USA
| | - Jing Xi
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Ben Ma
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA.,Center of Molecular and Translational Medicine, Institution of Biomedical Science, Georgia State University, Petit Research Center, Room 588, 100 Piedmont Ave, Atlanta, GA, 30303, USA
| | - Christiana Leimena
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Shaunrick Stoll
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Gangjian Qin
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama At Birmingham, Birmingham, AL, 35294, USA
| | - Charles Wang
- Center for Genomics and Department of Basic Sciences, School of Medicine, Loma Linda University, 11021 Campus Street, AH 120/104, Loma Linda, CA, 92350, USA.
| | - Hongyu Qiu
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA. .,Center of Molecular and Translational Medicine, Institution of Biomedical Science, Georgia State University, Petit Research Center, Room 588, 100 Piedmont Ave, Atlanta, GA, 30303, USA.
| |
Collapse
|
14
|
The Physiological and Pathological Roles of Mitochondrial Calcium Uptake in Heart. Int J Mol Sci 2020; 21:ijms21207689. [PMID: 33080805 PMCID: PMC7589179 DOI: 10.3390/ijms21207689] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022] Open
Abstract
Calcium ion (Ca2+) plays a critical role in the cardiac mitochondria function. Ca2+ entering the mitochondria is necessary for ATP production and the contractile activity of cardiomyocytes. However, excessive Ca2+ in the mitochondria results in mitochondrial dysfunction and cell death. Mitochondria maintain Ca2+ homeostasis in normal cardiomyocytes through a comprehensive regulatory mechanism by controlling the uptake and release of Ca2+ in response to the cellular demand. Understanding the mechanism of modulating mitochondrial Ca2+ homeostasis in the cardiomyocyte could bring new insights into the pathogenesis of cardiac disease and help developing the strategy to prevent the heart from damage at an early stage. In this review, we summarized the latest findings in the studies on the cardiac mitochondrial Ca2+ homeostasis, focusing on the regulation of mitochondrial calcium uptake, which acts as a double-edged sword in the cardiac function. Specifically, we discussed the dual roles of mitochondrial Ca2+ in mitochondrial activity and the impact on cardiac function, the molecular basis and regulatory mechanisms, and the potential future research interest.
Collapse
|
15
|
Zhou N, Chen X, Xi J, Ma B, Leimena C, Stoll S, Qin G, Wang C, Qiu H. Genomic characterization reveals novel mechanisms underlying the valosin-containing protein-mediated cardiac protection against heart failure. Redox Biol 2020; 36:101662. [PMID: 32795937 PMCID: PMC7426568 DOI: 10.1016/j.redox.2020.101662] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/20/2020] [Accepted: 07/26/2020] [Indexed: 12/22/2022] Open
Abstract
Chronic hypertension is a key risk factor for heart failure. However, the underlying molecular mechanisms are not fully understood. Our previous studies found that the valosin-containing protein (VCP), an ATPase-associated protein, was significantly decreased in the hypertensive heart tissues. In this study, we tested the hypothesis that restoration of VCP protected the heart against pressure overload-induced heart failure. With a cardiac-specific transgenic (TG) mouse model, we showed that a moderate increase of VCP was able to attenuate chronic pressure overload-induced maladaptive cardiac hypertrophy and dysfunction. RNA sequencing and a comprehensive bioinformatic analysis further demonstrated that overexpression of VCP in the heart normalized the pressure overload-stimulated hypertrophic signals and repressed the stress-induced inflammatory response. In addition, VCP overexpression promoted cell survival by enhancing the mitochondria resistance to the oxidative stress via activating the Rictor-mediated-gene networks. VCP was also found to be involved in the regulation of the alternative splicing and differential isoform expression for some genes that are related to ATP production and protein synthesis by interacting with long no-coding RNAs and histone deacetylases, indicating a novel epigenetic regulation of VCP in integrating coding and noncoding genomic network in the stressed heart. In summary, our study demonstrated that the rescuing of a deficient VCP in the heart could prevent pressure overload-induced heart failure by rectifying cardiac hypertrophic and inflammatory signaling and enhancing the cardiac resistance to oxidative stress, which brought in novel insights into the understanding of the mechanism of VCP in protecting patients from hypertensive heart failure. Deficiency of VCP contributes to the pathogenesis of hypertensive heart failure. Rescue of VCP prevents stress-induced cardiac remodeling and cell death. VCP attenuates stress-induced inflammatory and hypertrophic signaling. VCP promotes cardiac resistance to oxidative stress. VCP mediates a novel epigenetic integrating regulation in the stressed heart.
Collapse
Affiliation(s)
- Ning Zhou
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA; Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Xin Chen
- Center for Genomics & Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Jing Xi
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Ben Ma
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA; Center of Molecular and Translational Medicine, Institution of Biomedical Science, Georgia State University, Atlanta, GA, 30303, USA
| | - Christiana Leimena
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Shaunrick Stoll
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Gangjian Qin
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Charles Wang
- Center for Genomics & Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA.
| | - Hongyu Qiu
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA; Center of Molecular and Translational Medicine, Institution of Biomedical Science, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
16
|
Valosin-Containing Protein, a Calcium-Associated ATPase Protein, in Endoplasmic Reticulum and Mitochondrial Function and Its Implications for Diseases. Int J Mol Sci 2020; 21:ijms21113842. [PMID: 32481679 PMCID: PMC7312078 DOI: 10.3390/ijms21113842] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
Endoplasmic reticulum (ER) and mitochondrion are the key organelles in mammal cells and play crucial roles in a variety of biological functions in both physiological and pathological conditions. Valosin-containing protein (VCP), a newly identified calcium-associated ATPase protein, has been found to be involved in both ER and mitochondrial function. Impairment of VCP, caused by structural mutations or alterations of expressions, contributes to the development of various diseases, through an integrating effect on ER, mitochondria and the ubiquitin–proteasome system, by interfering with protein degradation, subcellular translocation and calcium homeostasis. Thus, understanding the role and the molecular mechanisms of VCP in these organelles brings new insights to the pathogenesis of the associated diseases, and leads to the discovery of new therapeutic strategies. In this review, we summarized the progress of studies on VCP, in terms of its regulation of ER and mitochondrial function and its implications for the associated diseases, focusing on the cancers, heart disease, and neurodegenerative disorders.
Collapse
|
17
|
Vélez-Rendón D, Pursell ER, Shieh J, Valdez-Jasso D. Relative Contributions of Matrix and Myocytes to Biaxial Mechanics of the Right Ventricle in Pulmonary Arterial Hypertension. J Biomech Eng 2019; 141:091011. [PMID: 31299076 DOI: 10.1115/1.4044225] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Indexed: 01/15/2023]
Abstract
Pulmonary arterial hypertension (PAH) commonly leads to right ventricular (RV) hypertrophy and fibrosis that affect the mechanical properties of the RV myocardium (MYO). To investigate the effects of PAH on the mechanics of the RV MYO and extracellular matrix (ECM), we compared RV wall samples, isolated from rats in which PAH was induced using the SuHx protocol, with samples from control animals before and after the tissues were decellularized. Planar biaxial mechanical testing, a technique first adapted to living soft biological tissues by Fung, was performed on intact and decellularized samples. Fung's anisotropic exponential strain energy function fitted the full range of biaxial test results with high fidelity in control and PAH samples both before and after they were decellularized. Mean RV myocardial apex-to-outflow tract and circumferential stresses during equibiaxial strain were significantly greater in PAH than control samples. Mean RV ECM circumferential but not apex-to-outflow tract stresses during equibiaxial strain were significantly greater in the PAH than control group. The ratio of ECM to myocardial stresses at matched strains did not change significantly between groups. Circumferential stresses were significantly higher than apex-to-outflow tract stresses for all groups. These findings confirm the predictions of a mathematical model based on changes in RV hemodynamics and morphology in rat PAH, and may provide a foundation for a new constitutive analysis of the contributions of ECM remodeling to changes in RV filling properties during PAH.
Collapse
Affiliation(s)
- Daniela Vélez-Rendón
- Department of Bioengineering,University of Illinois at Chicago,Chicago, IL 60607
| | - Erica R Pursell
- Bioengineering Department,University of California San Diego,La Jolla, CA 92122
| | - Justin Shieh
- Bioengineering Department,University of California San Diego,La Jolla, CA 92122
| | - Daniela Valdez-Jasso
- Bioengineering Department,University of California, San Diego,La Jolla, CA 92122e-mail:
| |
Collapse
|
18
|
Stoll S, Xi J, Ma B, Leimena C, Behringer EJ, Qin G, Qiu H. The valosin-containing protein protects the heart against pathological Ca2+ overload by modulating Ca2+ uptake proteins. Toxicol Sci 2019; 171:473-484. [PMID: 31368507 PMCID: PMC6760276 DOI: 10.1093/toxsci/kfz164] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/11/2019] [Accepted: 07/14/2019] [Indexed: 01/11/2023] Open
Abstract
Stress-induced mitochondrial calcium (Ca2+) overload is a key cellular toxic effectors and a trigger of cardiomyocyte death during cardiac ischemic injury through the opening of mitochondrial permeability transition pore (mPTP). We previously found that the valosin-containing protein (VCP), an ATPase-associated protein, protects cardiomyocytes against stress-induced death and also inhibits mPTP opening in vitro. However, the underlying molecular mechanisms are not fully understood. Here, we tested our hypothesis that VCP acts as a novel regulator of mitochondrial Ca2+ uptake proteins and resists cardiac mitochondrial Ca2+ overload by modulating mitochondrial Ca2+ homeostasis. By using a cardiac-specific transgenic (TG) mouse model in which VCP is overexpressed by 3.5 folds in the heart compared to the wild type (WT) mouse, we found that, under the pathological extra-mitochondrial Ca2+ overload, Ca2+ entry into cardiac mitochondria was reduced in VCP TG mice compared to their little-matched WT mice, subsequently preventing mPTP opening and ATP depletion under the Ca2+ challenge. Mechanistically, overexpression of VCP in the heart resulted in post-translational protein degradation of the mitochondrial Ca2+ uptake protein 1 (MICU1), an activator of the mitochondria Ca2+ uniporter (MCU) that is responsible for mitochondrial calcium uptake. Together, our results reveal a new regulatory role of VCP in cardiac mitochondrial Ca2+ homeostasis and unlock the potential mechanism by which VCP confers its cardioprotection.
Collapse
Affiliation(s)
- Shaunrick Stoll
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University; 11041 Campus Street, Loma Linda, CA, USA.,Division of Pharmacology, Department of Basic Sciences, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, USA
| | - Jing Xi
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University; 11041 Campus Street, Loma Linda, CA, USA
| | - Ben Ma
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University; 11041 Campus Street, Loma Linda, CA, USA.,Center of Molecular and Translational Medicine, Institution of Biomedical Science, Georgia State University, Atlanta, GA USA
| | - Christiana Leimena
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University; 11041 Campus Street, Loma Linda, CA, USA
| | - Erik J Behringer
- Division of Pharmacology, Department of Basic Sciences, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, USA
| | - Gangjian Qin
- Department of Biomedical Engineering, Molecular Cardiology Program, School of Medicine and School of Engineering, University of Alabama at Birmingham. 1720 2nd Ave S, Volker Hall G094L, Birmingham, AL
| | - Hongyu Qiu
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University; 11041 Campus Street, Loma Linda, CA, USA.,Center of Molecular and Translational Medicine, Institution of Biomedical Science, Georgia State University, Atlanta, GA USA
| |
Collapse
|
19
|
Sciarretta S, Forte M, Frati G, Sadoshima J. New Insights Into the Role of mTOR Signaling in the Cardiovascular System. Circ Res 2019; 122:489-505. [PMID: 29420210 DOI: 10.1161/circresaha.117.311147] [Citation(s) in RCA: 342] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mTOR (mechanistic target of rapamycin) is a master regulator of several crucial cellular processes, including protein synthesis, cellular growth, proliferation, autophagy, lysosomal function, and cell metabolism. mTOR interacts with specific adaptor proteins to form 2 multiprotein complexes, called mTORC1 (mTOR complex 1) and mTORC2 (mTOR complex 2). In the cardiovascular system, the mTOR pathway regulates both physiological and pathological processes in the heart. It is needed for embryonic cardiovascular development and for maintaining cardiac homeostasis in postnatal life. Studies involving mTOR loss-of-function models revealed that mTORC1 activation is indispensable for the development of adaptive cardiac hypertrophy in response to mechanical overload. mTORC2 is also required for normal cardiac physiology and ensures cardiomyocyte survival in response to pressure overload. However, partial genetic or pharmacological inhibition of mTORC1 reduces cardiac remodeling and heart failure in response to pressure overload and chronic myocardial infarction. In addition, mTORC1 blockade reduces cardiac derangements induced by genetic and metabolic disorders and has been reported to extend life span in mice. These studies suggest that pharmacological targeting of mTOR may represent a therapeutic strategy to confer cardioprotection, although clinical evidence in support of this notion is still scarce. This review summarizes and discusses the new evidence on the pathophysiological role of mTOR signaling in the cardiovascular system.
Collapse
Affiliation(s)
- Sebastiano Sciarretta
- From the Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy (S.S., G.F.); Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Italy (S.S., M.F., G.F.); and Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark (J.S.)
| | - Maurizio Forte
- From the Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy (S.S., G.F.); Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Italy (S.S., M.F., G.F.); and Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark (J.S.)
| | - Giacomo Frati
- From the Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy (S.S., G.F.); Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Italy (S.S., M.F., G.F.); and Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark (J.S.)
| | - Junichi Sadoshima
- From the Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy (S.S., G.F.); Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Italy (S.S., M.F., G.F.); and Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark (J.S.).
| |
Collapse
|
20
|
Brody MJ, Vanhoutte D, Bakshi CV, Liu R, Correll RN, Sargent MA, Molkentin JD. Disruption of valosin-containing protein activity causes cardiomyopathy and reveals pleiotropic functions in cardiac homeostasis. J Biol Chem 2019; 294:8918-8929. [PMID: 31006653 DOI: 10.1074/jbc.ra119.007585] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/08/2019] [Indexed: 01/14/2023] Open
Abstract
Valosin-containing protein (VCP), also known as p97, is an ATPase with diverse cellular functions, although the most highly characterized is targeting of misfolded or aggregated proteins to degradation pathways, including the endoplasmic reticulum-associated degradation (ERAD) pathway. However, how VCP functions in the heart has not been carefully examined despite the fact that human mutations in VCP cause Paget disease of bone and frontotemporal dementia, an autosomal dominant multisystem proteinopathy that includes disease in the heart, skeletal muscle, brain, and bone. Here we generated heart-specific transgenic mice overexpressing WT VCP or a VCPK524A mutant with deficient ATPase activity. Transgenic mice overexpressing WT VCP exhibit normal cardiac structure and function, whereas mutant VCP-overexpressing mice develop cardiomyopathy. Mechanistically, mutant VCP-overexpressing hearts up-regulate ERAD complex components and have elevated levels of ubiquitinated proteins prior to manifestation of cardiomyopathy, suggesting dysregulation of ERAD and inefficient clearance of proteins targeted for proteasomal degradation. The hearts of mutant VCP transgenic mice also exhibit profound defects in cardiomyocyte nuclear morphology with increased nuclear envelope proteins and nuclear lamins. Proteomics revealed overwhelming interactions of endogenous VCP with ribosomal, ribosome-associated, and RNA-binding proteins in the heart, and impairment of cardiac VCP activity resulted in aggregation of large ribosomal subunit proteins. These data identify multifactorial functions and diverse mechanisms whereby VCP regulates cardiomyocyte protein and RNA quality control that are critical for cardiac homeostasis, suggesting how human VCP mutations negatively affect the heart.
Collapse
Affiliation(s)
- Matthew J Brody
- From the Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229-3039
| | - Davy Vanhoutte
- From the Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229-3039
| | - Chinmay V Bakshi
- From the Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229-3039
| | - Ruije Liu
- From the Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229-3039.,the Department of Biomedical Sciences, Grand Valley State University, Allendale, Michigan 49401, and
| | - Robert N Correll
- From the Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229-3039.,the Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama 35487-0344
| | - Michelle A Sargent
- From the Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229-3039
| | - Jeffery D Molkentin
- From the Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229-3039, .,the Howard Hughes Medical Institute, Cincinnati, Ohio 45229-3039
| |
Collapse
|
21
|
Yuan L, Qiu L, Ye Y, Wu J, Wang S, Wang X, Zhou N, Zou Y. Heat-shock transcription factor 1 is critically involved in the ischaemia-induced cardiac hypertrophy via JAK2/STAT3 pathway. J Cell Mol Med 2018; 22:4292-4303. [PMID: 29992755 PMCID: PMC6111827 DOI: 10.1111/jcmm.13713] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/25/2018] [Indexed: 01/20/2023] Open
Abstract
Cardiac hypertrophy after myocardial infarction (MI) is an independent risk factor for heart failure. Regression of cardiac hypertrophy has emerged as a promising strategy in the treatment of MI patients. Here, we have been suggested that heat-shock transcription factor 1 (HSF1) is a novel repressor of ischaemia-induced cardiac hypertrophy. Ligation of left anterior descending coronary was used to produce MI in HSF1-deficient heterozygote (KO), HSF1 transgenic (TG) mice and their wild-type (WT) littermates, respectively. Neonatal rat cardiomyocytes (NRCMs) were treated by hypoxia to mimic MI in vitro. The HSF1 phosphorylation was significantly reduced in the infarct border zone of mouse left ventricles (LVs) 1 week after MI and in the hypoxia-treated NRCMs. HSF1 KO mice showed more significant maladaptive cardiac hypertrophy and deteriorated cardiac dysfunction 1 week after MI compared to WT MI mice. Deficiency of HSF1 by siRNA transfection notably increased the hypoxia-induced myocardial hypertrophy in NRCMs. Mechanistically, Janus kinase 2 (JAK2) and its effector, signal transducer and activator of transcription 3 (STAT3) were found to be significantly increased in the LV infarct border zone of WT mice after MI as well as the NRCMs treated by hypoxia. These alterations were more significant in HSF1 KO mice and NRCMs transfected with HSF1 SiRNA. Inversely, HSF1 TG mice showed significantly ameliorated cardiac hypertrophy and heart failure 1 week after LAD ligation compared to their WT littermates. Our data collectively demonstrated that HSF1 is critically involved in the pathological cardiac hypertrophy after MI via modulating JAK2/STAT3 signalling and may constitute a potential therapeutic target for MI patients.
Collapse
Affiliation(s)
- Lingyan Yuan
- Department of kinesiology, Institute of physical education, Shanghai Normal University, Shanghai, China
| | - Lin Qiu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Ye
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biological Science, Fudan University, Shanghai, China
| | - Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biological Science, Fudan University, Shanghai, China
| | - Shuchun Wang
- Department of Computer Tomography and Magnetic Imaging, Yidu Central Hospital, Weifang Medical College, Weifang, China
| | - Xingxu Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biological Science, Fudan University, Shanghai, China
| | - Ning Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biological Science, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Zhou N, Stoll S, Qiu H. VCP represses pathological cardiac hypertrophy. Aging (Albany NY) 2017; 9:2469-2470. [PMID: 29283888 PMCID: PMC5764385 DOI: 10.18632/aging.101357] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 12/23/2017] [Indexed: 05/03/2023]
Affiliation(s)
- Ning Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Shaunrick Stoll
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Hongyu Qiu
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| |
Collapse
|