1
|
Luna A, Chou K, Wragg KM, Worley MJ, Paruchuri N, Zhou X, Blin MG, Moore BB, Salmon M, Goldstein DR, Deng JC. Senolytic treatment attenuates immune cell infiltration without improving IAV outcomes in aged mice. Aging Cell 2025; 24:e14437. [PMID: 39754380 PMCID: PMC11984683 DOI: 10.1111/acel.14437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 01/06/2025] Open
Abstract
Aging is a major risk factor for poor outcomes following respiratory infections. In animal models, the most severe outcomes of respiratory infections in older hosts have been associated with an increased burden of senescent cells that accumulate over time with age and create a hyperinflammatory response. Although studies using coronavirus animal models have demonstrated that removal of senescent cells with senolytics, a class of drugs that selectively kills senescent cells, resulted in reduced lung damage and increased survival, little is known about the role that senescent cells play in the outcome of influenza A viral (IAV) infections in aged mice. Here, we tested if the aged mice survival or weight loss IAV infections could be improved using three different senolytic regimens. We found that neither dasatinib plus quercetin, fisetin, nor ABT-263 improved outcomes. Furthermore, both dasatanib plus quercetin and fisetin treatments further suppressed immune infiltration than aging alone. Additionally, our data show that the short-term senolytic agents do not reduce senescent markers in our aged mouse model. These findings suggest that acute senolytic treatments do not universally reverse aging related immune phenotype against all respiratory viral infections.
Collapse
Affiliation(s)
- Adrian Luna
- Division of Pulmonary and Critical Care Medicine, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Kai‐Neng Chou
- Division of Pulmonary and Critical Care Medicine, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
- Department of Microbiology and ImmunologyUniversity of MichiganAnn ArborMichiganUSA
| | - Kathleen M. Wragg
- Division of Pulmonary and Critical Care Medicine, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
- Division of Cardiology, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Matthew J. Worley
- Division of Pulmonary and Critical Care Medicine, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Nikhil Paruchuri
- Division of Pulmonary and Critical Care Medicine, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Xiaofeng Zhou
- Department of Microbiology and ImmunologyUniversity of MichiganAnn ArborMichiganUSA
| | - Muriel G. Blin
- Division of Pulmonary and Critical Care Medicine, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Bethany B. Moore
- Division of Pulmonary and Critical Care Medicine, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
- Department of Microbiology and ImmunologyUniversity of MichiganAnn ArborMichiganUSA
| | - Morgan Salmon
- Department of Cardiac SurgeryUniversity of MichiganAnn ArborMichiganUSA
| | - Daniel R. Goldstein
- Department of Microbiology and ImmunologyUniversity of MichiganAnn ArborMichiganUSA
- Division of Cardiology, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Jane C. Deng
- Division of Pulmonary and Critical Care Medicine, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
- Veterans Affairs Ann Arbor Healthcare SystemAnn ArborMichiganUSA
| |
Collapse
|
2
|
Singh M, Shanmukha S, Eldesouki RE, Harraz MM. FDA-approved drug repurposing screen identifies inhibitors of SARS-CoV-2 pseudovirus entry. Front Pharmacol 2025; 16:1537912. [PMID: 40166473 PMCID: PMC11955658 DOI: 10.3389/fphar.2025.1537912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/17/2025] [Indexed: 04/02/2025] Open
Abstract
Background and purpose The coronavirus disease 2019 (COVID-19) pandemic has devastated global health and the economy, underscoring the urgent need for extensive research into the mechanisms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral entry and the development of effective therapeutic interventions. Experimental approach We established a cell line expressing human angiotensin-converting enzyme 2 (ACE2). We used it as a model of pseudotyped viral entry using murine leukemia virus (MLV) expressing SARS-CoV-2 spike (S) protein on its surface and firefly luciferase as a reporter. We screened an U.S. Food and Drug Administration (FDA)-approved compound library for inhibiting ACE2-dependent SARS-CoV-2 pseudotyped viral entry and identified several drug-repurposing candidates. Key results We identified 18 drugs and drug candidates, including 14 previously reported inhibitors of viral entry and four novel candidates. Pyridoxal 5'-phosphate, Dovitinib, Adefovir dipivoxil, and Biapenem potently inhibit ACE2-dependent viral entry with inhibitory concentration 50% (IC50) values of 57nM, 74 nM, 130 nM, and 183 nM, respectively. Conclusion and implications We identified four novel FDA-approved candidate drugs for anti-SARS-CoV-2 combination therapy. Our findings contribute to the growing body of evidence supporting drug repurposing as a viable strategy for rapidly developing COVID-19 treatments.
Collapse
Affiliation(s)
- Manisha Singh
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shruthi Shanmukha
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Raghda E. Eldesouki
- Genetics Unit, Histology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Maged M. Harraz
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
3
|
Yalçın C, Orhan B, Candar Ö, Çubukçu S, Güllü Koca T, Hunutlu FÇ, Yavuz Ş, Akyol MN, Ersal T, Özkocaman V, Özkalemkaş F. A comparison of the effect of three different comorbidity indices on overall survival in patients with chronic myeloid leukemia. Ther Adv Hematol 2025; 16:20406207251323701. [PMID: 40028007 PMCID: PMC11869246 DOI: 10.1177/20406207251323701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 02/10/2025] [Indexed: 03/05/2025] Open
Abstract
Aims It was aimed at measuring the comorbidities of chronic myeloid leukemia (CML) patients at the time of diagnosis with different comorbidity indices and evaluating their effects on disease prognosis. Methods The comorbidities of the patients were retrospectively screened and calculated in three different comorbidity indices: the ACE-27 Comorbidity Index, the Age-adjusted Charlson Comorbidity Index, and the Elixhauser Comorbidity Index. C-statistic was used to evaluate the ability of comorbidity indices to discriminate mortality. The relationship between the calculated scores and overall survival (OS) was evaluated with the Kaplan-Meier curve. Mortality risk was analyzed with a multivariate Cox regression model. Results A total of 218 CML patients were evaluated, and 211 chronic-phase patients were included in this study. The median age of the patients was 56 years (21-89), and 53% were female. As initial tyrosine kinase inhibitors, 201 (95%) patients were treated with imatinib, 10 (5%) patients with nilotinib. The median follow-up was 94.50 (9-201) months. The median OS was not reached. The most common comorbid conditions were hypertension 23% (n = 48), weight loss 19% (n = 40), diabetes mellitus 13% (n = 27), and cardiovascular disease 9% (n = 19). C-statistic values were 0.76 for ACE-27, 0.41 for ACCI, and 0.32 for ECI scores. In the Cox regression model including comorbidity scores, mortality risk was higher in patients with moderate ACE-27 score (HR: 148.05; 95% CI: 7.89-2751.53; p = 0.012), severe ACE-27 score (HR: 232.36; 95% CI: 14.20-4793.20; p = 0.001), ECOG 3 score (HR: 34.62; 95% CI: 2.67-447.36; p = 0.007), and high ELTS score (HR: 27.52; 95% CI: 1.34-543.68; p = 0.031). Conclusion This study showed that the ACE-27 Comorbidity Index is effective in predicting prognosis in CML patients. Therefore, comorbid conditions should be used more frequently as a prognostic marker at the time of diagnosis.
Collapse
Affiliation(s)
- Cumali Yalçın
- Clinic of Hematology, Kütahya City Hospital, Evliya Çelebi Mahallesi, Okmeydanı Caddesi, Kütahya 43020, Turkey
| | - Bedrettin Orhan
- Division of Hematology, Department of Internal Medicine, Uludag University Faculty of Medicine, Bursa, Turkey
| | - Ömer Candar
- Division of Hematology, Department of Internal Medicine, Uludag University Faculty of Medicine, Bursa, Turkey
| | - Sinem Çubukçu
- Division of Hematology, Department of Internal Medicine, Uludag University Faculty of Medicine, Bursa, Turkey
| | - Tuba Güllü Koca
- Division of Hematology, Department of Internal Medicine, Uludag University Faculty of Medicine, Bursa, Turkey
| | - Fazıl Çağrı Hunutlu
- Division of Hematology, Department of Internal Medicine, Uludag University Faculty of Medicine, Bursa, Turkey
| | - Şeyma Yavuz
- Division of Hematology, Department of Internal Medicine, Uludag University Faculty of Medicine, Bursa, Turkey
| | - Merve Nur Akyol
- Department of Internal Medicine, Uludag University Faculty of Medicine, Bursa, Turkey
| | - Tuba Ersal
- Division of Hematology, Department of Internal Medicine, Uludag University Faculty of Medicine, Bursa, Turkey
| | - Vildan Özkocaman
- Division of Hematology, Department of Internal Medicine, Uludag University Faculty of Medicine, Bursa, Turkey
| | - Fahir Özkalemkaş
- Division of Hematology, Department of Internal Medicine, Uludag University Faculty of Medicine, Bursa, Turkey
| |
Collapse
|
4
|
García-Hidalgo MC, Benítez ID, Perez-Pons M, Molinero M, Belmonte T, Rodríguez-Muñoz C, Aguilà M, Santisteve S, Torres G, Moncusí-Moix A, Gort-Paniello C, Peláez R, Larráyoz IM, Caballero J, Barberà C, Nova-Lamperti E, Torres A, González J, Barbé F, de Gonzalo-Calvo D. MicroRNA-guided drug discovery for mitigating persistent pulmonary complications in critical COVID-19 survivors: A longitudinal pilot study. Br J Pharmacol 2025; 182:380-395. [PMID: 38359818 DOI: 10.1111/bph.16330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND AND PURPOSE The post-acute sequelae of SARS-CoV-2 infection pose a significant global challenge, with nearly 50% of critical COVID-19 survivors manifesting persistent lung abnormalities. The lack of understanding about the molecular mechanisms and effective treatments hampers their management. Here, we employed microRNA (miRNA) profiling to decipher the systemic molecular underpinnings of the persistent pulmonary complications. EXPERIMENTAL APPROACH We conducted a longitudinal investigation including 119 critical COVID-19 survivors. A comprehensive pulmonary evaluation was performed in the short-term (median = 94.0 days after hospital discharge) and long-term (median = 358 days after hospital discharge). Plasma miRNAs were quantified at the short-term evaluation using the gold-standard technique, RT-qPCR. The analyses combined machine learning feature selection techniques with bioinformatic investigations. Two additional datasets were incorporated for validation. KEY RESULTS In the short-term, 84% of the survivors exhibited impaired lung diffusion (DLCO < 80% of predicted). One year post-discharge, 54.4% of this patient subgroup still presented abnormal DLCO. Four feature selection methods identified two specific miRNAs, miR-9-5p and miR-486-5p, linked to persistent lung dysfunction. The downstream experimentally validated targetome included 1473 genes, with heterogeneous enriched pathways associated with inflammation, angiogenesis and cell senescence. Validation studies using RNA-sequencing and proteomic datasets emphasized the pivotal roles of cell migration and tissue repair in persistent lung dysfunction. The repositioning potential of the miRNA targets was limited. CONCLUSION AND IMPLICATIONS Our study reveals early mechanistic pathways contributing to persistent lung dysfunction in critical COVID-19 survivors, offering a promising approach for the development of targeted disease-modifying agents. LINKED ARTICLES This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Affiliation(s)
- María C García-Hidalgo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Iván D Benítez
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Manel Perez-Pons
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Marta Molinero
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Thalía Belmonte
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Carlos Rodríguez-Muñoz
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - María Aguilà
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
| | - Sally Santisteve
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Gerard Torres
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Group of Precision Medicine in Chronic Diseases, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
| | - Anna Moncusí-Moix
- Group of Precision Medicine in Chronic Diseases, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
| | - Clara Gort-Paniello
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Rafael Peláez
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area Center for Biomedical Research of La Rioja, CIBIR, Logroño, Spain
| | - Ignacio M Larráyoz
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area Center for Biomedical Research of La Rioja, CIBIR, Logroño, Spain
- BIAS, Department of Nursing, University of La Rioja, Logroño, Spain
| | - Jesús Caballero
- Grup de Recerca Medicina Intensiva, Intensive Care Department Hospital Universitari Arnau de Vilanova, Lleida, Spain
| | - Carme Barberà
- Intensive Care Department, University Hospital Santa María, IRBLleida, Lleida, Spain
| | - Estefania Nova-Lamperti
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, Universidad de Concepcion, Concepcion, Chile
| | - Antoni Torres
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Pneumology Department, Clinic Institute of Thorax (ICT), Hospital Clinic of Barcelona, Insitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), ICREA, University of Barcelona (UB), Barcelona, Spain
| | - Jessica González
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Ferran Barbé
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
5
|
Yu Y, Lin K, Wu H, Hu M, Yang X, Wang J, Grillari J, Chen J. Targeting senescent cells in aging and COVID-19: from cellular mechanisms to therapeutic opportunities. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:20. [PMID: 39358480 PMCID: PMC11447201 DOI: 10.1186/s13619-024-00201-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024]
Abstract
The COVID-19 pandemic has caused a global health crisis and significant social economic burden. While most individuals experience mild or non-specific symptoms, elderly individuals are at a higher risk of developing severe symptoms and life-threatening complications. Exploring the key factors associated with clinical severity highlights that key characteristics of aging, such as cellular senescence, immune dysregulation, metabolic alterations, and impaired regenerative potential, contribute to disruption of tissue homeostasis of the lung and worse clinical outcome. Senolytic and senomorphic drugs, which are anti-aging treatments designed to eliminate senescent cells or decrease the associated phenotypes, have shown promise in alleviating age-related dysfunctions and offer a novel approach to treating diseases that share certain aspects of underlying mechanisms with aging, including COVID-19. This review summarizes the current understanding of aging in COVID-19 progression, and highlights recent findings on anti-aging drugs that could be repurposed for COVID-19 treatment to complement existing therapies.
Collapse
Affiliation(s)
- Yuan Yu
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kaixuan Lin
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Haoyu Wu
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Mingli Hu
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xuejie Yang
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jie Wang
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Johannes Grillari
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Institute of Molecular Biotechnology, BOKU University, Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation With AUVA, 1200, Vienna, Austria
| | - Jiekai Chen
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
6
|
Ma X, Huang T, Li X, Zhou X, Pan H, Du A, Zeng Y, Yuan K, Wang Z. Exploration of the link between COVID-19 and gastric cancer from the perspective of bioinformatics and systems biology. Front Med (Lausanne) 2024; 11:1428973. [PMID: 39371335 PMCID: PMC11449776 DOI: 10.3389/fmed.2024.1428973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
Background Coronavirus disease 2019 (COVID-19), an infectious disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has caused a global pandemic. Gastric cancer (GC) poses a great threat to people's health, which is a high-risk factor for COVID-19. Previous studies have found some associations between GC and COVID-19, whereas the underlying molecular mechanisms are not well understood. Methods We employed bioinformatics and systems biology to explore these links between GC and COVID-19. Gene expression profiles of COVID-19 (GSE196822) and GC (GSE179252) were obtained from the Gene Expression Omnibus (GEO) database. After identifying the shared differentially expressed genes (DEGs) for GC and COVID-19, functional annotation, protein-protein interaction (PPI) network, hub genes, transcriptional regulatory networks and candidate drugs were analyzed. Results We identified 209 shared DEGs between COVID-19 and GC. Functional analyses highlighted immune-related pathways as key players in both diseases. Ten hub genes (CDK1, KIF20A, TPX2, UBE2C, HJURP, CENPA, PLK1, MKI67, IFI6, IFIT2) were identified. The transcription factor/gene and miRNA/gene interaction networks identified 38 transcription factors (TFs) and 234 miRNAs. More importantly, we identified ten potential therapeutic agents, including ciclopirox, resveratrol, etoposide, methotrexate, trifluridine, enterolactone, troglitazone, calcitriol, dasatinib and deferoxamine, some of which have been reported to improve and treat GC and COVID-19. Conclusion This research offer valuable insights into the molecular interplay between COVID-19 and GC, potentially guiding future therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kefei Yuan
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen Wang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Fang C, Sun H, Wen J, Wu X, Wu Q, Zhai D. Investigation of the relationship between COVID-19 and pancreatic cancer using bioinformatics and systems biology approaches. Medicine (Baltimore) 2024; 103:e39057. [PMID: 39093763 PMCID: PMC11296473 DOI: 10.1097/md.0000000000039057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, poses a huge threat to human health. Pancreatic cancer (PC) is a malignant tumor with high mortality. Research suggests that infection with SARS-CoV-2 may increase disease severity and risk of death in patients with pancreatic cancer, while pancreatic cancer may also increase the likelihood of contracting SARS-CoV-2, but the link is unclear. METHODS This study investigated the transcriptional profiles of COVID-19 and PC patients, along with their respective healthy controls, using bioinformatics and systems biology approaches to uncover the molecular mechanisms linking the 2 diseases. Specifically, gene expression data for COVID-19 and PC patients were obtained from the Gene Expression Omnibus datasets, and common differentially expressed genes (DEGs) were identified. Gene ontology and pathway enrichment analyses were performed on the common DEGs to elucidate the regulatory relationships between the diseases. Additionally, hub genes were identified by constructing a protein-protein interaction network from the shared DEGs. Using these hub genes, we conducted regulatory network analyses of microRNA/transcription factors-genes relationships, and predicted potential drugs for treating COVID-19 and PC. RESULTS A total of 1722 and 2979 DEGs were identified from the transcriptome data of PC (GSE119794) and COVID-19 (GSE196822), respectively. Among these, 236 common DEGs were found between COVID-19 and PC based on protein-protein interaction analysis. Functional enrichment analysis indicated that these shared DEGs were involved in pathways related to viral genome replication and tumorigenesis. Additionally, 10 hub genes, including extra spindle pole bodies like 1, holliday junction recognition protein, marker of proliferation Ki-67, kinesin family member 4A, cyclin-dependent kinase 1, topoisomerase II alpha, cyclin B2, ubiquitin-conjugating enzyme E2 C, aurora kinase B, and targeting protein for Xklp2, were identified. Regulatory network analysis revealed 42 transcription factors and 23 microRNAs as transcriptional regulatory signals. Importantly, lucanthone, etoposide, troglitazone, resveratrol, calcitriol, ciclopirox, dasatinib, enterolactone, methotrexate, and irinotecan emerged as potential therapeutic agents against both COVID-19 and PC. CONCLUSION This study unveils potential shared pathogenic mechanisms between PC and COVID-19, offering novel insights for future research and therapeutic strategies for the treatment of PC and SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Chengxiang Fang
- Department of Oncology, Minda Hospital of Hubei Minzu University, Enshi, P.R. China
| | - Haiyan Sun
- Department of Radiology, Maternal and Child Health Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, P.R. China
| | - Jing Wen
- Department of Oncology, Minda Hospital of Hubei Minzu University, Enshi, P.R. China
| | - Xuehu Wu
- Department of Oncology, Minda Hospital of Hubei Minzu University, Enshi, P.R. China
| | - Qian Wu
- Department of Oncology, Minda Hospital of Hubei Minzu University, Enshi, P.R. China
| | - Dongsheng Zhai
- Department of Hepatobiliary and Pancreatic Surgery, Minda Hospital of Hubei Minzu University, Enshi, P.R. China
| |
Collapse
|
8
|
Kirchner VA, Badshah JS, Kyun Hong S, Martinez O, Pruett TL, Niedernhofer LJ. Effect of Cellular Senescence in Disease Progression and Transplantation: Immune Cells and Solid Organs. Transplantation 2024; 108:1509-1523. [PMID: 37953486 PMCID: PMC11089077 DOI: 10.1097/tp.0000000000004838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Aging of the world population significantly impacts healthcare globally and specifically, the field of transplantation. Together with end-organ dysfunction and prolonged immunosuppression, age increases the frequency of comorbid chronic diseases in transplant candidates and recipients, contributing to inferior outcomes. Although the frequency of death increases with age, limited use of organs from older deceased donors reflects the concerns about organ durability and inadequate function. Cellular senescence (CS) is a hallmark of aging, which occurs in response to a myriad of cellular stressors, leading to activation of signaling cascades that stably arrest cell cycle progression to prevent tumorigenesis. In aging and chronic conditions, senescent cells accumulate as the immune system's ability to clear them wanes, which is causally implicated in the progression of chronic diseases, immune dysfunction, organ damage, decreased regenerative capacity, and aging itself. The intimate interplay between senescent cells, their proinflammatory secretome, and immune cells results in a positive feedback loop, propagating chronic sterile inflammation and the spread of CS. Hence, senescent cells in organs from older donors trigger the recipient's alloimmune response, resulting in the increased risk of graft loss. Eliminating senescent cells or attenuating their inflammatory phenotype is a novel, potential therapeutic target to improve transplant outcomes and expand utilization of organs from older donors. This review focuses on the current knowledge about the impact of CS on circulating immune cells in the context of organ damage and disease progression, discusses the impact of CS on abdominal solid organs that are commonly transplanted, and reviews emerging therapies that target CS.
Collapse
Affiliation(s)
- Varvara A. Kirchner
- Division of Abdominal Transplantation, Department of Surgery, Stanford University, Stanford, CA
| | - Joshua S. Badshah
- Division of Abdominal Transplantation, Department of Surgery, Stanford University, Stanford, CA
| | - Suk Kyun Hong
- Division of Abdominal Transplantation, Department of Surgery, Stanford University, Stanford, CA
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Olivia Martinez
- Division of Abdominal Transplantation, Department of Surgery, Stanford University, Stanford, CA
| | - Timothy L. Pruett
- Division of Transplantation, Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Laura J. Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN
| |
Collapse
|
9
|
Chen JY, Huang TR, Hsu SY, Huang CC, Wang HS, Chang JS. Effect and mechanism of quercetin or quercetin-containing formulas against COVID-19: From bench to bedside. Phytother Res 2024; 38:2597-2618. [PMID: 38479376 DOI: 10.1002/ptr.8175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 06/13/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the global coronavirus disease 2019 (COVID-19) pandemic since 2019. Immunopathogenesis and thromboembolic events are central to its pathogenesis. Quercetin exhibits several beneficial activities against COVID-19, including antiviral, anti-inflammatory, immunomodulatory, antioxidative, and antithrombotic effects. Although several reviews have been published, these reviews are incomplete from the viewpoint of translational medicine. The authors comprehensively evaluated the evidence of quercetin against COVID-19, both basically and clinically, to apply quercetin and/or its derivatives in the future. The authors searched the PubMed, Embase, and the Cochrane Library databases without any restrictions. The search terms included COVID-19, SARS-CoV-2, quercetin, antiviral, anti-inflammatory, immunomodulatory, thrombosis, embolism, oxidative, and microbiota. The references of relevant articles were also reviewed. All authors independently screened and reviewed the quality of each included manuscript. The Cochrane Risk of Bias Tool, version 2 (RoB 2) was used to assess the quality of the included randomized controlled trials (RCTs). All selected studies were discussed monthly. The effectiveness of quercetin against COVID-19 is not solid due to methodological flaws in the clinical trials. High-quality studies are also required for quercetin-containing traditional Chinese medicines. The low bioavailability and highly variable pharmacokinetics of quercetin hinder its clinical applications. Its positive impact on immunomodulation through reverting dysbiosis of gut microbiota still lacks robust evidence. Quercetin against COVID-19 does not have tough clinical evidence. Strategies to improve its bioavailability and/or to develop its effective derivatives are needed. Well-designed RCTs are also crucial to confirm their effectiveness in the future.
Collapse
Affiliation(s)
- Jhong Yuan Chen
- Department of Traditional Chinese Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tsung Rung Huang
- Department of Traditional Chinese Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih Yun Hsu
- Department of Traditional Chinese Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching Chun Huang
- Department of Traditional Chinese Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Huei Syun Wang
- Department of Traditional Chinese Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jung San Chang
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- PhD Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
10
|
Rodríguez-Hernández MÁ, Baena-Bustos M, Carneros D, Zurita-Palomo C, Muñoz-Pinillos P, Millán J, Padillo FJ, Smerdou C, von Kobbe C, Rose-John S, Bustos M. Targeting IL-6 trans-signalling by sgp130Fc attenuates severity in SARS-CoV-2 -infected mice and reduces endotheliopathy. EBioMedicine 2024; 103:105132. [PMID: 38677182 PMCID: PMC11061249 DOI: 10.1016/j.ebiom.2024.105132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND SARS-CoV-2 infection is considered as a relapsing inflammatory process with a dysregulation of IL-6 signalling. Classic IL-6 signalling is thought to represent a defence mechanism against pathogens. In contrast, IL-6 trans-signalling has pro-inflammatory effects. In severe COVID-19, therapeutic strategies have focused on global inhibition of IL-6, with controversial results. We hypothesized that specific blockade of IL-6 trans-signalling could inhibit inflammatory response preserving the host defence activity inherent to IL-6 classic signalling. METHODS To test the role of the specific IL-6 trans-signalling inhibition by sgp130Fc in short- and long-term consequences of COVID-19, we used the established K18-hACE2 transgenic mouse model. Histological as well as immunohistochemical analysis, and pro-inflammatory marker profiling were performed. To investigate IL-6 trans-signalling in human cells we used primary lung microvascular endothelial cells and fibroblasts in the presence/absence of sgp130Fc. FINDINGS We report that targeting IL-6 trans-signalling by sgp130Fc attenuated SARS-CoV-2-related clinical symptoms and mortality. In surviving mice, the treatment caused a significant decrease in lung damage. In vitro, IL-6 trans-signalling induced strong and persisting JAK1/STAT3 activation in endothelial cells and lung fibroblasts with proinflammatory effects, which were attenuated by sgp130Fc. Our data also suggest that in those cells with scant amounts of IL-6R, the induction of gp130 and IL-6 by IL-6:sIL-6R complex sustains IL-6 trans-signalling. INTERPRETATION IL-6 trans-signalling fosters progression of COVID-19, and suggests that specific blockade of this signalling mode could offer a promising alternative to mitigate both short- and long-term consequences without affecting the beneficial effects of IL-6 classic signalling. These results have implications for the development of new therapies of lung injury and endotheliopathy in COVID-19. FUNDING The project was supported by ISCIII, Spain (COV-20/00792 to MB, PI23/01351 to MARH) and the European Commission-Next generation EU (European Union) (Regulation EU 2020/2094), through CSIC's Global Health Platform (PTI Salud Global, SGL2103029 to MB). PID2019-110587RB-I00 (MB) supported by MICIN/AEI/10.13039/501100011033/and PID2022-143034OB-I00 (MB) by MICIN/AEI/10.13039/501100011033/FEDER. MAR-H acknowledges support from ISCIII, Spain and the European Commission-Next generation EU (European Union), through CSIC's Global Health PTI.
Collapse
Affiliation(s)
- María Ángeles Rodríguez-Hernández
- Area of Liver, Digestive and Inflammatory Diseases, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital (HUVR), Spanish National Research Council (CSIC), University of Seville (US), Seville, Spain.
| | - Mercedes Baena-Bustos
- Pneumology Unit, Institute of Biomedicine of Seville (IBiS), Virgen Macarena University Hospital (HUVM), Spanish National Research Council (CSIC), University of Seville (US), Seville, Spain
| | - David Carneros
- Area of Liver, Digestive and Inflammatory Diseases, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital (HUVR), Spanish National Research Council (CSIC), University of Seville (US), Seville, Spain
| | - Carola Zurita-Palomo
- Area of Liver, Digestive and Inflammatory Diseases, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital (HUVR), Spanish National Research Council (CSIC), University of Seville (US), Seville, Spain
| | - Pablo Muñoz-Pinillos
- Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Cantoblanco, Madrid, Spain
| | - Jaime Millán
- Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Cantoblanco, Madrid, Spain
| | - Francisco Javier Padillo
- Area of Liver, Digestive and Inflammatory Diseases, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital (HUVR), Spanish National Research Council (CSIC), University of Seville (US), Seville, Spain
| | - Cristian Smerdou
- Division of DNA and RNA Medicine, Cima Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdISNA), and CCUN, Pamplona, Spain
| | - Cayetano von Kobbe
- Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Cantoblanco, Madrid, Spain
| | | | - Matilde Bustos
- Area of Liver, Digestive and Inflammatory Diseases, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital (HUVR), Spanish National Research Council (CSIC), University of Seville (US), Seville, Spain.
| |
Collapse
|
11
|
Owens CD, Bonin Pinto C, Detwiler S, Olay L, Pinaffi-Langley ACDC, Mukli P, Peterfi A, Szarvas Z, James JA, Galvan V, Tarantini S, Csiszar A, Ungvari Z, Kirkpatrick AC, Prodan CI, Yabluchanskiy A. Neurovascular coupling impairment as a mechanism for cognitive deficits in COVID-19. Brain Commun 2024; 6:fcae080. [PMID: 38495306 PMCID: PMC10943572 DOI: 10.1093/braincomms/fcae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/08/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
Components that comprise our brain parenchymal and cerebrovascular structures provide a homeostatic environment for proper neuronal function to ensure normal cognition. Cerebral insults (e.g. ischaemia, microbleeds and infection) alter cellular structures and physiologic processes within the neurovascular unit and contribute to cognitive dysfunction. COVID-19 has posed significant complications during acute and convalescent stages in multiple organ systems, including the brain. Cognitive impairment is a prevalent complication in COVID-19 patients, irrespective of severity of acute SARS-CoV-2 infection. Moreover, overwhelming evidence from in vitro, preclinical and clinical studies has reported SARS-CoV-2-induced pathologies in components of the neurovascular unit that are associated with cognitive impairment. Neurovascular unit disruption alters the neurovascular coupling response, a critical mechanism that regulates cerebromicrovascular blood flow to meet the energetic demands of locally active neurons. Normal cognitive processing is achieved through the neurovascular coupling response and involves the coordinated action of brain parenchymal cells (i.e. neurons and glia) and cerebrovascular cell types (i.e. endothelia, smooth muscle cells and pericytes). However, current work on COVID-19-induced cognitive impairment has yet to investigate disruption of neurovascular coupling as a causal factor. Hence, in this review, we aim to describe SARS-CoV-2's effects on the neurovascular unit and how they can impact neurovascular coupling and contribute to cognitive decline in acute and convalescent stages of the disease. Additionally, we explore potential therapeutic interventions to mitigate COVID-19-induced cognitive impairment. Given the great impact of cognitive impairment associated with COVID-19 on both individuals and public health, the necessity for a coordinated effort from fundamental scientific research to clinical application becomes imperative. This integrated endeavour is crucial for mitigating the cognitive deficits induced by COVID-19 and its subsequent burden in this especially vulnerable population.
Collapse
Affiliation(s)
- Cameron D Owens
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Camila Bonin Pinto
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Sam Detwiler
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Lauren Olay
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Ana Clara da C Pinaffi-Langley
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Peter Mukli
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
| | - Anna Peterfi
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
| | - Zsofia Szarvas
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
| | - Judith A James
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Veronica Galvan
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Stefano Tarantini
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Anna Csiszar
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
| | - Zoltan Ungvari
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Angelia C Kirkpatrick
- Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
- Cardiovascular Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Calin I Prodan
- Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Andriy Yabluchanskiy
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
12
|
Marcozzi S, Bigossi G, Giuliani ME, Giacconi R, Piacenza F, Cardelli M, Brunetti D, Segala A, Valerio A, Nisoli E, Lattanzio F, Provinciali M, Malavolta M. Cellular senescence and frailty: a comprehensive insight into the causal links. GeroScience 2023; 45:3267-3305. [PMID: 37792158 PMCID: PMC10643740 DOI: 10.1007/s11357-023-00960-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/24/2023] [Indexed: 10/05/2023] Open
Abstract
Senescent cells may have a prominent role in driving inflammation and frailty. The impact of cellular senescence on frailty varies depending on the assessment tool used, as it is influenced by the criteria or items predominantly affected by senescent cells and the varying weights assigned to these items across different health domains. To address this challenge, we undertook a thorough review of all available studies involving gain- or loss-of-function experiments as well as interventions targeting senescent cells, focusing our attention on those studies that examined outcomes based on the individual frailty phenotype criteria or specific items used to calculate two humans (35 and 70 items) and one mouse (31 items) frailty indexes. Based on the calculation of a simple "evidence score," we found that the burden of senescent cells related to musculoskeletal and cerebral health has the strongest causal link to frailty. We deem that insight into these mechanisms may not only contribute to clarifying the role of cellular senescence in frailty but could additionally provide multiple therapeutic opportunities to help the future development of a desirable personalized therapy in these extremely heterogeneous patients.
Collapse
Affiliation(s)
- Serena Marcozzi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121, Ancona, Italy
- Scientific Direction, IRCCS INRCA, 60124, Ancona, Italy
| | - Giorgia Bigossi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121, Ancona, Italy
| | - Maria Elisa Giuliani
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121, Ancona, Italy
| | - Robertina Giacconi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121, Ancona, Italy
| | - Francesco Piacenza
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121, Ancona, Italy
| | - Maurizio Cardelli
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121, Ancona, Italy
| | - Dario Brunetti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129, Milan, Italy
| | - Agnese Segala
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy
| | - Alessandra Valerio
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy
| | - Enzo Nisoli
- Center for Study and Research On Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli, 32, 20129, Milan, Italy
| | | | - Mauro Provinciali
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121, Ancona, Italy
| | - Marco Malavolta
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121, Ancona, Italy.
| |
Collapse
|
13
|
Sonar SA, Watanabe M, Nikolich JŽ. Disorganization of secondary lymphoid organs and dyscoordination of chemokine secretion as key contributors to immune aging. Semin Immunol 2023; 70:101835. [PMID: 37651849 PMCID: PMC10840697 DOI: 10.1016/j.smim.2023.101835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 09/02/2023]
Abstract
Aging is characterized by progressive loss of organ and tissue function, and the immune system is no exception to that inevitable principle. Of all the age-related changes in the body, reduction of the size of, and naïve T (Tn) cell output from, the thymus occurs earliest, being prominent already before or by the time of puberty. Therefore, to preserve immunity against new infections, over much of their lives, vertebrates dominantly rely on peripheral maintenance of the Tn cell pool in the secondary lymphoid organs (SLO). However, SLO structure and function subsequently also deteriorate with aging. Several recent studies have made a convincing case that this deterioration is of major importance to the erosion of protective immunity in the last third of life. Specifically, the SLO were found to accumulate multiple degenerative changes with aging. Importantly, the results from adoptive transfer and parabiosis studies teach us that the old microenvironment is the limiting factor for protective immunity in old mice. In this review, we discuss the extent, mechanisms, and potential role of stromal cell aging in the age-related alteration of T cell homeostatic maintenance and immune function decline. We use that discussion to frame the potential strategies to correct the SLO stromal aging defects - in the context of other immune rejuvenation approaches, - to improve functional immune responses and protective immunity in older adults.
Collapse
Affiliation(s)
- Sandip Ashok Sonar
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA; The University of Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
| | - Makiko Watanabe
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA; The University of Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
| | - Janko Ž Nikolich
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA; The University of Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA; the Aegis Consortium for Pandemic-free Future, University of Arizona Health Sciences, USA; BIO5 Institute, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
14
|
Kell L, Simon AK, Alsaleh G, Cox LS. The central role of DNA damage in immunosenescence. FRONTIERS IN AGING 2023; 4:1202152. [PMID: 37465119 PMCID: PMC10351018 DOI: 10.3389/fragi.2023.1202152] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/22/2023] [Indexed: 07/20/2023]
Abstract
Ageing is the biggest risk factor for the development of multiple chronic diseases as well as increased infection susceptibility and severity of diseases such as influenza and COVID-19. This increased disease risk is linked to changes in immune function during ageing termed immunosenescence. Age-related loss of immune function, particularly in adaptive responses against pathogens and immunosurveillance against cancer, is accompanied by a paradoxical gain of function of some aspects of immunity such as elevated inflammation and increased incidence of autoimmunity. Of the many factors that contribute to immunosenescence, DNA damage is emerging as a key candidate. In this review, we discuss the evidence supporting the hypothesis that DNA damage may be a central driver of immunosenescence through senescence of both immune cells and cells of non-haematopoietic lineages. We explore why DNA damage accumulates during ageing in a major cell type, T cells, and how this may drive age-related immune dysfunction. We further propose that existing immunosenescence interventions may act, at least in part, by mitigating DNA damage and restoring DNA repair processes (which we term "genoprotection"). As such, we propose additional treatments on the basis of their evidence for genoprotection, and further suggest that this approach may provide a viable therapeutic strategy for improving immunity in older people.
Collapse
Affiliation(s)
- Loren Kell
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Anna Katharina Simon
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Ghada Alsaleh
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Lynne S. Cox
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|