1
|
Zhu K, Fu Y, Zhao Y, Niu B, Lu H. Perineuronal nets: Role in normal brain physiology and aging, and pathology of various diseases. Ageing Res Rev 2025; 108:102756. [PMID: 40254145 DOI: 10.1016/j.arr.2025.102756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/17/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
Perineuronal nets (PNNs) are a specialized extracellular matrix in the central nervous system. They are widely distributed in the brain, with distribution patterns varying by brain region. Their unique structure and composition allow them to play an important role in a range of physiological and pathological activities. In this article, we review the composition and structure of PNNs across different life stages, and provide a detailed analysis and comparison of the region-specific distribution patterns of PNNs in different brain areas. We also discuss the specific mechanisms by which PNNs are involved in plasticity, memory, and neuroprotection. Furthermore, we describe the abnormal changes in PNNs in aging and various brain diseases, such as Alzheimer's disease, Parkinson's disease, drug addiction, and schizophrenia. Finally, we review emerging and established therapeutic strategies targeting PNNs to modulate brain function and address neurological disorders from three perspectives: gene therapy, nanotechnology, and biomaterials. This review summarizes the physiological roles of PNNs at different stages of life and the mechanisms by which PNNs abnormalities contribute to various brain diseases, providing insights for potential therapeutic approaches.
Collapse
Affiliation(s)
- Kaiqi Zhu
- Shanghai University, School of Life Sciences, Shanghai, China
| | - Yifei Fu
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Yinfei Zhao
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Niu
- Shanghai University, School of Life Sciences, Shanghai, China.
| | - Han Lu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Guizzetti M, Mangieri RA, Ezerskiy LA, Hashimoto JG, Bajo M, Farris SP, Homanics GE, Lasek AW, Mayfield RD, Messing RO, Roberto M. ASTROCYTES AND ALCOHOL THROUGHOUT THE LIFESPAN. Biol Psychiatry 2025:S0006-3223(25)01147-3. [PMID: 40311830 DOI: 10.1016/j.biopsych.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/31/2025] [Accepted: 04/21/2025] [Indexed: 05/03/2025]
Abstract
Evidence for involvement of astrocytes in several neurodegenerative disorders and in drug addiction has been emerging over the last two decades, but only in recent years have astrocytes been investigated for their roles in alcohol use disorder (AUD). As a result, there is a need to evaluate existing preclinical literature supporting involvement of astrocytes in the effects of alcohol exposure. Here we review emerging evidence about responses of astrocytes to alcohol, and the contributions of astrocytes to the development of AUD. We review studies of single-cell RNA sequencing with a focus on alcohol and astrocyte heterogeneity, astrocyte reactivity, and the role of astrocytes in remodeling the extracellular matrix. Effects of alcohol on astrocyte-modulated synaptic transmission are also discussed emphasizing studies never reviewed before. Since astrocytes play essential roles in brain development, we review recent research on the role of astrocytes in fetal alcohol spectrum disorders (FASD) which may also shed light on fetal development of psychiatric disorders that have a high prevalence in individuals affected by FASD. Finally, this review highlights gaps in knowledge about astrocyte biology and alcohol that need further research. Particularly, the dire need to identify astrocyte subpopulations and molecules that are susceptible to alcohol exposure and may be targets for therapeutic intervention.
Collapse
Affiliation(s)
- Marina Guizzetti
- Oregon Health & Science University and Portland VA Health Care System, Portland, OR.
| | | | | | - Joel G Hashimoto
- Oregon Health & Science University and Portland VA Health Care System, Portland, OR
| | - Michal Bajo
- The Scripps Research Institute, La Jolla, CA
| | | | | | - Amy W Lasek
- Virginia Commonwealth University, Richmond, VA
| | | | | | | |
Collapse
|
3
|
Warden AS, Salem NA, Brenner E, Sutherland GT, Stevens J, Kapoor M, Goate AM, Mayfield RD. Integrative genomics approach identifies glial transcriptomic dysregulation and risk in the cortex of individuals with Alcohol Use Disorder. Biol Psychiatry 2025:S0006-3223(25)00994-1. [PMID: 40024496 DOI: 10.1016/j.biopsych.2025.02.895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/24/2025] [Accepted: 02/14/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Alcohol use disorder (AUD) is a prevalent neuropsychiatric disorder that is a major global health concern, affecting millions of people worldwide. Past studies of AUD used underpowered single cell analysis or bulk homogenates of postmortem brain tissue, which obscures gene expression changes in specific cell types. Therefore, we sought to conduct the largest-to-date single-nuclei RNAseq (snRNA-seq) postmortem brain study in AUD to elucidate transcriptomic pathology with cell type-specific resolution. METHODS Here we performed snRNA-seq and high dimensional network analysis of 73 post-mortem samples from individuals with AUD (N=36, Nnuclei= 248,873) and neurotypical controls (N=37, Nnuclei= 210,573) in the dorsolateral prefrontal cortex from both male and female donors. Additionally, we performed analysis for cell type-specific enrichment of aggregate genetic risk for AUD as well as integration of the AUD proteome for secondary validation. RESULTS We identified 32 distinct cell clusters and found widespread cell type-specific transcriptomic changes across the cortex in AUD, particularly affecting glial populations. We found the greatest dysregulation in novel microglial and astrocytic subtypes that accounted for the majority of differential gene expression and co-expression modules linked to AUD. Differential gene expression was secondarily validated by integration of a publicly available AUD proteome. Finally, analysis for aggregate genetic risk for AUD identified subtypes of glia as potential key players not only affected by but causally linked to the progression of AUD. CONCLUSIONS These results highlight the importance of cell type-specific molecular changes in AUD and offer opportunities to identify novel targets for treatment on the single-nuclei level.
Collapse
Affiliation(s)
- Anna S Warden
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Nihal A Salem
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA; Institute for Neuroscience, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Eric Brenner
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Greg T Sutherland
- School of Medical Sciences and Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Julia Stevens
- New South Wales Brain Tissue Resource Centre, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Manav Kapoor
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, 1425 Madison Ave, New York, NY, 10029, USA
| | - Alison M Goate
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, 1425 Madison Ave, New York, NY, 10029, USA; Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mt. Sinai, 1425 Madison Ave, New York, NY, 10029, USA
| | - R Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA; Institute for Neuroscience, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
4
|
Taxier LR, Neira S, Flanigan ME, Haun HL, Eberle MR, Kooyman LS, Markowitz SY, Kash TL. Retrieval of an Ethanol-Conditioned Taste Aversion Promotes GABAergic Plasticity in the Anterior Insular Cortex. J Neurosci 2025; 45:e0525242024. [PMID: 39779373 PMCID: PMC11867018 DOI: 10.1523/jneurosci.0525-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 12/09/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
Blunted sensitivity to ethanol's aversive effects can increase motivation to consume ethanol; yet, the neurobiological circuits responsible for encoding these aversive properties are not fully understood. Plasticity in cells projecting from the anterior insular cortex (aIC) to the basolateral amygdala (BLA) is critical for taste aversion learning and retrieval, suggesting this circuit's potential involvement in modulating the aversive properties of ethanol. Here, we tested the hypothesis that GABAergic currents onto aIC→BLA projections would be facilitated as a consequence of retrieval of an ethanol-conditioned taste aversion (CTA). Consistent with this hypothesis, frequency of mIPSCs was increased 1 h following retrieval of an ethanol-CTA across cell layers in aIC→BLA projection neurons. This increase in GABAergic plasticity occurred in a circuit-specific, time-limited, and ethanol-CTA retrieval-dependent manner. Additionally, local inhibitory inputs onto layer 2/3 aIC→BLA projection neurons were greater in number and strength following ethanol-CTA. Finally, DREADD-mediated inhibition of aIC parvalbumin-expressing cells blunted the retrieval of ethanol-CTA in male, but not female, mice. Collectively, this work implicates a circuit-specific and memory retrieval-dependent increase in GABAergic tone following retrieval of an ethanol-CTA, thereby advancing our understanding of how the aversive effects of ethanol are encoded in the brain.
Collapse
Affiliation(s)
- Lisa R Taxier
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Sofia Neira
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Meghan E Flanigan
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Harold L Haun
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Maya R Eberle
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Lili S Kooyman
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Sloan Y Markowitz
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599; Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| |
Collapse
|
5
|
Wallsten B, Gligor AH, Gonzalez AE, Ramos JD, Baratta MV, Sorg BA. Response of parvalbumin interneurons and perineuronal nets in rat medial prefrontal cortex and lateral amygdala to stressor controllability. Brain Res 2025; 1848:149351. [PMID: 39592089 DOI: 10.1016/j.brainres.2024.149351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 11/28/2024]
Abstract
Behavioral control over a stressor limits the impact of the stressor being experienced and produces enduring changes that reduce the effects of future stressors. In rats, these stress-buffering effects of control (escapable stress, ES) require activation of the medial prefrontal cortex (mPFC) and prevent the typical amygdala-dependent behavioral outcomes of uncontrollable stress (inescapable stress, IS). Parvalbumin (PV) interneurons regulate output of excitatory neurons, and most mPFC PV neurons are surrounded by perineuronal nets (PNNs), which regulate firing. We exposed male rats to a single session of ES, IS, or no stress and measured c-Fos expression within PV/PNN-containing cells in mPFC subregions (prelimbic, PL; infralimbic, IL) and in the lateral amygdala. We also measured the number and intensity of PNNs. Within PL and IL PV/PNN cells, both ES and IS increased c-Fos intensity in PV/PNN, non-PV, and non-PNN cells. Within the IL, only ES increased the number of c-Fos-expressing PV/PNN-labeled cells. In the lateral amygdala, only ES increased c-Fos intensity within PV cells and PV/PNN cells. Thus, PV neurons in the IL and lateral amygdala may represent an important substrate by which behavioral control buffers against the amygdala-dependent behavioral outcomes typically observed after uncontrollable stress.
Collapse
Affiliation(s)
- Brittani Wallsten
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, OR 97232, United States
| | - Abigail H Gligor
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, OR 97232, United States
| | - Angela E Gonzalez
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, OR 97232, United States; Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, United States; Program in Neuroscience, Washington State University, Vancouver, WA 98686, United States
| | - Jonathan D Ramos
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, OR 97232, United States
| | - Michael V Baratta
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, 80301, United States
| | - Barbara A Sorg
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, OR 97232, United States; Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, United States; Program in Neuroscience, Washington State University, Vancouver, WA 98686, United States.
| |
Collapse
|
6
|
Banovac I, Prkačin MV, Kirchbaum I, Trnski-Levak S, Bobić-Rasonja M, Sedmak G, Petanjek Z, Jovanov-Milosevic N. Morphological and Molecular Characteristics of Perineuronal Nets in the Human Prefrontal Cortex-A Possible Link to Microcircuitry Specialization. Mol Neurobiol 2025; 62:1094-1111. [PMID: 38958887 PMCID: PMC11711633 DOI: 10.1007/s12035-024-04306-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
Perineuronal nets (PNNs) are a type of extracellular matrix (ECM) that play a significant role in synaptic activity and plasticity of interneurons in health and disease. We researched PNNs' regional and laminar representation and molecular composition using immunohistochemistry and transcriptome analysis of Brodmann areas (BA) 9, 14r, and 24 in 25 human postmortem brains aged 13-82 years. The numbers of VCAN- and NCAN-expressing PNNs, relative to the total number of neurons, were highest in cortical layers I and VI while WFA-binding (WFA+) PNNs were most abundant in layers III-V. The ECM glycosylation pattern was the most pronounced regional difference, shown by a significantly lower proportion of WFA+ PNNs in BA24 (3.27 ± 0.69%) compared to BA9 (6.32 ± 1.73%; P = 0.0449) and BA14 (5.64 ± 0.71%; P = 0.0278). The transcriptome of late developmental and mature stages revealed a relatively stable expression of PNN-related transcripts (log2-transformed expression values: 6.5-8.5 for VCAN and 8.0-9.5 for NCAN). Finally, we propose a classification of PNNs that envelop GABAergic neurons in the human cortex. The significant differences in PNNs' morphology, distribution, and molecular composition strongly suggest an involvement of PNNs in specifying distinct microcircuits in particular cortical regions and layers.
Collapse
Affiliation(s)
- Ivan Banovac
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, HR-10000, Zagreb, Croatia
- Croatian Institute for Brain Research, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine University of Zagreb, Šalata 12, HR-10000, Zagreb, Croatia
| | - Matija Vid Prkačin
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, HR-10000, Zagreb, Croatia
- Croatian Institute for Brain Research, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine University of Zagreb, Šalata 12, HR-10000, Zagreb, Croatia
| | - Ivona Kirchbaum
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, HR-10000, Zagreb, Croatia
| | - Sara Trnski-Levak
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, HR-10000, Zagreb, Croatia
| | - Mihaela Bobić-Rasonja
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, HR-10000, Zagreb, Croatia
- Department of Biology, University of Zagreb School of Medicine, Šalata 3, HR-10000, Zagreb, Croatia
| | - Goran Sedmak
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, HR-10000, Zagreb, Croatia
| | - Zdravko Petanjek
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, HR-10000, Zagreb, Croatia
- Croatian Institute for Brain Research, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine University of Zagreb, Šalata 12, HR-10000, Zagreb, Croatia
| | - Natasa Jovanov-Milosevic
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, HR-10000, Zagreb, Croatia.
- Croatian Institute for Brain Research, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine University of Zagreb, Šalata 12, HR-10000, Zagreb, Croatia.
- Department of Biology, University of Zagreb School of Medicine, Šalata 3, HR-10000, Zagreb, Croatia.
| |
Collapse
|
7
|
Towner TT, Coleman HJ, Goyden MA, Vore AS, Papastrat KM, Varlinskaya EI, Werner DF. Prelimbic cortex perineuronal net expression and social behavior: Impact of adolescent intermittent ethanol exposure. Neuropharmacology 2025; 262:110195. [PMID: 39437849 DOI: 10.1016/j.neuropharm.2024.110195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/05/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Adolescent intermittent ethanol (AIE) exposure in rats leads to social deficits. Parvalbumin (PV) expressing fast-spiking interneurons in the prelimbic cortex (PrL) contribute to social behavior, and perineuronal nets (PNNs) within the PrL preferentially encompass and regulate PV interneurons. AIE exposure increases PNNs, but it is unknown if this upregulation contributes to AIE-induced social impairments. The current study was designed to determine the effect of AIE exposure on PNN expression in the PrL and to assess whether PNN dysregulation contributes to social deficits elicited by AIE. cFos-LacZ male and female rats were exposed every other day to tap water or ethanol (4 g/kg, 25% w/v) via intragastric gavage between postnatal day (P) 25-45. We evaluated neuronal activation by β-galactosidase expression and PNN levels either at the end of the exposure regimen on P45 and/or in adulthood on P70. In addition, we used Chondroitinase ABC (ChABC) to deplete PNNs following adolescent exposure (P48) and allowed for PNN restoration before social testing in adulthhod. AIE exposure increased PNN expression in the PrL of adult males, but decreased PNNs immediately following AIE. Vesicular glutamate transporter 2 (vGlut2) and vesicular GABA transporter (vGat) near PNNs were downregulated only in AIE-exposed females. Gene expression of PNN components was largely unaffected by AIE exposure. Removal and reestablishment of PrL PNNs by ChABC led to upregulation of PNNs and social impairments in males, regardless of adolescent exposure. These data suggest that AIE exposure in males upregulates PrL PNNs that likely contribute to social impairments induced by AIE.
Collapse
Affiliation(s)
- Trevor T Towner
- Neurobiology of Adolescent Drinking in Adulthood Consortium, Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY, 13902-6000, USA
| | - Harper J Coleman
- Neurobiology of Adolescent Drinking in Adulthood Consortium, Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY, 13902-6000, USA
| | - Matthew A Goyden
- Neurobiology of Adolescent Drinking in Adulthood Consortium, Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY, 13902-6000, USA
| | - Andrew S Vore
- Neurobiology of Adolescent Drinking in Adulthood Consortium, Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY, 13902-6000, USA
| | - Kimberly M Papastrat
- Neurobiology of Adolescent Drinking in Adulthood Consortium, Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY, 13902-6000, USA
| | - Elena I Varlinskaya
- Neurobiology of Adolescent Drinking in Adulthood Consortium, Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY, 13902-6000, USA
| | - David F Werner
- Neurobiology of Adolescent Drinking in Adulthood Consortium, Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY, 13902-6000, USA.
| |
Collapse
|
8
|
Zhang X, Kong FE, Lin CS, Ye ZQ, Chen AL, Cheng K, Li XP. High-Intensity Interval Training Increases Osteoarthritis-Associated Pain-Sensitive Threshold Through Reduction of Perineuronal Nets of the Medial Prefrontal Cortex in Rats. Physiol Res 2024; 73:1085-1097. [PMID: 39903897 PMCID: PMC11835209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/09/2024] [Indexed: 02/06/2025] Open
Abstract
High-intensity interval training (HIIT) is considered an effective therapy strategy for improving chronic pain associated with osteoarthritis (OA). Perineuronal nets (PNNs) are specialized extracellular matrix structures in the cerebral cortex that play a crucial role in regulating chronic pain. However, little is unknown whether HIIT could alleviate OA pain sensitization by reducing PNN levels. This study aimed to determine whether HIIT could reduce sensitivity of the affected joint(s) to pain in a chronic pain model in rats with OA. A rat model of interest was induced by intra-articular injection of monosodium iodoacetate (MIA) into the right knee. Thereafter, the mechanical withdrawal thresholds (MWTs) and PNN levels in the contralateral medial prefrontal cortex (mPFC) were measured in rats in the presence or absence of HIIT alone or in combination with injection of chondroitinase-ABC (ChABC) into the contralateral mPFC (inducing the degradation of PNNs), respectively. Results indicated that rats with OA exhibited significant reductions in MWTs, but a significant increase in the PNN levels; that HIIT reversed changes in MWTs and PNN levels in rats with OA, and that pretreatment of ChABC abolished effects of HIIT on MWTs, with PNN levels not changed. We concluded that pain sensitization in rats with OA may correlate with an increase in PNN levels in the mPFC, and that HIIT may increases OA pain-sensitive threshold by reduction of the PNN levels in the mPFC. Keywords: Osteoarthritis, Chronic pain, Pain sensitization, High-intensity interval training, Perineuronal nets.
Collapse
Affiliation(s)
- X Zhang
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | | | | | | | | | | | | |
Collapse
|
9
|
Aguilar JS, Lasek AW. Modulation of stress-, pain-, and alcohol-related behaviors by perineuronal nets. Neurobiol Stress 2024; 33:100692. [PMID: 39691634 PMCID: PMC11650882 DOI: 10.1016/j.ynstr.2024.100692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/10/2024] [Accepted: 11/11/2024] [Indexed: 12/19/2024] Open
Abstract
Perineuronal nets (PNNs) are a special form of central nervous system extracellular matrix enriched in hyaluronan, chondroitin sulfate proteoglycans, tenascins, and link proteins that regulate synaptic plasticity. Most PNNs in the brain surround parvalbumin-expressing inhibitory interneurons, which tightly regulate excitatory/inhibitory balance and brain activity associated with optimal cognitive functioning. Alterations in PNNs have been observed in neurological diseases and psychiatric disorders, suggesting that they may be key contributors to the neuropathological progression and behavioral changes in these diseases. Alcohol use disorder (AUD), major depressive disorder (MDD), and chronic pain are highly comorbid conditions, and changes in PNNs have been observed in animal models of these disorders, as well as postmortem tissue from individuals diagnosed with AUD and MDD. This review focuses on the literature describing stress-, alcohol-, and pain-induced adaptations in PNNs, potential cellular contributors to altered PNNs, and the role of PNNs in behaviors related to these disorders. Medicines that can restore PNNs to a non-pathological state may be a novel therapeutic approach to treating chronic pain, AUD, and MDD.
Collapse
Affiliation(s)
- Jhoan S. Aguilar
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University, St Louis, St. Louis, MO, 63110, USA
| | - Amy W. Lasek
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| |
Collapse
|
10
|
Warden AS, Salem NA, Brenner E, Sutherland GT, Stevens J, Kapoor M, Goate AM, Dayne Mayfield R. Integrative genomics approach identifies glial transcriptomic dysregulation and risk in the cortex of individuals with Alcohol Use Disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.16.607185. [PMID: 39211266 PMCID: PMC11360965 DOI: 10.1101/2024.08.16.607185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Alcohol use disorder (AUD) is a prevalent neuropsychiatric disorder that is a major global health concern, affecting millions of people worldwide. Past molecular studies of AUD used underpowered single cell analysis or bulk homogenates of postmortem brain tissue, which obscures gene expression changes in specific cell types. Here we performed single nuclei RNA-sequencing analysis of 73 post-mortem samples from individuals with AUD (N=36, N nuclei = 248,873) and neurotypical controls (N=37, N nuclei = 210,573) in both sexes across two institutional sites. We identified 32 clusters and found widespread cell type-specific transcriptomic changes across the cortex in AUD, particularly affecting glia. We found the greatest dysregulation in novel microglial and astrocytic subtypes that accounted for the majority of differential gene expression and co-expression modules linked to AUD. Analysis for cell type-specific enrichment of aggregate genetic risk for AUD identified subtypes of microglia and astrocytes as potential key players not only affected by but causally linked to the progression of AUD. These results highlight the importance of cell-type specific molecular changes in AUD and offer opportunities to identify novel targets for treatment.
Collapse
|
11
|
Huang Z, Wei X, Tian J, Fu Y, Dong J, Wang Y, Shi J, Lu L, Zhang W. A disinhibitory microcircuit of the orbitofrontal cortex mediates cocaine preference in mice. Mol Psychiatry 2024; 29:3160-3169. [PMID: 38698268 DOI: 10.1038/s41380-024-02579-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024]
Abstract
Both clinical and animal studies showed that the impaired functions of the orbitofrontal cortex (OFC) underlie the compulsive drug-seeking behavior of drug addiction. However, the functional changes of the microcircuit in the OFC and the underlying molecular mechanisms in drug addiction remain elusive, and little is known for whether microcircuits in the OFC contributed to drug addiction-related behaviors. Utilizing the cocaine-induced conditioned-place preference model, we found that the malfunction of the microcircuit led to disinhibition in the OFC after cocaine withdrawal. We further showed that enhanced Somatostatin-Parvalbumin (SST-PV) inhibitory synapse strength changed microcircuit function, and SST and PV inhibitory neurons showed opposite contributions to the drug addiction-related behavior of mice. Brevican of the perineuronal nets of PV neurons regulated SST-PV synapse strength, and the knockdown of Brevican alleviated cocaine preference. These results reveal a novel molecular mechanism of the regulation of microcircuit function and a novel circuit mechanism of the OFC in gating cocaine preference.
Collapse
Affiliation(s)
- Ziran Huang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Xiaoyan Wei
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Jing Tian
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Yangxue Fu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Jihui Dong
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Yihui Wang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital); Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100191, China
| | - Wen Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China.
| |
Collapse
|
12
|
Sanchez B, Kraszewski P, Lee S, Cope EC. From molecules to behavior: Implications for perineuronal net remodeling in learning and memory. J Neurochem 2024; 168:1854-1876. [PMID: 38158878 DOI: 10.1111/jnc.16036] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Perineuronal nets (PNNs) are condensed extracellular matrix (ECM) structures found throughout the central nervous system that regulate plasticity. They consist of a heterogeneous mix of ECM components that form lattice-like structures enwrapping the cell body and proximal dendrites of particular neurons. During development, accumulating research has shown that the closure of various critical periods of plasticity is strongly linked to experience-driven PNN formation and maturation. PNNs provide an interface for synaptic contacts within the holes of the structure, generally promoting synaptic stabilization and restricting the formation of new synaptic connections in the adult brain. In this way, they impact both synaptic structure and function, ultimately influencing higher cognitive processes. PNNs are highly plastic structures, changing their composition and distribution throughout life and in response to various experiences and memory disorders, thus serving as a substrate for experience- and disease-dependent cognitive function. In this review, we delve into the proposed mechanisms by which PNNs shape plasticity and memory function, highlighting the potential impact of their structural components, overall architecture, and dynamic remodeling on functional outcomes in health and disease.
Collapse
Affiliation(s)
- Brenda Sanchez
- Department of Neuroscience, University of Virginia School of Medicine, Virginia, USA
| | - Piotr Kraszewski
- Department of Neuroscience, University of Virginia School of Medicine, Virginia, USA
| | - Sabrina Lee
- Department of Neuroscience, University of Virginia School of Medicine, Virginia, USA
| | - Elise C Cope
- Department of Neuroscience, University of Virginia School of Medicine, Virginia, USA
| |
Collapse
|
13
|
Yao JY, Zhao TS, Guo ZR, Li MQ, Lu XY, Zou GJ, Chen ZR, Liu Y, Cui YH, Li F, Li CQ. Degradation of perineuronal nets in the medial prefrontal cortex promotes extinction and reduces reinstatement of methamphetamine-induced conditioned place preference in female mice. Behav Brain Res 2024; 472:115152. [PMID: 39032868 DOI: 10.1016/j.bbr.2024.115152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/03/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
The high rate of relapse to compulsive methamphetamine (MA)-taking and seeking behaviors after abstinence constitutes a major obstacle to the treatment of MA addiction. Perineuronal nets (PNNs), essential components of the extracellular matrix, play a critical role in synaptic function, learning, and memory. Abnormalities in PNNs have been closely linked to a series of neurological diseases, such as addiction. However, the exact role of PNNs in MA-induced related behaviors remains elusive. Here, we established a MA-induced conditioned place preference (CPP) paradigm in female mice and found that the number and average optical density of PNNs increased significantly in the medial prefrontal cortex (mPFC) of mice during the acquisition, extinction, and reinstatement stages of CPP. Notably, the removal of PNNs in the mPFC via chondroitinase ABC (ChABC) before extinction training not only facilitated the extinction of MA-induced CPP and attenuated the relapse of extinguished MA preference but also significantly reduced the activation of c-Fos in the mPFC. Similarly, the ablation of PNNs in the mPFC before reinstatement markedly lessened the reinstatement of MA-induced CPP, which was accompanied by the decreased expression of c-Fos in the mPFC. Collectively, our results provide more evidence for the implication of degradation of PNNs in facilitating extinction and preventing relapse of MA-induced CPP, which indicate that targeting PNNs may be an effective therapeutic option for MA-induced CPP memories.
Collapse
Affiliation(s)
- Jia-Yu Yao
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Tian-Shu Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zi-Rui Guo
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Meng-Qing Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xiao-Yu Lu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Guang-Jing Zou
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Zhao-Rong Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yu Liu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yan-Hui Cui
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Fang Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| | - Chang-Qi Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| |
Collapse
|
14
|
Sullivan ED, Dannenhoffer CA, Sutherland EB, Vidrascu EM, Gómez-A A, Boettiger CA, Robinson DL. Effects of adolescent intermittent ethanol exposure on cortical perineuronal net and parvalbumin expression in adulthood mediate behavioral inflexibility. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:1507-1518. [PMID: 39073296 PMCID: PMC11305908 DOI: 10.1111/acer.15395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/03/2024] [Accepted: 06/03/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Alcohol is commonly consumed by adolescents in a binge-like pattern, which can lead to long-lasting cognitive deficits, including reduced behavioral flexibility. We and others have determined that adolescent intermittent ethanol (AIE) exposure leads to increased number of perineuronal net (PNN) numbers in brain regions that are important for behavioral flexibility. However, whether altered neurochemistry stemming from AIE exposure plays a significant role in reduced behavioral flexibility is unknown. METHODS We measured the number and size of parvalbumin expressing (PV+) interneurons and associated PNNs within the orbitofrontal cortex (OFC), prelimbic cortex (PrL), infralimbic cortex (IL), and anterior insular cortex (AIC) of female and male rats following AIE or control exposure and subsequent training on an attentional set-shift task (ASST). We then ran analyses to determine whether AIE-induced changes in PV and PNN measures statistically mediated the AIE-induced behavioral deficit in reversal learning. RESULTS We demonstrate that AIE exposure impaired behavioral flexibility on reversal two of the ASST (i.e., recalling the initial learned associations), and led to smaller PV+ cells and increased PNN numbers in the AIC. Interestingly, PNN size and number were not altered in the PrL or IL following AIE exposure, in contrast to prior reports. Mediation analyses suggest that AIE alters behavioral flexibility, at least in part through changes in PV and PNN fluorescent measures in the AIC. CONCLUSIONS This study reveals a significant link between AIE exposure, neural alterations, and diminished behavioral flexibility in rats, and highlights a potential novel mechanism comprising changes in PV and PNN measures within the AIC. Future studies should explore the impact of PNN degradation within the AIC on behavioral flexibility.
Collapse
Affiliation(s)
- Emily D.K. Sullivan
- Bowles Center for Alcohol Studies at University of North Carolina at Chapel Hill, Dept. of Psychiatry, Chapel Hill, NC, 27278, USA
| | - Carol A. Dannenhoffer
- Bowles Center for Alcohol Studies at University of North Carolina at Chapel Hill, Dept. of Psychiatry, Chapel Hill, NC, 27278, USA
| | - Elizabeth B. Sutherland
- Bowles Center for Alcohol Studies at University of North Carolina at Chapel Hill, Dept. of Psychology & Neuroscience, Chapel Hill, NC, 27278, USA
| | - Elena M. Vidrascu
- Bowles Center for Alcohol Studies at University of North Carolina at Chapel Hill, Dept. of Psychology & Neuroscience, Chapel Hill, NC, 27278, USA
| | - Alexander Gómez-A
- Bowles Center for Alcohol Studies at University of North Carolina at Chapel Hill, Dept. of Psychiatry, Chapel Hill, NC, 27278, USA
| | - Charlotte A. Boettiger
- Bowles Center for Alcohol Studies at University of North Carolina at Chapel Hill, Dept. of Psychology & Neuroscience, Chapel Hill, NC, 27278, USA
| | - Donita L. Robinson
- Bowles Center for Alcohol Studies at University of North Carolina at Chapel Hill, Dept. of Psychiatry, Chapel Hill, NC, 27278, USA
| |
Collapse
|
15
|
Honeycutt S, Mukherjee A, Paladino M, Gilles-Thomas E, Loney G. Adolescent nicotine exposure promotes adulthood opioid consumption that persists despite adverse consequences and increases the density of insular perineuronal nets. ADDICTION NEUROSCIENCE 2024; 11:100150. [PMID: 38911872 PMCID: PMC11192509 DOI: 10.1016/j.addicn.2024.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Adolescence marks a sensitive period for neurodevelopment wherein exposure to drugs of abuse may disrupt maturation and induce persistent changes in neurophysiology which may exacerbate the risk for developing substance use disorders in adulthood. Adolescent nicotine exposure (ANE) enhances motivation to obtain drugs of abuse, particularly opioids, and increases vulnerability for the development of opioid use disorder (OUD). Here, we characterized ANE effects on learning about the adverse consequences of opioid consumption in adulthood in the absence of further nicotine administration. First, we show that ANE engenders punishment resistant fentanyl self-administration in a heterogenous seeking-taking chain schedule of reinforcement at least at the tested dose of fentanyl (0.75 μg/kg). We found that ANE rats consumed significantly more fentanyl and contingent foot shock punishment was less efficacious in limiting fentanyl seeking in ANE rats, relative to nicotine-naïve controls. Next, we demonstrated that ANE limits learning about the deleterious consequences of acute opioid intoxication in adulthood. In a combined conditioned taste avoidance and place preference paradigm we found that ANE resulted in significant reductions in the strength of morphine-induced CTA, and a simultaneous enhancement of CPP at a higher dose that was less capable of driving reinforcement in naïve controls. Finally, we examined the expression of perineuronal nets (PNNs) within insular cortex (IC) and found ANE rats to have increased density of PNNs across the anterior IC and significantly more parvalbumin-labeled IC cells relative to naïve controls. Together, these data lay the framework for a mechanistic explanation of the extreme comorbidity between nicotine use and development of OUDs.
Collapse
|
16
|
Cheung SW, Bhavnani E, Simmons DG, Bellingham MC, Noakes PG. Perineuronal nets are phagocytosed by MMP-9 expressing microglia and astrocytes in the SOD1 G93A ALS mouse model. Neuropathol Appl Neurobiol 2024; 50:e12982. [PMID: 38742276 DOI: 10.1111/nan.12982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
AIMS Perineuronal nets (PNNs) are an extracellular matrix structure that encases excitable neurons. PNNs play a role in neuroprotection against oxidative stress. Oxidative stress within motor neurons can trigger neuronal death, which has been implicated in amyotrophic lateral sclerosis (ALS). We investigated the spatio-temporal timeline of PNN breakdown and the contributing cellular factors in the SOD1G93A strain, a fast-onset ALS mouse model. METHODS This was conducted at the presymptomatic (P30), onset (P70), mid-stage (P130), and end-stage disease (P150) using immunofluorescent microscopy, as this characterisation has not been conducted in the SOD1G93A strain. RESULTS We observed a significant breakdown of PNNs around α-motor neurons in the ventral horn of onset and mid-stage disease SOD1G93A mice compared with wild-type controls. This was observed with increased numbers of microglia expressing matrix metallopeptidase-9 (MMP-9), an endopeptidase that degrades PNNs. Microglia also engulfed PNN components in the SOD1G93A mouse. Further increases in microglia and astrocyte number, MMP-9 expression, and engulfment of PNN components by glia were observed in mid-stage SOD1G93A mice. This was observed with increased expression of fractalkine, a signal for microglia engulfment, within α-motor neurons of SOD1G93A mice. Following PNN breakdown, α-motor neurons of onset and mid-stage SOD1G93A mice showed increased expression of 3-nitrotyrosine, a marker for protein oxidation, which could render them vulnerable to death. CONCLUSIONS Our observations suggest that increased numbers of MMP-9 expressing glia and their subsequent engulfment of PNNs around α-motor neurons render these neurons sensitive to oxidative damage and eventual death in the SOD1G93A ALS model mouse.
Collapse
Affiliation(s)
- Sang Won Cheung
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Australia
| | - Ekta Bhavnani
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Australia
| | - David G Simmons
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Australia
| | - Mark C Bellingham
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Australia
| | - Peter G Noakes
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Australia
- Queensland Brain Institute, The University of Queensland, St. Lucia, Australia
| |
Collapse
|
17
|
Galán-Llario M, Gramage E, García-Guerra A, Torregrosa AB, Gasparyan A, Navarro D, Navarrete F, García-Gutiérrez MS, Manzanares J, Herradón G. Adolescent intermittent ethanol exposure decreases perineuronal nets in the hippocampus in a sex dependent manner: Modulation through pharmacological inhibition of RPTPβ/ζ. Neuropharmacology 2024; 247:109850. [PMID: 38295947 DOI: 10.1016/j.neuropharm.2024.109850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/29/2023] [Accepted: 01/20/2024] [Indexed: 02/05/2024]
Abstract
Adolescence is a critical period for brain maturation in which this organ undergoes critical plasticity mechanisms that increase its vulnerability to the effects of alcohol. Significantly, ethanol-induced disruption of hippocampal neurogenesis has been related to cognitive decline in adulthood. During adolescence, the maturation of perineuronal nets (PNNs), extracellular matrix structures highly affected by ethanol consumption, plays a fundamental role in neurogenesis and plasticity in the hippocampus. Receptor Protein Tyrosine Phosphatase (RPTP) β/ζ is a critical anchor point for PNNs on the cell surface. Using the adolescent intermittent access to ethanol (IAE) model, we previously showed that MY10, a small-molecule inhibitor of RPTPβ/ζ, reduces chronic ethanol consumption in adolescent male mice but not in females and prevents IAE-induced neurogenic loss in the male hippocampus. We have now tested if these effects of MY10 are related to sex-dependent modulatory actions on ethanol-induced effects in PNNs. Our findings suggest a complex interplay between alcohol exposure, neural structures, and sex-related differences in the modulation of PNNs and parvalbumin (PV)-positive cells in the hippocampus. In general, IAE increased the number of PV + cells in the female hippocampus and reduced PNNs intensity in different hippocampal regions, particularly in male mice. Notably, we found that pharmacological inhibition of RPTPβ/ζ with MY10 regulates ethanol-induced alterations of PNNs intensity, which correlates with the protection of hippocampal neurogenesis from ethanol neurotoxic effects and may be related to the capacity of MY10 to increase the gene expression of key components of PNNs.
Collapse
Affiliation(s)
- Milagros Galán-Llario
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Esther Gramage
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain; Instituto de Estudios de las Adicciones, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain; Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Alba García-Guerra
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Abraham B Torregrosa
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Av Ramón y Cajal s/n, San Juan de Alicante, Alicante, Spain; Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Av Ramón y Cajal s/n, San Juan de Alicante, Alicante, Spain; Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Av Ramón y Cajal s/n, San Juan de Alicante, Alicante, Spain; Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Av Ramón y Cajal s/n, San Juan de Alicante, Alicante, Spain; Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Av Ramón y Cajal s/n, San Juan de Alicante, Alicante, Spain; Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Av Ramón y Cajal s/n, San Juan de Alicante, Alicante, Spain; Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Gonzalo Herradón
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain; Instituto de Estudios de las Adicciones, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain; Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain.
| |
Collapse
|
18
|
Taxier LR, Flanigan ME, Haun HL, Kash TL. Retrieval of an ethanol-conditioned taste aversion promotes GABAergic plasticity in the insular cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585950. [PMID: 38562680 PMCID: PMC10983921 DOI: 10.1101/2024.03.20.585950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Blunted sensitivity to ethanol's aversive effects can increase motivation to consume ethanol; yet, the neurobiological circuits responsible for encoding these aversive properties are not fully understood. Plasticity in cells projecting from the insular cortex (IC) to the basolateral amygdala (BLA) is critical for taste aversion learning and retrieval, suggesting this circuit's potential involvement in modulating the aversive properties of ethanol. Here, we tested the hypothesis that GABAergic activity onto IC-BLA projections would be facilitated following the retrieval of an ethanol-conditioned taste aversion (CTA). Consistent with this hypothesis, frequency of mIPSCs was increased following retrieval of an ethanol-CTA across cell layers in IC-BLA projection neurons. This increase in GABAergic plasticity occurred in both a circuit-specific and learning-dependent manner. Additionally, local inhibitory inputs onto layer 2/3 IC-BLA projection neurons were greater in number and strength following ethanol-CTA. Finally, DREADD-mediated inhibition of IC parvalbumin-expressing cells blunted the retrieval of ethanol-CTA in male, but not female, mice. Collectively, this work implicates a circuit-specific and learning-dependent increase in GABAergic tone following retrieval of an ethanol-CTA, thereby advancing our understanding of how the aversive effects of ethanol are encoded in the brain.
Collapse
Affiliation(s)
- Lisa R Taxier
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA, 27599
| | - Meghan E Flanigan
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA, 27599
| | - Harold L Haun
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA, 27599
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA; Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA, 27599
| |
Collapse
|
19
|
Aguilar J, De Carvalho LM, Chen H, Condon R, Lasek AW, Pradhan AA. Histone deacetylase inhibitor decreases hyperalgesia in a mouse model of alcohol withdrawal-induced hyperalgesia. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:478-487. [PMID: 38378262 PMCID: PMC10940188 DOI: 10.1111/acer.15273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Alcohol withdrawal-induced hyperalgesia (AWH) is characterized as an increased pain sensitivity observed after cessation of chronic alcohol use. Alcohol withdrawal-induced hyperalgesia can contribute to the negative affective state associated with abstinence and can increase susceptibility to relapse. We aimed to characterize pain sensitivity in mice during withdrawal from two different models of alcohol exposure: chronic drinking in the dark (DID) and the Lieber-DeCarli liquid diet. We also investigated whether treatment with a histone deacetylase (HDAC) inhibitor, suberoylanilide hydroxamic acid (SAHA), could ameliorate AWH in mice treated with the Lieber-DeCarli diet. METHODS Male and female C57BL/6J mice were used for these studies. In the DID model, mice received bottles of 20% ethanol or water during the dark cycle for 4 h per day on four consecutive days per week for 6 weeks. Peripheral mechanical sensitivity was measured weekly the morning of Day 5 using von Frey filaments. In the Lieber-DeCarli model, mice received ethanol (5% v/v) or control liquid diet for 10 days, along with a single binge ethanol gavage (5 g/kg) or control gavage, respectively, on Day 10. Peripheral mechanical sensitivity was measured during the liquid diet administration and at 24 and 72 h into ethanol withdrawal. An independent group of mice that received the Lieber-DeCarli diet were administered SAHA (50 mg/kg, i.p.) during withdrawal. RESULTS Male mice exhibited mechanical hypersensitivity after consuming ethanol for 5 weeks in the DID procedure. In the Lieber-DeCarli model, ethanol withdrawal led to hyperalgesia in both sexes. Suberoylanilide hydroxamic acid treatment during withdrawal from the ethanol liquid diet alleviated AWH. CONCLUSIONS These results demonstrate AWH in mice after chronic binge drinking in males and after Lieber-DeCarli liquid diet administration in both sexes. Like previous findings in rats, HDAC inhibition reduced AWH in mice, suggesting that epigenetic mechanisms are involved in AWH.
Collapse
Affiliation(s)
- Jhoan Aguilar
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago IL USA
| | - Luana Martins De Carvalho
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago IL USA
| | - Hu Chen
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago IL USA
| | - Ryan Condon
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago IL USA
| | - Amy W. Lasek
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago IL USA
| | - Amynah A. Pradhan
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago IL USA
| |
Collapse
|
20
|
Torres Irizarry VC, Feng B, Yang X, Patel N, Schaul S, Ibrahimi L, Ye H, Luo P, Carrillo-Sáenz L, Lai P, Kota M, Dixit D, Wang C, Lasek AW, He Y, Xu P. Estrogen signaling in the dorsal raphe regulates binge-like drinking in mice. Transl Psychiatry 2024; 14:122. [PMID: 38413577 PMCID: PMC10899193 DOI: 10.1038/s41398-024-02821-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/29/2024] Open
Abstract
Estrogens promote binge alcohol drinking and contribute to sex differences in alcohol use disorder. However, the mechanisms are largely unknown. This study aims to test if estrogens act on 5-hydroxytryptamine neurons in the dorsal raphe nucleus (5-HTDRN) to promote binge drinking. We found that female mice drank more alcohol than male mice in chronic drinking in the dark (DID) tests. This sex difference was associated with distinct alterations in mRNA expression of estrogen receptor α (ERα) and 5-HT-related genes in the DRN, suggesting a potential role of estrogen/ERs/5-HT signaling. In supporting this view, 5-HTDRN neurons from naïve male mice had lower baseline firing activity but higher sensitivity to alcohol-induced excitation compared to 5-HTDRN neurons from naïve female mice. Notably, this higher sensitivity was blunted by 17β-estradiol treatment in males, indicating an estrogen-dependent mechanism. We further showed that both ERα and ERβ are expressed in 5-HTDRN neurons, whereas ERα agonist depolarizes and ERβ agonist hyperpolarizes 5-HTDRN neurons. Notably, both treatments blocked the stimulatory effects of alcohol on 5-HTDRN neurons in males, even though they have antagonistic effects on the activity dynamics. These results suggest that ERs' inhibitory effects on ethanol-induced burst firing of 5-HTDRN neurons may contribute to higher levels of binge drinking in females. Consistently, chemogenetic activation of ERα- or ERβ-expressing neurons in the DRN reduced binge alcohol drinking. These results support a model in which estrogens act on ERα/β to prevent alcohol-induced activation of 5-HTDRN neurons, which in return leads to higher binge alcohol drinking.
Collapse
Affiliation(s)
- Valeria C Torres Irizarry
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Bing Feng
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, 70808, USA
| | - Xiaohua Yang
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, 510642, Guangzhou, Guangdong, China
| | - Nirali Patel
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Sarah Schaul
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Lucas Ibrahimi
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Hui Ye
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Pei Luo
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, 510642, Guangzhou, Guangdong, China
| | - Leslie Carrillo-Sáenz
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Penghua Lai
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Maya Kota
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Devin Dixit
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Chunmei Wang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Amy W Lasek
- Center for Alcohol Research in Epigenetics and Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VI, 23298, USA
| | - Yanlin He
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, 70808, USA.
| | - Pingwen Xu
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA.
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
21
|
Valeri J, Stiplosek C, O'Donovan SM, Sinclair D, Grant KA, Bollavarapu R, Platt DM, Stockmeier CA, Gisabella B, Pantazopoulos H. Extracellular matrix abnormalities in the hippocampus of subjects with substance use disorder. Transl Psychiatry 2024; 14:115. [PMID: 38402197 PMCID: PMC10894211 DOI: 10.1038/s41398-024-02833-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/26/2024] Open
Abstract
Contextual triggers are significant factors contributing to relapse in substance use disorders (SUD). Emerging evidence points to a critical role of extracellular matrix (ECM) molecules as mediators of reward memories. Chondroitin sulfate proteoglycans (CSPGs) are a subset of ECM molecules that form perineuronal nets (PNN) around inhibitory neurons. PNNs restrict synaptic connections and help maintain synapses. Rodent models suggest that modulation of PNNs may strengthen contextual reward memories in SUD. However, there is currently a lack of information regarding PNNs in the hippocampus of people with SUD as well as how comorbidity with major depressive disorder (MDD) may affect PNNs. We used postmortem hippocampal tissues from cohorts of human and nonhuman primates with or without chronic alcohol use to test the hypothesis that PNNs are increased in subjects with SUD. We used histochemical labeling and quantitative microscopy to examine PNNs, and qRT-PCR to examine gene expression for ECM molecules, synaptic markers and related markers. We identified increased densities of PNNs and CSPG-labeled glial cells in SUD, coinciding with decreased expression of the ECM protease matrix metalloproteinase 9 (Mmp9), and increased expression for the excitatory synaptic marker vesicle associated membrane protein 2 (Vamp2). Similar increases in PNNs were observed in monkeys with chronic alcohol self-administration. Subjects with MDD displayed changes opposite to SUD, and subjects with SUD and comorbid MDD had minimal changes in any of the outcome measures examined. Our findings demonstrate that PNNs are increased in SUD, possibly contributing to stabilizing contextual reward memories as suggested by preclinical studies. Our results also point to a previously unsuspected role for CSPG expression in glial cells in SUD. Evidence for increased hippocampal PNNs in SUD suggests that targeting PNNs to weaken contextual reward memories is a promising therapeutic approach for SUD, however comorbidity with MDD is a significant consideration.
Collapse
Affiliation(s)
- Jake Valeri
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA
| | - Charlotte Stiplosek
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | | | - David Sinclair
- Department of Neuroscience, University of Toledo, Toledo, OH, USA
| | | | - Ratna Bollavarapu
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Donna M Platt
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA
| | - Craig A Stockmeier
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA
| | - Barbara Gisabella
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA
| | - Harry Pantazopoulos
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA.
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
22
|
Valeri J, Stiplosek C, O’Donovan SM, Sinclair D, Grant K, Bollavarapu R, Platt DM, Stockmeier CA, Gisabella B, Pantazopoulos H. Extracellular Matrix Abnormalities in the Hippocampus of Subjects with Substance Use Disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.09.07.23295222. [PMID: 37732207 PMCID: PMC10508799 DOI: 10.1101/2023.09.07.23295222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Contextual triggers are significant factors contributing to relapse in substance use disorders (SUD). Emerging evidence points to a critical role of extracellular matrix (ECM) molecules as mediators of reward memories. Chondroitin sulfate proteoglycans (CSPGs) are a subset of ECM molecules that form perineuronal nets (PNN) around inhibitory neurons. PNNs restrict synaptic connections and help maintain synapses. Rodent models suggest that modulation of PNNs may strengthen contextual reward memories in SUD. However, there is currently a lack of information regarding PNNs in the hippocampus of people with SUD as well as how comorbidity with major depressive disorder (MDD) may affect PNNs. We used postmortem hippocampal tissues from cohorts of human and nonhuman primates with or without chronic alcohol use to test the hypothesis that PNNs are increased in subjects with SUD. We used histochemical labeling and quantitative microscopy to examine PNNs, and qRT-PCR to examine gene expression for ECM molecules, synaptic markers and related markers. We identified increased densities of PNNs and CSPG-labeled glial cells in SUD, coinciding with decreased expression of the ECM protease matrix metalloproteinase 9 (Mmp9), and increased expression for the excitatory synaptic marker vesicle associated membrane protein 2 (Vamp2). Similar increases in PNNs were observed in monkeys with chronic alcohol self-administration. Subjects with MDD displayed changes opposite to SUD, and subjects with SUD and comorbid MDD had minimal changes in any of the outcome measures examined. Our findings demonstrate that PNNs are increased in SUD, possibly contributing to stabilizing contextual reward memories as suggested by preclinical studies. Our results also point to a previously unsuspected role for CSPG expression in glial cells in SUD. Evidence for increased hippocampal PNNs in SUD suggests that targeting PNNs to weaken contextual reward memories is a promising therapeutic approach for SUD, however comorbidity with MDD is a significant consideration.
Collapse
Affiliation(s)
- Jake Valeri
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS
| | - Charlotte Stiplosek
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
| | | | - David Sinclair
- Department of Neuroscience, University of Toledo, Toledo, OH
| | | | - Ratna Bollavarapu
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS
| | - Donna M. Platt
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS
| | - Craig A. Stockmeier
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS
| | - Barbara Gisabella
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS
| | - Harry Pantazopoulos
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS
| |
Collapse
|
23
|
McGregor MS, LaLumiere RT. Still a "hidden island"? The rodent insular cortex in drug seeking, reward, and risk. Neurosci Biobehav Rev 2023; 153:105334. [PMID: 37524140 PMCID: PMC10592220 DOI: 10.1016/j.neubiorev.2023.105334] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/06/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
The insular cortex (IC) is implicated in risky decision making and drug-seeking behaviors, in a manner dissociable from natural reward seeking. However, evidence from rodent studies of motivated behaviors suggests that the role of the IC is not always consistent across procedures. Moreover, there is evidence of dissociation of function between posterior (pIC) and anterior (aIC) subregions in these behaviors. Under which circumstances, and by which mechanisms, these IC subregions are recruited to regulate motivated behaviors remains unclear. Here, we discuss evidence of rodent pIC and aIC function across drug-related behaviors, natural reward seeking, and decision making under risk and highlight procedural differences that may account for seemingly conflicting findings. Although gaps in the literature persist, we hypothesize that IC activity is broadly important for selection of appropriate behaviors based on learned action-outcome contingencies and that associated risk is sufficient, but not necessary, to recruit the aIC in reward seeking without involving the pIC.
Collapse
Affiliation(s)
- Matthew S McGregor
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, United States.
| | - Ryan T LaLumiere
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, United States; Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, United States; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| |
Collapse
|
24
|
Pina MM, Pati D, Neira S, Taxier LR, Stanhope CM, Mahoney AA, D'Ambrosio S, Kash TL, Navarro M. Insula Dynorphin and Kappa Opioid Receptor Systems Regulate Alcohol Drinking in a Sex-Specific Manner in Mice. J Neurosci 2023; 43:5158-5171. [PMID: 37217307 PMCID: PMC10342226 DOI: 10.1523/jneurosci.0406-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/12/2023] [Accepted: 04/15/2023] [Indexed: 05/24/2023] Open
Abstract
Alcohol use disorder is complex and multifaceted, involving the coordination of multiple signaling systems across numerous brain regions. Previous work has indicated that both the insular cortex and dynorphin (DYN)/kappa opioid receptor (KOR) systems contribute to excessive alcohol use. More recently, we identified a microcircuit in the medial aspect of the insular cortex that signals through DYN/KOR. Here, we explored the role of insula DYN/KOR circuit components on alcohol intake in a long-term intermittent access (IA) procedure. Using a combination of conditional knock-out strategies and site-directed pharmacology, we discovered distinct and sex-specific roles for insula DYN and KOR in alcohol drinking and related behavior. Our findings show that insula DYN deletion blocked escalated consumption and decreased the overall intake of and preference for alcohol in male and female mice. This effect was specific to alcohol in male mice, as DYN deletion did not impact sucrose intake. Further, insula KOR antagonism reduced alcohol intake and preference during the early phase of IA in male mice only. Alcohol consumption was not affected by insula KOR knockout in either sex. In addition, we found that long-term IA decreased the intrinsic excitability of DYN and deep layer pyramidal neurons (DLPNs) in the insula of male mice. Excitatory synaptic transmission was also impacted by IA, as it drove an increase in excitatory synaptic drive in both DYN neurons and DLPNs. Combined, our findings suggest there is a dynamic interplay between excessive alcohol consumption and insula DYN/KOR microcircuitry.SIGNIFICANCE STATEMENT The insular cortex is a complex region that serves as an integratory hub for sensory inputs. In our previous work, we identified a microcircuit in the insula that signals through the kappa opioid receptor (KOR) and its endogenous ligand dynorphin (DYN). Both the insula and DYN/KOR systems have been implicated in excessive alcohol use and alcohol use disorder (AUD). Here, we use converging approaches to determine how insula DYN/KOR microcircuit components contribute to escalated alcohol consumption. Our findings show that insula DYN/KOR systems regulate distinct phases of alcohol consumption in a sex-specific manner, which may contribute to the progression to AUD.
Collapse
Affiliation(s)
- Melanie M Pina
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Anatomy & Neurobiology, and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Dipanwita Pati
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Sofia Neira
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Lisa R Taxier
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Christina M Stanhope
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Alexandra A Mahoney
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Shannon D'Ambrosio
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Montserrat Navarro
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Psychology and Neuroscience, College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
25
|
Valeri J, Gisabella B, Pantazopoulos H. Dynamic regulation of the extracellular matrix in reward memory processes: a question of time. Front Cell Neurosci 2023; 17:1208974. [PMID: 37396928 PMCID: PMC10311570 DOI: 10.3389/fncel.2023.1208974] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Substance use disorders are a global health problem with increasing prevalence resulting in significant socioeconomic burden and increased mortality. Converging lines of evidence point to a critical role of brain extracellular matrix (ECM) molecules in the pathophysiology of substance use disorders. An increasing number of preclinical studies highlight the ECM as a promising target for development of novel cessation pharmacotherapies. The brain ECM is dynamically regulated during learning and memory processes, thus the time course of ECM alterations in substance use disorders is a critical factor that may impact interpretation of the current studies and development of pharmacological therapies. This review highlights the evidence for the involvement of ECM molecules in reward learning, including drug reward and natural reward such as food, as well as evidence regarding the pathophysiological state of the brain's ECM in substance use disorders and metabolic disorders. We focus on the information regarding time-course and substance specific changes in ECM molecules and how this information can be leveraged for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Jake Valeri
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| | - Barbara Gisabella
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| | - Harry Pantazopoulos
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
26
|
Mukherjee A, Paladino MS, McSain SL, Gilles-Thomas EA, Lichte DD, Camadine RD, Willock S, Sontate KV, Honeycutt SC, Loney GC. Escalation of alcohol intake is associated with regionally decreased insular cortex activity but not changes in taste quality. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:868-881. [PMID: 36941800 PMCID: PMC10289132 DOI: 10.1111/acer.15060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/27/2023] [Accepted: 03/11/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND Intermittent access to ethanol drives persistent escalation of intake and rapid transition from moderate to compulsive-like drinking. Intermittent ethanol drinking may facilitate escalation of intake in part by altering aversion-sensitive neural substrates, such as the insular cortex (IC), thus driving greater approach toward stimuli previously treated as aversive. METHODS We conducted a series of experiments in rats to examine behavioral and neural responses associated with escalation of ethanol intake. First, taste reactivity analyses quantified the degree to which intermittent brief-access ethanol exposure (BAEE) alters sensitivity to the aversive properties of ethanol. Next, we determined whether pharmacological IC inhibition facilitated ethanol escalation. Finally, given that the IC is primary gustatory cortex, we employed psychophysical paradigms to assess whether escalation of ethanol intake induced changes in ethanol taste. These paradigms measured changes in sensitivity to the intensity of ethanol taste and whether escalation in intake shifts the salient taste quality of ethanol by measuring the degree to which the taste of ethanol generalized to a sucrose-like ("sweet") or quinine-like ("bitter") percept. RESULTS We found a near-complete loss of aversive oromotor responses in ethanol-exposed relative to ethanol-naïve rats. Additionally, we observed significantly lower expression of ethanol-induced c-Fos expression in the posterior IC in exposed rats relative to naïve rats. Inhibition of the IC resulted in a modest, but statistically reliable increase in the acceptance of higher ethanol concentrations in naïve rats. Finally, we found no evidence of changes in the psychophysical assessment of the taste of ethanol in exposed, relative to naïve, rats. CONCLUSIONS Our results demonstrate that neural activity within the IC adapts following repeated presentations of ethanol in a manner that correlates with reduced sensitivity to the aversive hedonic properties of ethanol. These data help to establish that alterations in IC activity may be driving exposure-induced escalations in ethanol intake.
Collapse
Affiliation(s)
- Ashmita Mukherjee
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Morgan S Paladino
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Shannon L McSain
- Program in Biological Sciences, Department of Biology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Elizabeth A Gilles-Thomas
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - David D Lichte
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Rece D Camadine
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Saidah Willock
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Kajol V Sontate
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Sarah C Honeycutt
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Gregory C Loney
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
27
|
Martins de Carvalho L, Chen H, Sutter M, Lasek AW. Sexually dimorphic role for insular perineuronal nets in aversion-resistant alcohol consumption. Front Psychiatry 2023; 14:1122423. [PMID: 36926460 PMCID: PMC10011443 DOI: 10.3389/fpsyt.2023.1122423] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/08/2023] [Indexed: 03/08/2023] Open
Abstract
Compulsive alcohol drinking is a key symptom of alcohol use disorder (AUD) that is particularly resistant to treatment. An understanding of the biological factors that underly compulsive drinking will allow for the development of new therapeutic targets for AUD. One animal model of compulsive alcohol drinking involves the addition of bitter-tasting quinine to an ethanol solution and measuring the willingness of the animal to consume ethanol despite the aversive taste. Previous studies have demonstrated that this type of aversion-resistant drinking is modulated in the insular cortex of male mice by specialized condensed extracellular matrix known as perineuronal nets (PNNs), which form a lattice-like structure around parvalbumin-expressing neurons in the cortex. Several laboratories have shown that female mice exhibit higher levels of aversion-resistant ethanol intake, but the role of PNNs in females in this behavior has not been examined. Here we compared PNNs in the insula of male and female mice and determined if disrupting PNNs in female mice would alter aversion-resistant ethanol intake. PNNs were visualized in the insula by fluorescent labeling with Wisteria floribunda agglutinin (WFA) and disrupted in the insula by microinjecting chondroitinase ABC, an enzyme that digests the chondroitin sulfate glycosaminoglycan component of PNNs. Mice were tested for aversion-resistant ethanol consumption by the addition of sequentially increasing concentrations of quinine to the ethanol in a two-bottle choice drinking in the dark procedure. PNN staining intensity was higher in the insula of female compared to male mice, suggesting that PNNs in females might contribute to elevated aversion-resistant drinking. However, disruption of PNNs had limited effect on aversion-resistant drinking in females. In addition, activation of the insula during aversion-resistant drinking, as measured by c-fos immunohistochemistry, was lower in female mice than in males. Taken together, these results suggest that neural mechanisms underlying aversion-resistant ethanol consumption differ in males and females.
Collapse
|
28
|
de Carvalho LM, Chen H, Sutter M, Lasek AW. Sexually Dimorphic Role for Insular Perineuronal Nets in Aversion-Resistant Ethanol Consumption. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525899. [PMID: 36747687 PMCID: PMC9901005 DOI: 10.1101/2023.01.27.525899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Compulsive alcohol drinking is a key symptom of alcohol use disorder (AUD) that is particularly resistant to treatment. An understanding of the biological factors that underly compulsive drinking will allow for the development of new therapeutic targets for AUD. One animal model of compulsive alcohol drinking involves the addition of bitter-tasting quinine to an ethanol solution and measuring the willingness of the animal to consume ethanol despite the aversive taste. Previous studies have demonstrated that this type of aversion-resistant drinking is modulated in the insular cortex of male mice by specialized condensed extracellular matrix known as perineuronal nets (PNNs), which form a lattice-like structure around parvalbumin-expressing neurons in the cortex. Several laboratories have shown that female mice exhibit higher levels of aversion-resistant ethanol intake but the role of PNNs in females in this behavior has not been examined. Here we compared PNNs in the insula of male and female mice and determined if disrupting PNNs in female mice would alter aversion-resistant ethanol intake. PNNs were visualized in the insula by fluorescent labeling with Wisteria floribunda agglutinin (WFA) and disrupted in the insula by microinjecting chondroitinase ABC, an enzyme that digests the chondroitin sulfate glycosaminoglycan component of PNNs. Mice were tested for aversion-resistant ethanol consumption by the addition of sequentially increasing concentrations of quinine to the ethanol in a two-bottle choice drinking in the dark procedure. PNN staining intensity was higher in the insula of female compared to male mice, suggesting that PNNs in females might contribute to elevated aversion-resistant drinking. However, disruption of PNNs had limited effect on aversion-resistant drinking in females. In addition, activation of the insula during aversion-resistant drinking, as measured by c-fos immunohistochemistry, was lower in female mice than in males. Taken together, these results suggest that neural mechanisms underlying aversion-resistant ethanol consumption differ in males and females.
Collapse
|
29
|
Brown TE, Sorg BA. Net gain and loss: influence of natural rewards and drugs of abuse on perineuronal nets. Neuropsychopharmacology 2023; 48:3-20. [PMID: 35568740 PMCID: PMC9700711 DOI: 10.1038/s41386-022-01337-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 12/26/2022]
Abstract
Overindulgence, excessive consumption, and a pattern of compulsive use of natural rewards, such as certain foods or drugs of abuse, may result in the development of obesity or substance use disorder, respectively. Natural rewards and drugs of abuse can trigger similar changes in the neurobiological substrates that drive food- and drug-seeking behaviors. This review examines the impact natural rewards and drugs of abuse have on perineuronal nets (PNNs). PNNs are specialized extracellular matrix structures that ensheathe certain neurons during development over the critical period to provide synaptic stabilization and a protective microenvironment for the cells they surround. This review also analyzes how natural rewards and drugs of abuse impact the density and maturation of PNNs within reward-associated circuitry of the brain, which may contribute to maladaptive food- and drug-seeking behaviors. Finally, we evaluate the relatively few studies that have degraded PNNs to perturb reward-seeking behaviors. Taken together, this review sheds light on the complex way PNNs are regulated by natural rewards and drugs and highlights a need for future studies to delineate the molecular mechanisms that underlie the modification and maintenance of PNNs following exposure to rewarding stimuli.
Collapse
Affiliation(s)
- Travis E Brown
- Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, 99164, USA.
| | - Barbara A Sorg
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, OR, 97232, USA
| |
Collapse
|
30
|
John U, Patro N, Patro I. Perineuronal nets: Cruise from a honeycomb to the safety nets. Brain Res Bull 2022; 190:179-194. [DOI: 10.1016/j.brainresbull.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/17/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022]
|
31
|
Guarque-Chabrera J, Sanchez-Hernandez A, Ibáñez-Marín P, Melchor-Eixea I, Miquel M. Role of Perineuronal nets in the cerebellar cortex in cocaine-induced conditioned preference, extinction, and reinstatement. Neuropharmacology 2022; 218:109210. [PMID: 35985392 DOI: 10.1016/j.neuropharm.2022.109210] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 10/31/2022]
Abstract
Perineuronal nets (PNNs) are cartilage-like structures of extracellular matrix molecules that enwrap in a net-like manner the cell-body and proximal dendrites of special subsets of neurons. PNNs stabilize their incoming connections and restrict plasticity. Consequently, they have been proposed as a candidate mechanism for drug-induced learning and memory. In the cerebellum, PNNs surround Golgi inhibitory interneurons and both inhibitory and excitatory neurons in the deep cerebellar nuclei (DCN). Previous studies from the lab showed that cocaine-induced conditioned memory increased PNN expression in the granule cell layer of the posterior vermis. The present research aimed to investigate the role of cerebellar PNNs in cocaine-induced conditioned preference. For this purpose, we use the enzyme chondroitinase ABC (ChABC) to digest PNNs at different time points of the learning process to ascertain whether their removal can affect drug-induced memory. Our results show that PNN digestion using ChABC in the posterior vermis (Lobule VIII) did not affect the acquisition of cocaine-induced conditioned preference. However, the removal of PNNs in Lobule VIII -but not in the DCN- disrupted short-term memory of conditioned preference. Moreover, although PNN digestion facilitated the formation of extinction, reinstatement of cocaine-induced conditioned preference was encouraged under PNN digestion. The present findings suggests that PNNs around Golgi interneurons are needed to maintain cocaine-induced Pavlovian memory but also to stabilize extinction memory. Conversely, PNN degradation within the DCN did not affect stability of cocaine-induced memories. Therefore, degradation of PNNs in the vermis might be used as a promising tool to manipulate drug-induced memory.
Collapse
Affiliation(s)
- Julian Guarque-Chabrera
- Área de Psicobiología, Universitat Jaume I, Facultat de Ciencies de la Salut, Avenida Vicente Sos Baynat sn, 12071, Castellón de la Plana, Spain
| | - Aitor Sanchez-Hernandez
- Área de Psicobiología, Universitat Jaume I, Facultat de Ciencies de la Salut, Avenida Vicente Sos Baynat sn, 12071, Castellón de la Plana, Spain
| | - Patricia Ibáñez-Marín
- Área de Psicobiología, Universitat Jaume I, Facultat de Ciencies de la Salut, Avenida Vicente Sos Baynat sn, 12071, Castellón de la Plana, Spain
| | - Ignasi Melchor-Eixea
- Área de Psicobiología, Universitat Jaume I, Facultat de Ciencies de la Salut, Avenida Vicente Sos Baynat sn, 12071, Castellón de la Plana, Spain
| | - Marta Miquel
- Área de Psicobiología, Universitat Jaume I, Facultat de Ciencies de la Salut, Avenida Vicente Sos Baynat sn, 12071, Castellón de la Plana, Spain.
| |
Collapse
|
32
|
Fawcett JW, Fyhn M, Jendelova P, Kwok JCF, Ruzicka J, Sorg BA. The extracellular matrix and perineuronal nets in memory. Mol Psychiatry 2022; 27:3192-3203. [PMID: 35760878 PMCID: PMC9708575 DOI: 10.1038/s41380-022-01634-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 02/06/2023]
Abstract
All components of the CNS are surrounded by a diffuse extracellular matrix (ECM) containing chondroitin sulphate proteoglycans (CSPGs), heparan sulphate proteoglycans (HSPGs), hyaluronan, various glycoproteins including tenascins and thrombospondin, and many other molecules that are secreted into the ECM and bind to ECM components. In addition, some neurons, particularly inhibitory GABAergic parvalbumin-positive (PV) interneurons, are surrounded by a more condensed cartilage-like ECM called perineuronal nets (PNNs). PNNs surround the soma and proximal dendrites as net-like structures that surround the synapses. Attention has focused on the role of PNNs in the control of plasticity, but it is now clear that PNNs also play an important part in the modulation of memory. In this review we summarize the role of the ECM, particularly the PNNs, in the control of various types of memory and their participation in memory pathology. PNNs are now being considered as a target for the treatment of impaired memory. There are many potential treatment targets in PNNs, mainly through modulation of the sulphation, binding, and production of the various CSPGs that they contain or through digestion of their sulphated glycosaminoglycans.
Collapse
Affiliation(s)
- James W Fawcett
- John van Geest Centre for Brain Repair, Department Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, UK.
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine CAS, Videnska 1083, Prague 4, Prague, Czech Republic.
| | - Marianne Fyhn
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Pavla Jendelova
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine CAS, Videnska 1083, Prague 4, Prague, Czech Republic
| | - Jessica C F Kwok
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine CAS, Videnska 1083, Prague 4, Prague, Czech Republic
- School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Jiri Ruzicka
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine CAS, Videnska 1083, Prague 4, Prague, Czech Republic
| | - Barbara A Sorg
- Robert S. Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| |
Collapse
|
33
|
Grycz K, Głowacka A, Ji B, Krzywdzińska K, Charzyńska A, Czarkowska-Bauch J, Gajewska-Woźniak O, Skup M. Regulation of perineuronal net components in the synaptic bouton vicinity on lumbar α-motoneurons in the rat after spinalization and locomotor training: New insights from spatio-temporal changes in gene, protein expression and WFA labeling. Exp Neurol 2022; 354:114098. [DOI: 10.1016/j.expneurol.2022.114098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/31/2022] [Accepted: 04/24/2022] [Indexed: 11/25/2022]
|
34
|
Marino RAM, Girven KS, Figueiredo A, Navarrete J, Doty C, Sparta DR. Binge ethanol drinking associated with sex-dependent plasticity of neurons in the insula that project to the bed nucleus of the stria terminalis. Neuropharmacology 2021; 196:108695. [PMID: 34233202 PMCID: PMC8928450 DOI: 10.1016/j.neuropharm.2021.108695] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/26/2021] [Accepted: 06/30/2021] [Indexed: 01/06/2023]
Abstract
Modifications in brain regions that govern reward-seeking are thought to contribute to persistent behaviors that are heavily associated with alcohol-use disorder (AUD) including binge ethanol drinking. The bed nucleus of the stria terminalis (BNST) is a critical node linked to both alcohol consumption and the onset, maintenance and progression of adaptive anxiety and stress-related disorders. Differences in anatomy, connectivity and receptor subpopulations, make the BNST a sexually dimorphic region. Previous work indicates that the ventral BNST (vBNST) receives input from the insular cortex (IC), a brain region involved in processing the body's internal state. This IC-vBNST projection has also been implicated in emotional and reward-seeking processes. Therefore, we examined the functional properties of vBNST-projecting, IC neurons in male and female mice that have undergone short-term ethanol exposure and abstinence using a voluntary Drinking in the Dark paradigm (DID) paired with whole-cell slice electrophysiology. First we show that IC neurons projected predominantly to the vBNST. Next, our data show that short-term ethanol exposure and abstinence enhanced excitatory synaptic strength onto vBNST-projecting, IC neurons in both sexes. However, we observed diametrically opposing modifications in excitability across sexes. In particular, short-term ethanol exposure resulted in increased intrinsic excitability of vBNST-projecting, IC neurons in females but not in males. Furthermore, in females, abstinence decreased the excitability of these same neurons. Taken together these findings show that short-term ethanol exposure, as well as the abstinence cause sex-related adaptations in BNST-projecting, IC neurons.
Collapse
Affiliation(s)
- Rosa A M Marino
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Kasey S Girven
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Program in Neuroscience, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Antonio Figueiredo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Program in Neuroscience, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Jovana Navarrete
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Carolyn Doty
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Program in Neuroscience, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Dennis R Sparta
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Program in Neuroscience, University of Maryland Baltimore, Baltimore, MD, 21201, USA.
| |
Collapse
|
35
|
Maiya R, Pomrenze MB, Tran T, Tiwari GR, Beckham A, Paul MT, Mayfield RD, Messing RO. Differential regulation of alcohol consumption and reward by the transcriptional cofactor LMO4. Mol Psychiatry 2021; 26:2175-2186. [PMID: 32144357 PMCID: PMC7558853 DOI: 10.1038/s41380-020-0706-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 01/04/2023]
Abstract
Repeated alcohol exposure leads to changes in gene expression that are thought to underlie the transition from moderate to excessive drinking. However, the mechanisms by which these changes are integrated into a maladaptive response that leads to alcohol dependence are not well understood. One mechanism could involve the recruitment of transcriptional co-regulators that bind and modulate the activity of transcription factors. Our results indicate that the transcriptional regulator LMO4 is one such candidate regulator. Lmo4-deficient mice (Lmo4gt/+) consumed significantly more and showed enhanced preference for alcohol in a 24 h intermittent access drinking procedure. shRNA-mediated knockdown of Lmo4 in the nucleus accumbens enhanced alcohol consumption, whereas knockdown in the basolateral amygdala (BLA) decreased alcohol consumption and reduced conditioned place preference for alcohol. To ascertain the molecular mechanisms that underlie these contrasting phenotypes, we carried out unbiased transcriptome profiling of these two brain regions in wild type and Lmo4gt/+ mice. Our results revealed that the transcriptional targets of LMO4 are vastly different between the two brain regions, which may explain the divergent phenotypes observed upon Lmo4 knockdown. Bioinformatic analyses revealed that Oprk1 and genes related to the extracellular matrix (ECM) are important transcriptional targets of LMO4 in the BLA. Chromatin immunoprecipitation revealed that LMO4 bound Oprk1 promoter elements. Consistent with these results, disruption of the ECM or infusion of norbinaltorphimine, a selective kappa opioid receptor antagonist, in the BLA reduced alcohol consumption. Hence our results indicate that an LMO4-regulated transcriptional network regulates alcohol consumption in the BLA.
Collapse
Affiliation(s)
- Rajani Maiya
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, 78712, USA. .,Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA. .,Department of Neurology, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Matthew B. Pomrenze
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA,Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA
| | - Thi Tran
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Gayatri R. Tiwari
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA
| | - Andrea Beckham
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Madison T. Paul
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - R. Dayne Mayfield
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA,Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA
| | - Robert O. Messing
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA,Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA,Department of Neurology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
36
|
Gisabella B, Babu J, Valeri J, Rexrode L, Pantazopoulos H. Sleep and Memory Consolidation Dysfunction in Psychiatric Disorders: Evidence for the Involvement of Extracellular Matrix Molecules. Front Neurosci 2021; 15:646678. [PMID: 34054408 PMCID: PMC8160443 DOI: 10.3389/fnins.2021.646678] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/22/2021] [Indexed: 12/13/2022] Open
Abstract
Sleep disturbances and memory dysfunction are key characteristics across psychiatric disorders. Recent advances have revealed insight into the role of sleep in memory consolidation, pointing to key overlap between memory consolidation processes and structural and molecular abnormalities in psychiatric disorders. Ongoing research regarding the molecular mechanisms involved in memory consolidation has the potential to identify therapeutic targets for memory dysfunction in psychiatric disorders and aging. Recent evidence from our group and others points to extracellular matrix molecules, including chondroitin sulfate proteoglycans and their endogenous proteases, as molecules that may underlie synaptic dysfunction in psychiatric disorders and memory consolidation during sleep. These molecules may provide a therapeutic targets for decreasing strength of reward memories in addiction and traumatic memories in PTSD, as well as restoring deficits in memory consolidation in schizophrenia and aging. We review the evidence for sleep and memory consolidation dysfunction in psychiatric disorders and aging in the context of current evidence pointing to the involvement of extracellular matrix molecules in these processes.
Collapse
Affiliation(s)
| | | | | | | | - Harry Pantazopoulos
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
37
|
Sullivan EV, Zhao Q, Pohl KM, Zahr NM, Pfefferbaum A. Attenuated cerebral blood flow in frontolimbic and insular cortices in Alcohol Use Disorder: Relation to working memory. J Psychiatr Res 2021; 136:140-148. [PMID: 33592385 PMCID: PMC8009820 DOI: 10.1016/j.jpsychires.2021.01.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/12/2021] [Accepted: 01/29/2021] [Indexed: 12/25/2022]
Abstract
Chronic, excessive alcohol consumption is associated with cerebrovascular hypoperfusion, which has the potential to interfere with cognitive processes. Magnetic resonance pulsed continuous arterial spin labeling (PCASL) provides a noninvasive approach for measuring regional cerebral blood flow (CBF) and was used to study 24 men and women with Alcohol Use Disorder (AUD) and 20 age- and sex-matched controls. Two analysis approaches tested group differences: a data-driven, regionally-free method to test for group differences on a voxel-by-voxel basis and a region of interest (ROI) approach, which focused quantification on atlas-determined brain structures. Whole-brain, voxel-wise quantification identified low AUD-related cerebral perfusion in large volumes of medial frontal and cingulate cortices. The ROI analysis also identified lower CBF in the AUD group relative to the control group in medial frontal, anterior/middle cingulate, insular, and hippocampal/amygdala ROIs. Further, years of AUD diagnosis negatively correlated with temporal cortical CBF, and scores on an alcohol withdrawal scale negatively correlated with posterior cingulate and occipital gray matter CBF. Regional volume deficits did not account for AUD CBF deficits. Functional relevance of attenuated regional CBF in the AUD group emerged with positive correlations between episodic working memory test scores and anterior/middle cingulum, insula, and thalamus CBF. The frontolimbic and insular cortical neuroconstellation with dampened perfusion suggests a mechanism of dysfunction associated with these brain regions in AUD.
Collapse
Affiliation(s)
- Edith V. Sullivan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA;,Correspondence Edith V. Sullivan, Ph.D., Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine (MC5723), 401 Quarry Road, Stanford, CA 94305-5723, phone: (650) 859-2880, FAX: (650) 859-2743,
| | - Qingyu Zhao
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| | - Kilian M. Pohl
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA;,Center for Health Sciences, SRI International, Menlo Park, CA
| | - Natalie M. Zahr
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA;,Center for Health Sciences, SRI International, Menlo Park, CA
| | - Adolf Pfefferbaum
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA;,Center for Health Sciences, SRI International, Menlo Park, CA
| |
Collapse
|
38
|
Sanchez-Hernandez A, Nicolas C, Gil-Miravet I, Guarque-Chabrera J, Solinas M, Miquel M. Time-dependent regulation of perineuronal nets in the cerebellar cortex during abstinence of cocaine-self administration. Psychopharmacology (Berl) 2021; 238:1059-1068. [PMID: 33388819 DOI: 10.1007/s00213-020-05752-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022]
Abstract
RATIONALE The probability of structural remodeling in brain circuits may be modulated by molecules of perineuronal nets (PNNs) that restrict neuronal plasticity to stabilize circuits. Animal research demonstrates that addictive drugs can remodel PNNs in different brain regions, including the cerebellum. OBJECTIVE This study aimed to investigate the effects of short versus extended access to cocaine self-administration on PNN expression around Golgi interneurons in the cerebellar cortex after different periods of abstinence. METHODS After 1 week of training (2 h/day), Sprague-Dawley rats self-administered cocaine daily for 20 days under short (ShA) or extended (LgA) access. PNN expression in the cerebellum was assessed after 1 day, 7 days, and 28 days of forced abstinence. PNNs were immunolabeled using Wisteria floribunda agglutinin (WFA) and captured by confocal microscopy. RESULTS WFA intensity increased in PNN-bearing Golgi neurons over the abstinence period and a higher proportion of more intense PNNs were formed throughout the first month of abstinence. After the first 24 h of cocaine abstinence, however, we found a reduction in WFA intensity in the cerebellar cortex of rats with ShA to cocaine as compared to naïve animals. When comparing with naïve rats, LgA rats showed consistent PNN upregulation at 28 days of cocaine abstinence. CONCLUSIONS Our results suggest that cocaine self-administration produces modifications in PNN that enhance conditions for synaptic plasticity in the cerebellar cortex. These modifications are revealed shortly after the cessation of drug intake but PNNs become more intense during protracted abstinence in the LgA group, pointing to the stabilization of drug-induced synaptic changes. These findings indicate that extended access to cocaine self-administration dynamically regulates conditions for plasticity in the cerebellum during abstinence.
Collapse
Affiliation(s)
- Aitor Sanchez-Hernandez
- Área de Psicobiología, Universitat Jaume I, Avenida Vicente Sos Baynat sn, 12071, Castellón de la Plana, Spain
| | - Celine Nicolas
- INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers, France
| | - Isis Gil-Miravet
- Área de Psicobiología, Universitat Jaume I, Avenida Vicente Sos Baynat sn, 12071, Castellón de la Plana, Spain
| | - Julian Guarque-Chabrera
- Área de Psicobiología, Universitat Jaume I, Avenida Vicente Sos Baynat sn, 12071, Castellón de la Plana, Spain
| | - Marcello Solinas
- INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers, France
| | - Marta Miquel
- Área de Psicobiología, Universitat Jaume I, Avenida Vicente Sos Baynat sn, 12071, Castellón de la Plana, Spain.
| |
Collapse
|
39
|
An Extracellular Perspective on CNS Maturation: Perineuronal Nets and the Control of Plasticity. Int J Mol Sci 2021; 22:ijms22052434. [PMID: 33670945 PMCID: PMC7957817 DOI: 10.3390/ijms22052434] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
During restricted time windows of postnatal life, called critical periods, neural circuits are highly plastic and are shaped by environmental stimuli. In several mammalian brain areas, from the cerebral cortex to the hippocampus and amygdala, the closure of the critical period is dependent on the formation of perineuronal nets. Perineuronal nets are a condensed form of an extracellular matrix, which surrounds the soma and proximal dendrites of subsets of neurons, enwrapping synaptic terminals. Experimentally disrupting perineuronal nets in adult animals induces the reactivation of critical period plasticity, pointing to a role of the perineuronal net as a molecular brake on plasticity as the critical period closes. Interestingly, in the adult brain, the expression of perineuronal nets is remarkably dynamic, changing its plasticity-associated conditions, including memory processes. In this review, we aimed to address how perineuronal nets contribute to the maturation of brain circuits and the regulation of adult brain plasticity and memory processes in physiological and pathological conditions.
Collapse
|
40
|
Alcohol. Alcohol 2021. [DOI: 10.1016/b978-0-12-816793-9.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
41
|
Hitzemann R, Phillips TJ, Lockwood DR, Darakjian P, Searles RP. Phenotypic and gene expression features associated with variation in chronic ethanol consumption in heterogeneous stock collaborative cross mice. Genomics 2020; 112:4516-4524. [PMID: 32771621 PMCID: PMC7749084 DOI: 10.1016/j.ygeno.2020.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/22/2020] [Accepted: 08/04/2020] [Indexed: 12/12/2022]
Abstract
Of the more than 100 studies that have examined relationships between excessive ethanol consumption and the brain transcriptome, few rodent studies have examined chronic consumption. Heterogeneous stock collaborative cross mice freely consumed ethanol vs. water for 3 months. Transcriptional differences were examined for the central nucleus of the amygdala, a brain region known to impact ethanol preference. Early preference was modestly predictive of final preference and there was significant escalation of preference in females only. Genes significantly correlated with female preference were enriched in annotations for the primary cilium and extracellular matrix. A single module in the gene co-expression network was enriched in genes with an astrocyte annotation. The key hub node was the master regulator, orthodenticle homeobox 2 (Otx2). These data support an important role for the extracellular matrix, primary cilium and astrocytes in ethanol preference and consumption differences among individual female mice of a genetically diverse population.
Collapse
Affiliation(s)
- Robert Hitzemann
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Tamara J Phillips
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR 97239, USA; Veterans Affairs Portland Health Care System, Portland, OR 97239, USA.
| | - Denesa R Lockwood
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Priscila Darakjian
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Robert P Searles
- Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR 97239, USA; Integrated Genomics Laboratory, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
42
|
Chen H, Lasek AW. Perineuronal nets in the insula regulate aversion-resistant alcohol drinking. Addict Biol 2020; 25:e12821. [PMID: 31433552 DOI: 10.1111/adb.12821] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/13/2019] [Accepted: 07/17/2019] [Indexed: 01/14/2023]
Abstract
One of the most pernicious characteristics of alcohol use disorder is the compulsion to drink despite negative consequences. The insular cortex controls decision making under conditions of risk or conflict. Cortical activity is tightly controlled by inhibitory interneurons that are often enclosed by specialized extracellular matrix structures known as perineuronal nets (PNNs), which regulate neuronal excitability and plasticity. The density of PNNs in the insula increases after repeated bouts of binge drinking, suggesting that they may play a role in the transition from social to compulsive, or aversion-resistant, drinking. Here, we investigated whether insular PNNs play a role in aversion-resistant alcohol drinking using a mouse model in which ethanol was adulterated with the bitter tastant quinine. Disrupting PNNs in the insula rendered mice more sensitive to quinine-adulterated ethanol but not ethanol alone. Activation of the insula, as measured by c-fos expression, occurred during aversion-resistant drinking and was further enhanced by elimination of PNNs. These results demonstrate that PNNs control the activation of the insula during aversion-resistant drinking and suggest that proper excitatory/inhibitory balance is important for decision making under conditions of conflict. Disrupting PNNs in the insula or optimizing insula activation may be a novel strategy to reduce aversion-resistant drinking.
Collapse
Affiliation(s)
- Hu Chen
- Center for Alcohol Research in Epigenetics, Department of Psychiatry University of Illinois at Chicago Chicago Illinois USA
| | - Amy W. Lasek
- Center for Alcohol Research in Epigenetics, Department of Psychiatry University of Illinois at Chicago Chicago Illinois USA
| |
Collapse
|
43
|
Roura-Martínez D, Díaz-Bejarano P, Ucha M, Paiva RR, Ambrosio E, Higuera-Matas A. Comparative analysis of the modulation of perineuronal nets in the prefrontal cortex of rats during protracted withdrawal from cocaine, heroin and sucrose self-administration. Neuropharmacology 2020; 180:108290. [PMID: 32888961 DOI: 10.1016/j.neuropharm.2020.108290] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/11/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022]
Abstract
Relapse into drug use is a significant problem for people recovering from addiction. The ability that conditioned cues have to reinstate and reinvigorate drug-seeking is potentiated over time (incubation of seeking), posing an additional difficulty for maintaining abstinence. While the prefrontal cortex has been involved in the incubation phenomenon and the extracellular matrix, perineuronal nets (PNNs) in particular, may play a vital role in brain plasticity associated to drug relapse, there are no comparative analyses between different drug classes and natural reinforcers. Here, we compare the effects of early (1 day) and protracted (30 days) withdrawal from to cocaine, heroin and sucrose self-administration on the total density and density per intensity range of PNNs of different territories of the prefrontal cortex of male Lewis rats. Our results show that cocaine self-administration increases the density of PNNs in the dorsal prelimbic, infralimbic and ventral orbitofrontal cortices, while protracted withdrawal reversesthis effect in the dorsal prelimbic cortex. Also, heroin self-administration increases the density of PNNs in the infralimbic cortex and ventral orbitofrontal cortices, but this effect is lost after 30 days of withdrawal in the infralimbic cortex. Finally, the self-administration of sucrose-sweetened water or the protracted withdrawal from this powerful reinforcer does not affect any of the PNN parameters analysed. Our results show that two different drugs of abuse (but not a natural reward) with specific pharmacological and physiological actions, differentially modulate PNNs in specific areas of the rodent prefrontal cortex with potential implications for the incubation of seeking phenomenon.
Collapse
Affiliation(s)
- David Roura-Martínez
- Department of Psychobiology, School of Psychology, National University for Distance Learning (UNED), Madrid, Spain
| | - Paula Díaz-Bejarano
- Department of Psychobiology, School of Psychology, National University for Distance Learning (UNED), Madrid, Spain
| | - Marcos Ucha
- Department of Psychobiology, School of Psychology, National University for Distance Learning (UNED), Madrid, Spain
| | - Raquel R Paiva
- Department of Psychobiology, School of Psychology, National University for Distance Learning (UNED), Madrid, Spain
| | - Emilio Ambrosio
- Department of Psychobiology, School of Psychology, National University for Distance Learning (UNED), Madrid, Spain.
| | - Alejandro Higuera-Matas
- Department of Psychobiology, School of Psychology, National University for Distance Learning (UNED), Madrid, Spain.
| |
Collapse
|
44
|
Spear LP. Timing Eclipses Amount: The Critical Importance of Intermittency in Alcohol Exposure Effects. Alcohol Clin Exp Res 2020; 44:806-813. [PMID: 32056231 DOI: 10.1111/acer.14307] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/06/2020] [Indexed: 12/28/2022]
Abstract
Frequency and duration of ethanol (EtOH) exposures influence the consequences of those experiences, with evidence building from basic science studies in rats and mice that intermittent alcohol access (IAA) typically produces a greater escalation of EtOH intake than more continuous alcohol access (CAA). IAA also better simulates human use patterns where alcohol levels typically clear from the body between periods of use. A variety of mechanisms have been proposed to contribute to the enhanced intake of EtOH induced by IAA, including a possible attenuation in the aversive effects of EtOH, although further studies are needed to address this and other possibilities. Neural differences include indications of an IAA-associated increase in NR2B receptors that is not evident with CAA; although little studied, alterations in other neural and neurotransmitter systems are evident as well. Many gaps in understanding of IAA/CAA effects remain. Further work is needed to characterize neural mechanisms underlying these effects, consequences of IAA/CAA on EtOH effects beyond intake, and the impact of stress and environmental variables on these differences. IAA/CAA studies to date have also largely been limited to males and to adult animals, and hence, more studies examining IAA/CAA across sex and age are needed. Such additional work is essential to determine unique contributors to IAA-induced elevations in EtOH intake that may provide important insights for the development of new prevention/intervention strategies for heavy alcohol use and abuse.
Collapse
Affiliation(s)
- Linda Patia Spear
- Behavioral Neuroscience Program, Department of Psychology, Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY
| |
Collapse
|
45
|
Pina MM, Pati D, Hwa LS, Wu SY, Mahoney AA, Omenyi CG, Navarro M, Kash TL. The kappa opioid receptor modulates GABA neuron excitability and synaptic transmission in midbrainprojections from the insular cortex. Neuropharmacology 2020; 165:107831. [PMID: 31870854 DOI: 10.1016/j.neuropharm.2019.107831] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 09/08/2019] [Accepted: 10/25/2019] [Indexed: 01/08/2023]
Abstract
As an integrative hub, the insular cortex (IC) translates external cues into interoceptive states that generate complex physiological, affective, and behavioral responses. However, the precise circuit and signaling mechanisms in the IC that modulate these processes are unknown. Here, we describe a midbrain-projecting microcircuit in the medial aspect of the agranular IC that signals through the Gαi/o-coupled kappa opioid receptor (KOR) and its endogenous ligand dynorphin (Dyn). Within this microcircuit, Dyn is robustly expressed in layer 2/3, while KOR is localized to deep layer 5, which sends a long-range projection to the substantia nigra (SN). Using ex vivo electrophysiology, we evaluated the functional impact of KOR signaling in layer 5 of the IC. We found that bath application of dynorphin decreased GABA release and increased glutamate release on IC-SN neurons, but did not alter their excitability. Conversely, dynorphin decreased the excitability of GABA neurons without altering synaptic transmission. Pretreatment with the KOR antagonist nor-BNI blocked the effects of dynorphin in IC-SN neurons and GABA neurons, indicating that the changes in synaptic transmission and excitability were selectively mediated through KOR. Selective inhibition of IC GABA neurons using a KOR-derived DREADD recapitulated these effects. This work provides insight into IC microcircuitry and indicates that Dyn/KOR signaling may act to directly reduce activity of layer 5 GABA neurons. In turn, KOR-driven inhibition of GABA promotes disinhibition of IC-SN neurons, which can modulate downstream circuits. Our findings present a potential mechanism whereby chronic upregulation of IC Dyn/KOR signaling can lead to altered subcortical function and downstream activity.
Collapse
Affiliation(s)
- Melanie M Pina
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, 104 Manning Drive, Chapel Hill, NC, 27599, USA; Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, 2751, USA
| | - Dipanwita Pati
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, 104 Manning Drive, Chapel Hill, NC, 27599, USA; Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, 2751, USA
| | - Lara S Hwa
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, 104 Manning Drive, Chapel Hill, NC, 27599, USA; Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, 2751, USA
| | - Sarah Y Wu
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, 104 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Alexandra A Mahoney
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, 104 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Chiazam G Omenyi
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, 104 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Montserrat Navarro
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, 104 Manning Drive, Chapel Hill, NC, 27599, USA; Department of Psychology & Neuroscience, College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, 104 Manning Drive, Chapel Hill, NC, 27599, USA; Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, 2751, USA.
| |
Collapse
|
46
|
Ferguson LB, Patil S, Moskowitz BA, Ponomarev I, Harris RA, Mayfield RD, Messing RO. A Pathway-Based Genomic Approach to Identify Medications: Application to Alcohol Use Disorder. Brain Sci 2019; 9:E381. [PMID: 31888299 PMCID: PMC6956180 DOI: 10.3390/brainsci9120381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/31/2022] Open
Abstract
Chronic, excessive alcohol use alters brain gene expression patterns, which could be important for initiating, maintaining, or progressing the addicted state. It has been proposed that pharmaceuticals with opposing effects on gene expression could treat alcohol use disorder (AUD). Computational strategies comparing gene expression signatures of disease to those of pharmaceuticals show promise for nominating novel treatments. We reasoned that it may be sufficient for a treatment to target the biological pathway rather than lists of individual genes perturbed by AUD. We analyzed published and unpublished transcriptomic data using gene set enrichment of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways to identify biological pathways disrupted in AUD brain and by compounds in the Library of Network-based Cellular Signatures (LINCS L1000) and Connectivity Map (CMap) databases. Several pathways were consistently disrupted in AUD brain, including an up-regulation of genes within the Complement and Coagulation Cascade, Focal Adhesion, Systemic Lupus Erythematosus, and MAPK signaling, and a down-regulation of genes within the Oxidative Phosphorylation pathway, strengthening evidence for their importance in AUD. Over 200 compounds targeted genes within those pathways in an opposing manner, more than twenty of which have already been shown to affect alcohol consumption, providing confidence in our approach. We created a user-friendly web-interface that researchers can use to identify drugs that target pathways of interest or nominate mechanism of action for drugs. This study demonstrates a unique systems pharmacology approach that can nominate pharmaceuticals that target pathways disrupted in disease states such as AUD and identify compounds that could be repurposed for AUD if sufficient evidence is attained in preclinical studies.
Collapse
Affiliation(s)
- Laura B. Ferguson
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA; (L.B.F.); (S.P.); (B.A.M.); (R.A.H.); (R.D.M.)
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - Shruti Patil
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA; (L.B.F.); (S.P.); (B.A.M.); (R.A.H.); (R.D.M.)
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Bailey A. Moskowitz
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA; (L.B.F.); (S.P.); (B.A.M.); (R.A.H.); (R.D.M.)
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - Igor Ponomarev
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Robert A. Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA; (L.B.F.); (S.P.); (B.A.M.); (R.A.H.); (R.D.M.)
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Roy D. Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA; (L.B.F.); (S.P.); (B.A.M.); (R.A.H.); (R.D.M.)
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Robert O. Messing
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA; (L.B.F.); (S.P.); (B.A.M.); (R.A.H.); (R.D.M.)
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
47
|
Santiago AN, Lim KY, Opendak M, Sullivan RM, Aoki C. Early life trauma increases threat response of peri-weaning rats, reduction of axo-somatic synapses formed by parvalbumin cells and perineuronal net in the basolateral nucleus of amygdala. J Comp Neurol 2018; 526:2647-2664. [PMID: 30136731 DOI: 10.1002/cne.24522] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/20/2018] [Accepted: 08/03/2018] [Indexed: 01/17/2023]
Abstract
Early life trauma is a risk factor for life-long disorders related to emotional processing, but knowledge underlying its enduring effect is incomplete. This study was motivated by the hypothesis that early life trauma increases amygdala-dependent threat responses via reduction in inhibition by parvalbumin (PV) interneurons and perineuronal nets (PNN) supporting PV cells, thus increasing excitability of the basolateral amygdala (BLA). From postnatal day (PN) 8-12, rat pups of both sexes were reared under normal bedding or under insufficient nest-building materials to induce maternal-to-infant maltreatment trauma (Scarcity-Adversity Model, SAM). At weaning age of PN23, the SAM group exhibited increased threat responses to predator odor. The SAM-induced increase in threat response was recapitulated in normally reared PN22-23 rats that were unilaterally depleted of PNN in the BLA by the enzymes, chondroitinase-ABC plus hyaluronidase at PN19-20. Light and electron microscopic analysis of the BLA revealed that anterior-to-mid levels of SAM group's BLAs exhibited decreased PNN intensity and decreased axo-somatic synapses between PV-to-principal pyramidal-like neurons and PV-to-PV. PV and PNN densities (cells/mm2 ) in the BLA of both control (CON) and SAM groups were still low at PN12 and SAM delayed the ontogenetic rise of PV intensity and PNN density. Moreover, PV cell density in the anterior-to-mid BLA correlated negatively with threat response of CON animals, but not for SAM animals. Thus, reduction of PNN-supported, PV-mediated somatic inhibition of pyramidal cells provides a mechanistic support for the enduring effect of early life maltreatment manifested as increasing innate threat response at weaning.
Collapse
Affiliation(s)
- Adrienne N Santiago
- Center for Neural Science, New York University, New York, New York.,Emotional Brain Institute, Nathan Kline Institute, New York University School of Medicine, New York, New York.,Department of Child and Adolescent Psychiatry, NYU School of Medicine, New York, New York
| | - Kayla Y Lim
- Center for Neural Science, New York University, New York, New York
| | - Maya Opendak
- Emotional Brain Institute, Nathan Kline Institute, New York University School of Medicine, New York, New York.,Department of Child and Adolescent Psychiatry, NYU School of Medicine, New York, New York
| | - Regina M Sullivan
- Emotional Brain Institute, Nathan Kline Institute, New York University School of Medicine, New York, New York.,Department of Child and Adolescent Psychiatry, NYU School of Medicine, New York, New York
| | - Chiye Aoki
- Center for Neural Science, New York University, New York, New York
| |
Collapse
|
48
|
Cocaine Exposure Modulates Perineuronal Nets and Synaptic Excitability of Fast-Spiking Interneurons in the Medial Prefrontal Cortex. eNeuro 2018; 5:eN-NWR-0221-18. [PMID: 30294670 PMCID: PMC6171740 DOI: 10.1523/eneuro.0221-18.2018] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/06/2018] [Accepted: 09/13/2018] [Indexed: 11/21/2022] Open
Abstract
We previously reported that perineuronal nets (PNNs) are required for cocaine-associated memories. Perineuronal nets are extracellular matrix that primarily surrounds parvalbumin (PV)-containing, GABAergic fast-spiking interneurons (FSIs) in the medial prefrontal cortex (mPFC). Here we measured the impact of acute (1 d) or repeated (5 d) cocaine exposure on PNNs and PV cells within the prelimbic and infralimbic regions of the mPFC. Adult rats were exposed to 1 or 5 d of cocaine and stained for PNNs (using Wisteria floribunda agglutinin) and PV intensity 2 or 24 h later. In the prelimbic and infralimbic PFC, PNN staining intensity decreased 2 h after 1 d of cocaine exposure but increased after 5 d of cocaine exposure. Cocaine also produced changes in PV intensity, which generally lagged behind that of PNNs. In the prelimbic PFC, both 1 and 5 d of cocaine exposure increased GAD65/67 puncta near PNN-surrounded PV cells, with an increase in the GAD65/67-to-VGluT1 puncta ratio after 5 d of cocaine exposure. In the prelimbic PFC, slice electrophysiology studies in FSIs surrounded by PNNs revealed that both 1 and 5 d of cocaine exposure reduced the number of action potentials 2 h later. Synaptic changes demonstrated that 5 d of cocaine exposure increased the inhibition of FSIs, potentially reducing the inhibition of pyramidal neurons and contributing to their hyperexcitability during relapse behavior. These early and rapid responses to cocaine may alter the network stability of PV FSIs that partially mediate the persistent and chronic nature of drug addiction.
Collapse
|
49
|
Muñoz B, Fritz BM, Yin F, Atwood BK. Alcohol exposure disrupts mu opioid receptor-mediated long-term depression at insular cortex inputs to dorsolateral striatum. Nat Commun 2018; 9:1318. [PMID: 29615610 PMCID: PMC5882774 DOI: 10.1038/s41467-018-03683-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 03/02/2018] [Indexed: 01/07/2023] Open
Abstract
Drugs of abuse, including alcohol, ablate the expression of specific forms of long-term synaptic depression (LTD) at glutamatergic synapses in dorsal striatum (DS), a brain region involved in goal-directed and habitual behaviors. This loss of LTD is associated with altered DS-dependent behavior. Given the role of the µ-opioid receptor (MOR) in behavioral responding for alcohol, we explored the impact of alcohol on various forms of MOR-mediated synaptic depression that we find are differentially expressed at specific DS synapses. Corticostriatal MOR-mediated LTD (mOP-LTD) in the dorsolateral striatum occurs exclusively at inputs from anterior insular cortex and is selectively disrupted by in vivo alcohol exposure. Alcohol has no effect on corticostriatal mOP-LTD in dorsomedial striatum, thalamostriatal MOR-mediated short-term depression, or mOP-LTD of cholinergic interneuron-driven glutamate release. Disrupted mOP-LTD at anterior insular cortex-dorsolateral striatum synapses may therefore be a key mechanism of alcohol-induced neuroadaptations involved in the development of alcohol use disorders.
Collapse
Affiliation(s)
- Braulio Muñoz
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Brandon M Fritz
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Fuqin Yin
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Brady K Atwood
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
50
|
Su W, Matsumoto S, Sorg B, Sherman LS. Distinct roles for hyaluronan in neural stem cell niches and perineuronal nets. Matrix Biol 2018; 78-79:272-283. [PMID: 29408010 DOI: 10.1016/j.matbio.2018.01.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/25/2018] [Accepted: 01/28/2018] [Indexed: 12/15/2022]
Abstract
Adult neurogenesis in mammals is a tightly regulated process where neural stem cells (NSCs), especially in the subgranular zone (SGZ) of the hippocampal dentate gyrus, proliferate and differentiate into new neurons that form new circuits or integrate into old circuits involved in episodic memory, pattern discrimination, and emotional responses. Recent evidence suggests that changes in the hyaluronan (HA)-based extracellular matrix of the SGZ may regulate neurogenesis by controlling NSC proliferation and early steps in neuronal differentiation. These studies raise the intriguing possibility that perturbations in this matrix, including HA accumulation with aging, could impact adult neurogenesis and cognitive functions, and that alterations to this matrix could be beneficial following insults to the central nervous system that impact hippocampal functions.
Collapse
Affiliation(s)
- Weiping Su
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Steven Matsumoto
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; Integrative Biosciences Department, School of Dentistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Barbara Sorg
- Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA 98686, USA
| | - Larry S Sherman
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|