1
|
Gullett JM, DeFelice J, Richards VL, Porges EC, Cohen RA, Govind V, Salan T, Wang Y, Zhou Z, Cook RL. Resting state connectivity in people living with HIV before and after stopping heavy drinking. Front Psychiatry 2023; 14:1102368. [PMID: 37265553 PMCID: PMC10230054 DOI: 10.3389/fpsyt.2023.1102368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/07/2023] [Indexed: 06/03/2023] Open
Abstract
Background Heavy alcohol use in people living with HIV (PLWH) has widespread negative effects on neural functioning. It remains unclear whether experimentally-induced reduction in alcohol use could reverse these effects. We sought to determine the effects of 30-days drinking cessation/reduction on resting state functional connectivity in people with and without HIV. Methods Thirty-five participants (48.6% PLWH) demonstrating heavy alcohol use attempted to stop drinking for 30 days via contingency management (CM). MRI was acquired at baseline and after thirty days, and functional connectivity across five resting-state fMRI (rsfMRI) networks was calculated with the Conn toolbox for Matlab and examined in relation to transdermal alcohol concentration (TAC) recorded by the ankle-worn secure continuous remote alcohol monitor (SCRAM) and self-reported alcohol use (timeline follow-back; TLFB). Associations between alcohol use and reduction, HIV status, functional connectivity, and change in functional connectivity across five major rsfMRI networks were determined relative to the pre- and post-CM timepoints. Results Baseline resting-state functional connectivity was not significantly associated with average TAC-AUC during the pre-CM period, though higher self-reported alcohol use over the preceding 30 days was significantly associated with higher baseline connectivity within the Dorsal Attention Network (DAN; p-FDR < 0.05). Baseline connectivity within the Salience network was significantly negatively related to objective drinking reduction after intervention (DAN; p-FDR < 0.05), whereas baseline connectivity within the Limbic network was positively associated with self-reported drinking reduction (p-FDR < 0.05). Change in between-networks functional connectivity after intervention was significantly positively associated with biosensor-confirmed drinking reduction such that higher reduction was associated with stronger connectivity between the limbic and fronto-parietal control networks (p-FDR < 0.05). PLWH with lower DAN connectivity at baseline demonstrated poorer alcohol reduction than those with higher DAN connectivity at baseline. Discussion Lower resting-state functional connectivity of the Salience network significantly predicted stronger drinking reduction across all participants, suggesting a potential biomarker for reduced susceptibility to the environmental and social cues that often make alcohol use reduction attempts unsuccessful. Increased between-networks connectivity was observed in participants with higher alcohol reduction after CM, suggesting a positive benefit to brain connectivity associated with reduced drinking. PLWH with lower baseline DAN connectivity may not benefit as greatly from CM for alcohol reduction.
Collapse
Affiliation(s)
- Joseph M. Gullett
- Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States
| | - Jason DeFelice
- Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States
| | - Veronica L. Richards
- Department of Epidemiology, University of Florida, Gainesville, FL, United States
- Edna Bennett Pierce Prevention Research Center, The Pennsylvania State University, University Park, PA, United States
| | - Eric C. Porges
- Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States
| | - Ronald A. Cohen
- Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States
| | - Varan Govind
- Department of Radiology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Teddy Salan
- University of Miami, Coral Gables, United States
| | - Yan Wang
- Department of Epidemiology, University of Florida, Gainesville, FL, United States
| | - Zhi Zhou
- Department of Epidemiology, University of Florida, Gainesville, FL, United States
| | - Robert L. Cook
- Department of Epidemiology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
2
|
Mulherkar TH, Gómez DJ, Sandel G, Jain P. Co-Infection and Cancer: Host–Pathogen Interaction between Dendritic Cells and HIV-1, HTLV-1, and Other Oncogenic Viruses. Viruses 2022; 14:v14092037. [PMID: 36146843 PMCID: PMC9503663 DOI: 10.3390/v14092037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Dendritic cells (DCs) function as a link between innate and adaptive immune responses. Retroviruses HIV-1 and HTLV-1 modulate DCs to their advantage and utilize them to propagate infection. Coinfection of HTLV-1 and HIV-1 has implications for cancer malignancies. Both viruses initially infect DCs and propagate the infection to CD4+ T cells through cell-to-cell transmission using mechanisms including the formation of virologic synapses, viral biofilms, and conduits. These retroviruses are both neurotrophic with neurovirulence determinants. The neuropathogenesis of HIV-1 and HTLV-1 results in neurodegenerative diseases such as HIV-associated neurocognitive disorders (HAND) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Infected DCs are known to traffic to the brain (CNS) and periphery (PNS, lymphatics) to induce neurodegeneration in HAND and HAM/TSP patients. Elevated levels of neuroinflammation have been correlated with cognitive decline and impairment of motor control performance. Current vaccinations and therapeutics for HIV-1 and HTLV-1 are assessed and can be applied to patients with HIV-1-associated cancers and adult T cell leukemia/lymphoma (ATL). These diseases caused by co-infections can result in both neurodegeneration and cancer. There are associations with cancer malignancies and HIV-1 and HTLV-1 as well as other human oncogenic viruses (EBV, HBV, HCV, HDV, and HPV). This review contains current knowledge on DC sensing of HIV-1 and HTLV-1 including DC-SIGN, Tat, Tax, and current viral therapies. An overview of DC interaction with oncogenic viruses including EBV, Hepatitis viruses, and HPV is also provided. Vaccines and therapeutics targeting host–pathogen interactions can provide a solution to co-infections, neurodegeneration, and cancer.
Collapse
Affiliation(s)
- Tania H. Mulherkar
- Department of Microbiology and Immunology, Drexel University, College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | - Daniel Joseph Gómez
- Department of Microbiology and Immunology, Drexel University, College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
- Department of Biological Sciences, California State University, 25800 Carlos Bee Blvd, Hayward, CA 94542, USA
| | - Grace Sandel
- Department of Microbiology and Immunology, Drexel University, College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | - Pooja Jain
- Department of Microbiology and Immunology, Drexel University, College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
- Correspondence:
| |
Collapse
|
3
|
Monnig MA, Gullett JM, Porges EC, Woods AJ, Monti PM, Tashima K, Jahanshad N, Thompson P, Nir T, Cohen RA. Associations of alcohol use, HIV infection, and age with brain white matter microstructure. J Neurovirol 2021; 27:936-950. [PMID: 34750783 PMCID: PMC8901452 DOI: 10.1007/s13365-021-01021-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 08/24/2021] [Accepted: 10/04/2021] [Indexed: 11/29/2022]
Abstract
Heavy drinking and HIV infection are independently associated with damage to the brain's white matter. The purpose of the current study was to investigate whether current alcohol consumption, HIV infection, and associated characteristics were associated with indices of white matter microstructural integrity in people living with HIV (PLWH) and seronegative individuals. PLWH and controls were categorized as non-drinkers, moderate drinkers, or heavy drinkers. White matter fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD) were assessed using diffusion tensor imaging (DTI). Voxelwise analyses using tract-based spatial statistics were followed by confirmatory region-of-interest (ROI) analyses. Data from 108 participants (62 PLWH, 46 controls) were suitable for analysis. Average age (± standard deviation) was 45.2 ± 11.1 years, and the sample was 42% female. The majority of PLWH were on antiretroviral therapy (94%) and were virally suppressed (69%). PLWH and controls did not differ on substance use. Heavier alcohol intake was significantly associated with lower FA and higher RD in widespread areas. Heavy drinking was significantly associated with higher AD in a small region. The main effect of HIV was not significant, but a significant HIV-age interaction was observed. Follow-up ROI analyses confirmed the main effect of drinking group and HIV-age interaction. In conclusion, results are consistent with a dose-dependent association of alcohol use with lower white matter microstructural coherence. Concordance between FA and RD findings suggests dysmyelination as a mechanism. Findings underscore the need to address unhealthy alcohol use in HIV-positive and seronegative individuals, the consequences of which may be exacerbated by aging.
Collapse
Affiliation(s)
| | - Joseph M Gullett
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, 32611, USA
| | - Eric C Porges
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, 32611, USA
| | - Adam J Woods
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, 32611, USA
| | - Peter M Monti
- Brown University, Box G-S121-5, Providence, RI, 02912, USA
| | | | - Neda Jahanshad
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Paul Thompson
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Talia Nir
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Ronald A Cohen
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
4
|
Boerwinkle AH, Meeker KL, Luckett P, Ances BM. Neuroimaging the Neuropathogenesis of HIV. Curr HIV/AIDS Rep 2021; 18:221-228. [PMID: 33630240 DOI: 10.1007/s11904-021-00548-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW This review highlights neuroimaging studies of HIV conducted over the last 2 years and discusses how relevant findings further our knowledge of the neuropathology of HIV. Three major avenues of neuroimaging research are covered with a particular emphasis on inflammation, aging, and substance use in persons living with HIV (PLWH). RECENT FINDINGS Neuroimaging has been a critical tool for understanding the neuropathological underpinnings observed in HIV. Recent studies comparing levels of neuroinflammation in PLWH and HIV-negative controls show inconsistent results but report an association between elevated neuroinflammation and poorer cognition in PLWH. Other recent neuroimaging studies suggest that older PLWH are at increased risk for brain and cognitive compromise compared to their younger counterparts. Finally, recent findings also suggest that the effects of HIV may be exacerbated by alcohol and drug abuse. These neuroimaging studies provide insight into the structural, functional, and molecular changes occurring in the brain due to HIV. HIV triggers a strong neuroimmune response and may lead to a cascade of events including increased chronic inflammation and cognitive decline. These outcomes are further exacerbated by age and age-related comorbidities, as well as lifestyle factors such as drug use/abuse.
Collapse
Affiliation(s)
- Anna H Boerwinkle
- Department of Neurology, Washington University in St. Louis, School of Medicine, Campus Box 8111, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Karin L Meeker
- Department of Neurology, Washington University in St. Louis, School of Medicine, Campus Box 8111, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Patrick Luckett
- Department of Neurology, Washington University in St. Louis, School of Medicine, Campus Box 8111, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Beau M Ances
- Department of Neurology, Washington University in St. Louis, School of Medicine, Campus Box 8111, 660 South Euclid Avenue, St. Louis, MO, 63110, USA.
| |
Collapse
|
5
|
Britton MK, Porges EC, Bryant V, Cohen RA. Neuroimaging and Cognitive Evidence for Combined HIV-Alcohol Effects on the Central Nervous System: A Review. Alcohol Clin Exp Res 2021; 45:290-306. [PMID: 33296091 PMCID: PMC9486759 DOI: 10.1111/acer.14530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/29/2020] [Indexed: 12/27/2022]
Abstract
Alcohol use disorder (AUD) among people living with HIV (PLWH) is a significant public health concern. Despite the advent of effective antiretroviral therapy, up to 50% of PLWH still experience worsened neurocognition, which comorbid AUD exacerbates. We report converging lines of neuroimaging and neuropsychological evidence linking comorbid HIV/AUD to dysfunction in brain regions linked to executive function, learning and memory, processing speed, and motor control, and consequently to impairment in daily life. The brain shrinkage, functional network alterations, and brain metabolite disruption seen in individuals with HIV/AUD have been attributed to several interacting pathways: viral proteins and EtOH are directly neurotoxic and exacerbate each other's neurotoxic effects; EtOH reduces antiretroviral adherence and increases viral replication; AUD and HIV both increase gut microbial translocation, promoting systemic inflammation and HIV transport into the brain by immune cells; and HIV may compound alcohol's damaging effects on the liver, further increasing inflammation. We additionally review the neurocognitive effects of aging, Hepatitis C coinfection, obesity, and cardiovascular disease, tobacco use, and nutritional deficiencies, all of which have been shown to compound cognitive changes in HIV, AUD, and in their comorbidity. Finally, we examine emerging questions in HIV/AUD research, including genetic and cognitive protective factors, the role of binge drinking in HIV/AUD-linked cognitive decline, and whether neurocognitive and brain functions normalize after drinking cessation.
Collapse
Affiliation(s)
- Mark K. Britton
- University of Florida, Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, Cognitive Aging and Memory Clinical Translational Research Program; 1225 Center Drive, Gainesville, Florida 32607
| | - Eric C. Porges
- University of Florida, Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, Cognitive Aging and Memory Clinical Translational Research Program; 1225 Center Drive, Gainesville, Florida 32607
| | - Vaughn Bryant
- University of Florida, Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, Cognitive Aging and Memory Clinical Translational Research Program; 1225 Center Drive, Gainesville, Florida 32607
- University of Florida, Department of Epidemiology, 2004 Mowry Road, Gainesville, FL 32610
| | - Ronald A. Cohen
- University of Florida, Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, Cognitive Aging and Memory Clinical Translational Research Program; 1225 Center Drive, Gainesville, Florida 32607
| |
Collapse
|
6
|
Gullett JM, O'Shea A, Lamb DG, Porges EC, O'Shea DM, Pasternak O, Cohen RA, Woods AJ. The association of white matter free water with cognition in older adults. Neuroimage 2020; 219:117040. [PMID: 32534124 PMCID: PMC7429363 DOI: 10.1016/j.neuroimage.2020.117040] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 05/19/2020] [Accepted: 06/05/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Extracellular free water within cerebral white matter tissue has been shown to increase with age and pathology, yet the cognitive consequences of free water in typical aging prior to the development of neurodegenerative disease remains unclear. Understanding the contribution of free water to cognitive function in older adults may provide important insight into the neural mechanisms of the cognitive aging process. METHODS A diffusion-weighted MRI measure of extracellular free water as well as a commonly used diffusion MRI metric (fractional anisotropy) along nine bilateral white matter pathways were examined for their relationship with cognitive function assessed by the NIH Toolbox Cognitive Battery in 47 older adults (mean age = 74.4 years, SD = 5.4 years, range = 65-85 years). Probabilistic tractography at the 99th percentile level of probability (Tracts Constrained by Underlying Anatomy; TRACULA) was utilized to produce the pathways on which microstructural characteristics were overlaid and examined for their contribution to cognitive function independent of age, education, and gender. RESULTS When examining the 99th percentile probability core white matter pathway derived from TRACULA, poorer fluid cognitive ability was related to higher mean free water values across the angular and cingulum bundles of the cingulate gyrus, as well as the corticospinal tract and the superior longitudinal fasciculus. There was no relationship between cognition and mean FA or free water-adjusted FA across the 99th percentile core white matter pathway. Crystallized cognitive ability was not associated with any of the diffusion measures. When examining cognitive domains comprising the NIH Toolbox Fluid Cognition index relationships with these white matter pathways, mean free water demonstrated strong hemispheric and functional specificity for cognitive performance, whereas mean FA was not related to age or cognition across the 99th percentile pathway. CONCLUSIONS Extracellular free water within white matter appears to increase with normal aging, and higher values are associated with significantly lower fluid but not crystallized cognitive functions. When using TRACULA to estimate the core of a white matter pathway, a higher degree of free water appears to be highly specific to the pathways associated with memory, working memory, and speeded decision-making performance, whereas no such relationship existed with FA. These data suggest that free water may play an important role in the cognitive aging process, and may serve as a stronger and more specific indicator of early cognitive decline than traditional diffusion MRI measures, such as FA.
Collapse
Affiliation(s)
- Joseph M Gullett
- Center for Cognitive Aging and Memory, McKnight Brain Institute, Department of Clinical & Health Psychology, University of Florida, 1225 Center Drive, Gainesville, FL, 32610-0165, USA.
| | - Andrew O'Shea
- Center for Cognitive Aging and Memory, McKnight Brain Institute, Department of Clinical & Health Psychology, University of Florida, 1225 Center Drive, Gainesville, FL, 32610-0165, USA
| | - Damon G Lamb
- Center for Cognitive Aging and Memory, McKnight Brain Institute, Department of Clinical & Health Psychology, University of Florida, 1225 Center Drive, Gainesville, FL, 32610-0165, USA; Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, 1601 SW Archer Road, Gainesville, FL, 32608, USA; Department of Psychiatry, University of Florida, 100 S. Newell Dr., L4100, McKnight Brain Institute, Gainesville, FL, 32611, USA
| | - Eric C Porges
- Center for Cognitive Aging and Memory, McKnight Brain Institute, Department of Clinical & Health Psychology, University of Florida, 1225 Center Drive, Gainesville, FL, 32610-0165, USA
| | - Deirdre M O'Shea
- Center for Cognitive Aging and Memory, McKnight Brain Institute, Department of Clinical & Health Psychology, University of Florida, 1225 Center Drive, Gainesville, FL, 32610-0165, USA
| | - Ofer Pasternak
- Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, 1249 Boylston St., Boston, MA, 02215, USA
| | - Ronald A Cohen
- Center for Cognitive Aging and Memory, McKnight Brain Institute, Department of Clinical & Health Psychology, University of Florida, 1225 Center Drive, Gainesville, FL, 32610-0165, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, Department of Clinical & Health Psychology, University of Florida, 1225 Center Drive, Gainesville, FL, 32610-0165, USA
| |
Collapse
|
7
|
Solomon IH, Chettimada S, Misra V, Lorenz DR, Gorelick RJ, Gelman BB, Morgello S, Gabuzda D. White Matter Abnormalities Linked to Interferon, Stress Response, and Energy Metabolism Gene Expression Changes in Older HIV-Positive Patients on Antiretroviral Therapy. Mol Neurobiol 2019; 57:1115-1130. [PMID: 31691183 DOI: 10.1007/s12035-019-01795-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/22/2019] [Indexed: 12/11/2022]
Abstract
Neurocognitive impairment (NCI) remains a significant cause of morbidity in human immunodeficiency virus (HIV)-positive individuals despite highly active antiretroviral therapy (HAART). White matter abnormalities have emerged as a key component of age-related neurodegeneration, and accumulating evidence suggests they play a role in HIV-associated neurocognitive disorders. Viral persistence in the brain induces chronic inflammation associated with lymphocytic infiltration, microglial proliferation, myelin loss, and cerebrovascular lesions. In this study, gene expression profiling was performed on frontal white matter from 34 older HIV+ individuals on HAART (18 with NCI) and 24 HIV-negative controls. We used the NanoString nCounter platform to evaluate 933 probes targeting inflammation, interferon and stress responses, energy metabolism, and central nervous system-related genes. Viral loads were measured using single-copy assays. Compared to HIV- controls, HIV+ individuals exhibited increased expression of genes related to interferon, MHC-1, and stress responses, myeloid cells, and T cells and decreased expression of genes associated with oligodendrocytes and energy metabolism in white matter. These findings correlated with increased white matter inflammation and myelin pallor, suggesting interferon (IRFs, IFITM1, ISG15, MX1, OAS3) and stress response (ATF4, XBP1, CHOP, CASP1, WARS) gene expression changes are associated with decreased energy metabolism (SREBF1, SREBF2, PARK2, TXNIP) and oligodendrocyte myelin production (MAG, MOG), leading to white matter dysfunction. Machine learning identified a 15-gene signature predictive of HIV status that was validated in an independent cohort. No specific gene expression patterns were associated with NCI. These findings suggest therapies that decrease chronic inflammation while protecting mitochondrial function may help to preserve white matter integrity in older HIV+ individuals.
Collapse
Affiliation(s)
- Isaac H Solomon
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, CLS 1010, 450 Brookline Ave, Boston, MA, 02215, USA
| | - Sukrutha Chettimada
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, CLS 1010, 450 Brookline Ave, Boston, MA, 02215, USA
| | - Vikas Misra
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, CLS 1010, 450 Brookline Ave, Boston, MA, 02215, USA
| | - David R Lorenz
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, CLS 1010, 450 Brookline Ave, Boston, MA, 02215, USA
| | - Robert J Gorelick
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Benjamin B Gelman
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Susan Morgello
- Department of Neurology, Icahn School of Medicine of Mount Sinai, New York, NY, USA
| | - Dana Gabuzda
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, CLS 1010, 450 Brookline Ave, Boston, MA, 02215, USA. .,Department of Neurology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Kuhn T, Jin Y, Huang C, Kim Y, Nir TM, Gullett JM, Jones JD, Sayegh P, Chung C, Dang BH, Singer EJ, Shattuck DW, Jahanshad N, Bookheimer SY, Hinkin CH, Zhu H, Thompson PM, Thames AD. The joint effect of aging and HIV infection on microstructure of white matter bundles. Hum Brain Mapp 2019; 40:4370-4380. [PMID: 31271489 PMCID: PMC6865715 DOI: 10.1002/hbm.24708] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/04/2019] [Accepted: 06/26/2019] [Indexed: 12/22/2022] Open
Abstract
Recent evidence suggests the aging process is accelerated by HIV. Degradation of white matter (WM) has been independently associated with HIV and healthy aging. Thus, WM may be vulnerable to joint effects of HIV and aging. Diffusion-weighted imaging (DWI) was conducted with HIV-seropositive (n = 72) and HIV-seronegative (n = 34) adults. DWI data underwent tractography, which was parcellated into 18 WM tracts of interest (TOIs). Functional Analysis of Diffusion Tensor Tract Statistics (FADTTS) regression was conducted assessing the joint effect of advanced age and HIV on fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) along TOI fibers. In addition to main effects of age and HIV on WM microstructure, the interactive effect of age and HIV was significantly related to lower FA and higher MD, AD, and RD across all TOIs. The location of findings was consistent with the clinical presentation of HIV-associated neurocognitive disorders. While older age is related to poorer WM microstructure, its detrimental effect on WM is stronger among HIV+ relative to HIV- individuals. Loss of WM integrity in the context of advancing age may place HIV+ individuals at increased risk for brain and cognitive compromise.
Collapse
Affiliation(s)
- Taylor Kuhn
- Department of Psychiatry and Biobehavioral SciencesUniversity of California, Los AngelesLos AngelesCalifornia
| | - Yan Jin
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics InstituteKeck School of Medicine, University of Southern CaliforniaMarina del ReyCalifornia
- Department of BiostatisticsUniversity of Texas MD Anderson Cancer CenterHoustonTexas
| | - Chao Huang
- Department of BiostatisticsUniversity of Texas MD Anderson Cancer CenterHoustonTexas
| | - Yeun Kim
- Department of NeurologyUniversity of California, Los AngelesLos AngelesCalifornia
| | - Talia M. Nir
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics InstituteKeck School of Medicine, University of Southern CaliforniaMarina del ReyCalifornia
| | - Joseph M. Gullett
- Center for Cognitive Aging and MemoryUniversity of FloridaGainesvilleFlorida
| | - Jacob D. Jones
- Department of Psychiatry and Biobehavioral SciencesUniversity of California, Los AngelesLos AngelesCalifornia
- Department of PsychologyCalifornia State University San BernardinoSan BernardinoCalifornia
| | - Phillip Sayegh
- Department of PsychologyUniversity of California, Los AngelesLos AngelesCalifornia
| | - Caroline Chung
- Department of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexas
| | - Bianca H. Dang
- Department of Psychiatry and Biobehavioral SciencesUniversity of California, Los AngelesLos AngelesCalifornia
| | - Elyse J. Singer
- Department of Psychiatry and Biobehavioral SciencesUniversity of California, Los AngelesLos AngelesCalifornia
| | - David W. Shattuck
- Department of NeurologyUniversity of California, Los AngelesLos AngelesCalifornia
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics InstituteKeck School of Medicine, University of Southern CaliforniaMarina del ReyCalifornia
| | - Susan Y. Bookheimer
- Department of Psychiatry and Biobehavioral SciencesUniversity of California, Los AngelesLos AngelesCalifornia
| | - Charles H. Hinkin
- Department of Psychiatry and Biobehavioral SciencesUniversity of California, Los AngelesLos AngelesCalifornia
| | - Hongtu Zhu
- Department of BiostatisticsUniversity of Texas MD Anderson Cancer CenterHoustonTexas
- Department of Biostatistics, Gillings School of Global Public HealthUniversity of North Carolina at Chapel HillChapel HillNorth Carolina
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics InstituteKeck School of Medicine, University of Southern CaliforniaMarina del ReyCalifornia
| | - April D. Thames
- Department of Psychiatry and Biobehavioral SciencesUniversity of California, Los AngelesLos AngelesCalifornia
- Department of PsychologyUniversity of Southern CaliforniaLos AngelesCalifornia
| |
Collapse
|
9
|
Sullivan EV, Pfefferbaum A. Brain-behavior relations and effects of aging and common comorbidities in alcohol use disorder: A review. Neuropsychology 2019; 33:760-780. [PMID: 31448945 PMCID: PMC7461729 DOI: 10.1037/neu0000557] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Alcohol use disorder (AUD) is a complex, dynamic condition that waxes and wanes with unhealthy drinking episodes and varies in drinking patterns and effects on brain structure and function with age. Its excessive use renders chronically heavy drinkers vulnerable to direct alcohol toxicity and a variety of comorbidities attributable to nonalcohol drug misuse, viral infections, and accelerated or premature aging. AUD affects widespread brain systems, commonly, frontolimbic, frontostriatal, and frontocerebellar networks. METHOD AND RESULTS Multimodal assessment using selective neuropsychological testing and whole-brain neuroimaging provides evidence for AUD-related specific brain structure-function relations established with double dissociations. Longitudinal study using noninvasive imaging provides evidence for brain structural and functional improvement with sustained sobriety and further decline with relapse. Functional imaging suggests the possibility that some alcoholics in recovery can compensate for impairment by invoking brain systems typically not used for a target task but that can enable normal-level performance. CONCLUSIONS Evidence for AUD-aging interactions, indicative of accelerated aging, together with increasing alcohol consumption in middle-age and older adults, put aging drinkers at special risk for developing cognitive decline and possibly dementia. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
Affiliation(s)
- Edith V. Sullivan
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| | - Adolf Pfefferbaum
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
- Center for Health Sciences, SRI International, Menlo Park, CA
| |
Collapse
|
10
|
Fennema-Notestine C. Data-Driven Exploration of Brain Structure Using Statistical Machine Learning: Validity of Derived Diagnostic Patterns in Alcohol Use Disorder and Human Immunodeficiency Virus Infection. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:508-509. [PMID: 31176386 DOI: 10.1016/j.bpsc.2019.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 01/05/2023]
|
11
|
Abstract
All people want to age "successfully," maintaining functional capacity and quality of life as they reach advanced age. Achieving this goal depends on preserving optimal cognitive and brain functioning. Yet, significant individual differences exist in this regard. Some older adults continue to retain most cognitive abilities throughout their lifetime. Others experience declines in cognitive and functional capacity that range from mild decrements in certain cognitive functions over time to severe dementia among those with neurodegenerative diseases. Even among relatively healthy "successful agers," certain cognitive functions are reduced from earlier levels. This is particularly true for cognitive functions that are dependent on cognitive processing speed and efficiency. Working memory and executive and attentional functions tend to be most vulnerable. Learning and memory functions are also usually reduced, although in the absence of neurodegenerative disease learning and retrieval efficiency rather than memory storage are affected. Other functions, such as visual perception, language, semantics, and knowledge, are often well preserved. Structural, functional, and physiologic/metabolic brain changes correspond with age-associated cognitive decline. Physiologic and metabolic mechanisms, such as oxidative stress and neuroinflammation, may contribute to these changes, along with the contribution of comorbidities that secondarily affect the brain of older adults. Cognitive frailty often corresponds with physical frailty, both affected by multiple exogenous and endogenous factors. Neuropsychologic assessment provides a way of measuring the cognitive and functional status of older adults, which is useful for monitoring changes that may be occurring. Neuroimaging is also useful for characterizing age-associated structural, functional, physiologic, and metabolic brain changes, including alterations in cerebral blood flow and metabolite concentrations. Some interventions that may enhance cognitive function, such as cognitive training, neuromodulation, and pharmacologic approaches, exist or are being developed. Yet, preventing, slowing, and reversing the adverse effects of cognitive aging remains a challenge.
Collapse
Affiliation(s)
- Ronald A Cohen
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States; Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States.
| | - Michael M Marsiske
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States; Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States
| | - Glenn E Smith
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States; Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
12
|
Cohen RA, Gullett JM, Porges EC, Woods AJ, Lamb DG, Bryant VE, McAdams M, Tashima K, Cook R, Bryant K, Monnig M, Kahler CW, Monti PM. Heavy Alcohol Use and Age Effects on HIV-Associated Neurocognitive Function. Alcohol Clin Exp Res 2019; 43:147-157. [PMID: 30371953 PMCID: PMC6467512 DOI: 10.1111/acer.13915] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 10/19/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND There is growing concern about the health impact of heavy alcohol use in people infected with human immunodeficiency virus (HIV+). Mixed findings of past studies regarding the cognitive impact of alcohol use in HIV+ adults have been mixed, with inconsistent evidence that alcohol consumption exacerbates HIV-associated brain dysfunction. This study examined contributions of current heavy drinking, lifetime alcohol use disorder (AUD), and age to cognitive deficits in HIV+ adults, and relative to other HIV-associated clinical factors. METHODS Cognitive performance of HIV+ adults (n = 104) was assessed, and comparisons were made between heavy current to nonheavy drinkers (NIAAA criteria), lifetime AUD versus no-AUD, and older (>50 years) versus younger participants. Hierarchical regression analyses were conducted to examine the association between cognitive performance and current heavy drinking, lifetime AUD, and older age, while also correcting for HIV clinical factors and history of other substance use. RESULTS Individuals reporting current heavy drinking and meeting criteria for lifetime AUD demonstrated the greatest degree of deficits across multiple cognitive domains. Deficits were greatest among HIV+ adults with lifetime AUD, and older age was also associated with weaker cognitive performance. Lifetime AUD and older age independently exhibited stronger associations with cognitive performance than HIV clinical factors (e.g., viral load, current CD4, and nadir CD4) or past opiate and cocaine use. CONCLUSIONS Current heavy drinking and lifetime AUD adversely affect cognitive function in HIV+ adults. Greatest deficits existed when there was a history of AUD and continued current heavy drinking, indicating that past AUD continues to have an adverse impact and should not be ignored. That alcohol use was more strongly associated with cognitive performance than HIV clinical factors underscore clinical importance of targeting reduction in heavy alcohol consumption in HIV+ adults.
Collapse
Affiliation(s)
- Ronald A. Cohen
- Center for Cognitive Aging and Memory, University of Florida
- Department of Clinical and Health Psychology University of Florida
| | - Joseph M. Gullett
- Center for Cognitive Aging and Memory, University of Florida
- Department of Clinical and Health Psychology University of Florida
| | - Eric C. Porges
- Center for Cognitive Aging and Memory, University of Florida
- Department of Clinical and Health Psychology University of Florida
| | - Adam J Woods
- Center for Cognitive Aging and Memory, University of Florida
- Department of Clinical and Health Psychology University of Florida
| | - Damon G. Lamb
- Department of Psychiatry, University of Florida
- Malcom Randall VA Medical Center, Gainesville, FL
| | - Vaughn E. Bryant
- Center for Cognitive Aging and Memory, University of Florida
- Department of Clinical and Health Psychology University of Florida
| | - Mikayla McAdams
- Department of Infectious Medicine, The Miriam Hospital, Alpert College of Medicine, Brown University
| | - Karen Tashima
- Department of Infectious Medicine, The Miriam Hospital, Alpert College of Medicine, Brown University
| | - Robert Cook
- Department of Epidemiology, University of Florida
| | | | - Mollie Monnig
- Department of Behavioral Sciences, School of Public Health, Brown University
| | | | - Peter M. Monti
- Department of Behavioral Sciences, School of Public Health, Brown University
| |
Collapse
|