1
|
Cao P, Chao X, Ni HM, Ding WX. An Update on Animal Models of Alcohol-Associated Liver Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2025:S0002-9440(25)00032-X. [PMID: 39884572 DOI: 10.1016/j.ajpath.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/06/2024] [Accepted: 11/20/2024] [Indexed: 02/01/2025]
Abstract
Alcohol-associated liver disease (ALD) is a significant global health concern and a leading cause of liver disease-related deaths. However, the treatment options are limited due to the lack of animal models that accurately replicate ALD pathogenesis. An ideal ALD animal model should have pathological characteristics similar to those of human ALD, with a clear pathological process and ease of drug intervention. Over the years, researchers have focused on developing ideal ALD preclinical animal models by testing various methods, such as ad libitum drinking water with ethanol, acute, single large doses of ethanol gavage, multiple alcohol gavages in a short period, the Lieber-DeCarli liquid diet feeding model, the intragastric infusion model, and the Gao-binge model. With the increasing occurrence of obesity and metabolic dysfunction-associated steatotic liver disease, a new category of metabolic and alcohol-associated liver disease (MetALD) is also emerging. Studies have investigated the combined effects of a high-fat diet combined with binge alcohol or drinking water containing ethanol to mimic MetALD. In addition to mice, other species such as rats, guinea pigs, zebrafish, and non-human primates have also been tested to establish ALD preclinical models. This review aims to summarize current animal ALD models, particularly the emerging MetALD models, with the hope of providing a valuable reference for establishing more effective animal models in ALD studies in the future.
Collapse
Affiliation(s)
- Peng Cao
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Xiaojuan Chao
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas; Department of Internal Medicine, Division of Gastroenterology, Hepatology & Mobility, University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
2
|
Yan S, Lin Z, Ma M, Arasteh A, Yin XM. Cholestatic insult triggers alcohol-associated hepatitis in mice. Hepatol Commun 2024; 8:e0566. [PMID: 39445893 PMCID: PMC11512636 DOI: 10.1097/hc9.0000000000000566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/11/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Alcohol-associated hepatitis (AH) is a severe, potentially life-threatening form of alcohol-associated liver disease with limited therapeutic options. Existing evidence shows that biliary dysfunction and cholestasis are common in patients with AH and are associated with poorer prognosis. However, the role of cholestasis in the development of AH is largely unknown. We aimed to examine the hypothesis that cholestasis can be an important etiology factor for AH. METHODS To study the interaction of cholestasis and alcohol, chronically ethanol (EtOH)-fed mice were challenged with a subtoxic dose of α-naphthylisothiocyanate (ANIT), a well-studied intrahepatic cholestasis inducer. Liver injury was measured by biochemical and histological methods. RNAseq was performed to determine hepatic transcriptomic changes. The impact of inflammation was assessed using an anti-LY6G antibody to deplete the neutrophils and DNase I to degrade neutrophil extracellular traps. RESULTS ANIT synergistically enhanced liver injury following a 4-week EtOH feeding with typical features of AH, including increased serum levels of ALT, AST, and total bile acids, cholestasis, necrosis, neutrophil infiltration, and accumulation of neutrophil extracellular traps. RNAseq revealed multiple genes uniquely altered in the livers of EtOH/ANIT-treated mice. Analysis of differentially expressed genes suggested an enrichment of genes related to inflammatory response. Anti-LY6G antibody or DNase I treatment significantly inhibited liver damage in EtOH/ANIT-treated mice. CONCLUSIONS Our results support the hypothesis that cholestasis can be a critical contributor to the pathogenesis of AH. A combined treatment of EtOH and ANIT in mice presents biochemical, histological, and molecular features similar to those found in patients with AH, suggesting that this treatment scheme can be a useful model for studying Alcohol-associated Cholestasis and Hepatitis (AlChoHep).
Collapse
|
3
|
Liu Y, Chen S, Yu S, Wang J, Zhang X, Lv H, Aboubacar H, Gao N, Ran X, Sun Y, Cao G. LPS-TLR4 pathway exaggerates alcoholic hepatitis via provoking NETs formation. GASTROENTEROLOGIA Y HEPATOLOGIA 2024; 47:158-169. [PMID: 37150251 DOI: 10.1016/j.gastrohep.2023.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/27/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023]
Abstract
BACKGROUND Intrahepatic infiltration of neutrophils is a character of alcoholic hepatitis (AH) and neutrophil extracellular traps (NETs) are an important strategy for neutrophils to fix and kill invading microorganisms. The gut-liver axis has been thought to play a critical role in many liver diseases also including AH. However, whether NETs appear in AH and play role in AH is still unsure. METHODS Serum samples from AH patients were collected and LPS and MPO-DNA were detected. WT, NE KO, and TLR4 KO mice were used to build the AH model, and the intestinal bacteria were eliminated at the same time and LPS was given. Then the formation of NETs and AH-related markers were detected. RESULTS The serum MPO-DNA and LPS concentration was increased in AH patients and a correlation was revealed between these two indexes. More intrahepatic NETs formed in AH mice. NETs formation decreased with antibiotic intervention and restored with antibiotic intervention plus LPS supplement. While NETs formation failed to change with gut microbiome or combine LPS supplement in TLR4 KO mice. As we tested AH-related characters, liver injury, intrahepatic fat deposition, inflammation, and fibrosis alleviated with depletion of NE. These related marks were also attenuated with gut sterilization by antibiotics and recovered with a combined treatment with antibiotics plus LPS. But the AH-related markers did show a difference in TLR4 KO mice when they received the same treatment. CONCLUSION Intestinal-derived LPS promotes NETs formation in AH through the TLR4 pathway and further accelerates the AH process by NETs.
Collapse
Affiliation(s)
- Yang Liu
- Department of General Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China.
| | - Shuo Chen
- Department of General Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| | - Shuo Yu
- Department of General Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China; Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| | - Jiazhong Wang
- Department of General Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| | - Xin Zhang
- Department of Infectious Diseases, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| | - Hao Lv
- Department of General Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| | - Harouna Aboubacar
- Department of General Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| | - Nan Gao
- Department of General Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China; Department of Infectious Diseases, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China; Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| | - Xiaoli Ran
- Department of General Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China; Department of Infectious Diseases, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China; Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| | - Yun Sun
- Department of General Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China; Department of Infectious Diseases, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China; Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| | - Gang Cao
- Department of General Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China.
| |
Collapse
|
4
|
Park YR, Lee HL, Hyun JY, Choi J, Moon JH, Kim BY, Yang SJ, Lee JH, Kim BK, Park TS, Suk KT, Lee DY. Systemic multiomics evaluation of the therapeutic effect of Bacteroides species on liver cirrhosis in male mice. Microbiol Spectr 2023; 11:e0534922. [PMID: 37819146 PMCID: PMC10848840 DOI: 10.1128/spectrum.05349-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/28/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE The human gut microbiome mediates bidirectional interaction within the gut-liver axis, while liver diseases, including liver cirrhosis, are very closely related to the state of the gut environment. Thus, improving the health of the gut-liver axis by targeting the intestinal microbiota is a potential therapeutic approach in hepatic diseases. This study examines changes in metabolomics and microbiome composition by treating bacteria derived from the human gut in mice with liver cirrhosis. Interorgan-based multiomics profiling coupled with functional examination demonstrated that the treatment of Bacteroides dorei pertained to protective effects on liver cirrhosis by normalizing the functional, metabolic, and metagenomic environment through the gut-liver axis. The study provides the potential value of a multiomics-based and interorgan-targeted evaluation platform for the comprehensive examination and mechanistic understanding of a wide range of biologics, including gut microbes. Furthermore, the current finding also suggests in-depth future research focusing on the discovery and validation of next-generation probiotics and products (postbiotics).
Collapse
Affiliation(s)
- Ye Rin Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Hae Lee Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Ji Ye Hyun
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, South Korea
| | - Jieun Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Ji Hyun Moon
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Byung Yong Kim
- R&D Center, Chong Kun Dang Healthcare, Seoul, South Korea
| | - Seung-Jo Yang
- R&D Discovery Center, CJ Bioscience, Inc, Seoul, South Korea
| | - Je Hee Lee
- R&D Discovery Center, CJ Bioscience, Inc, Seoul, South Korea
| | - Byoung Kook Kim
- Chong Kun Dang Bio Research Institute, Gyeonggi-do, South Korea
| | - Tae-Sik Park
- Department of Life Science, Gachon University, Sungnam, South Korea
| | - Ki Tae Suk
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, South Korea
| | - Do Yup Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Interdisciplinary Programs in Agricultural Genomics, Seoul National University, Seoul, South Korea
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, South Korea
- Green Bio Science & Technology, Bio-Food Industrialization, Seoul National University, Gangwon-do, South Korea
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, South Korea
| |
Collapse
|
5
|
Qian H, Ding WX. SQSTM1/p62 and Hepatic Mallory-Denk Body Formation in Alcohol-Associated Liver Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1415-1426. [PMID: 36906265 PMCID: PMC10642158 DOI: 10.1016/j.ajpath.2023.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 03/12/2023]
Abstract
Sequestosome 1 (SQSTM1/p62; hereafter p62) is an autophagy receptor protein for selective autophagy primarily due to its direct interaction with the microtubule light chain 3 protein that specifically localizes on autophagosome membranes. As a result, impaired autophagy leads to the accumulation of p62. p62 is also a common component of many human liver disease-related cellular inclusion bodies, such as Mallory-Denk bodies, intracytoplasmic hyaline bodies, α1-antitrypsin aggregates, as well as p62 bodies and condensates. p62 also acts as an intracellular signaling hub, and it involves multiple signaling pathways, including nuclear factor erythroid 2-related factor 2, NF-κB, and the mechanistic target of rapamycin, which are critical for oxidative stress, inflammation, cell survival, metabolism, and liver tumorigenesis. This review discusses the recent insights of p62 in protein quality control, including the role of p62 in the formation and degradation of p62 stress granules and protein aggregates as well as regulation of multiple signaling pathways in the pathogenesis of alcohol-associated liver disease.
Collapse
Affiliation(s)
- Hui Qian
- Department of Pharmacology, Toxicology, and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology, and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas; Department of Internal Medicine, The University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
6
|
Randall DW, Kieswich J, Hoyles L, McCafferty K, Curtis M, Yaqoob MM. Gut Dysbiosis in Experimental Kidney Disease: A Meta-Analysis of Rodent Repository Data. J Am Soc Nephrol 2023; 34:533-553. [PMID: 36846952 PMCID: PMC10103368 DOI: 10.1681/asn.0000000000000071] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/05/2022] [Indexed: 02/05/2023] Open
Abstract
SIGNIFICANCE STATEMENT Alterations in gut microbiota contribute to the pathophysiology of a diverse range of diseases, leading to suggestions that chronic uremia may cause intestinal dysbiosis that contributes to the pathophysiology of CKD. Various small, single-cohort rodent studies have supported this hypothesis. In this meta-analysis of publicly available repository data from studies of models of kidney disease in rodents, cohort variation far outweighed any effect of experimental kidney disease on the gut microbiota. No reproducible changes in animals with kidney disease were seen across all cohorts, although a few trends observed in most experiments may be attributable to kidney disease. The findings suggest that rodent studies do not provide evidence for the existence of "uremic dysbiosis" and that single-cohort studies are unsuitable for producing generalizable results in microbiome research. BACKGROUND Rodent studies have popularized the notion that uremia may induce pathological changes in the gut microbiota that contribute to kidney disease progression. Although single-cohort rodent studies have yielded insights into host-microbiota relationships in various disease processes, their relevance is limited by cohort and other effects. We previously reported finding metabolomic evidence that batch-to-batch variations in the microbiome of experimental animals are significant confounders in an experimental study. METHODS To attempt to identify common microbial signatures that transcend batch variability and that may be attributed to the effect of kidney disease, we downloaded all data describing the molecular characterization of the gut microbiota in rodents with and without experimental kidney disease from two online repositories comprising 127 rodents across ten experimental cohorts. We reanalyzed these data using the DADA2 and Phyloseq packages in R, a statistical computing and graphics system, and analyzed data both in a combined dataset of all samples and at the level of individual experimental cohorts. RESULTS Cohort effects accounted for 69% of total sample variance ( P <0.001), substantially outweighing the effect of kidney disease (1.9% of variance, P =0.026). We found no universal trends in microbial population dynamics in animals with kidney disease, but observed some differences (increased alpha diversity, a measure of within-sample bacterial diversity; relative decreases in Lachnospiraceae and Lactobacillus ; and increases in some Clostridia and opportunistic taxa) in many cohorts that might represent effects of kidney disease on the gut microbiota . CONCLUSIONS These findings suggest that current evidence that kidney disease causes reproducible patterns of dysbiosis is inadequate. We advocate meta-analysis of repository data as a way of identifying broad themes that transcend experimental variation.
Collapse
Affiliation(s)
- David W. Randall
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Julius Kieswich
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Lesley Hoyles
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, United Kingdom
| | - Kieran McCafferty
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Michael Curtis
- Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, Guy's Tower Wing, Great Maze Pond, United Kingdom
| | - Muhammed M. Yaqoob
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
7
|
Hou S, Wang D, Yuan X, Yuan X, Yuan Q. Identification of biomarkers co-associated with M1 macrophages, ferroptosis and cuproptosis in alcoholic hepatitis by bioinformatics and experimental verification. Front Immunol 2023; 14:1146693. [PMID: 37090703 PMCID: PMC10117880 DOI: 10.3389/fimmu.2023.1146693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023] Open
Abstract
Backgrounds Alcoholic hepatitis (AH) is a major health problem worldwide. There is increasing evidence that immune cells, iron metabolism and copper metabolism play important roles in the development of AH. We aimed to explore biomarkers that are co-associated with M1 macrophages, ferroptosis and cuproptosis in AH patients. Methods GSE28619 and GSE103580 datasets were integrated, CIBERSORT algorithm was used to analyze the infiltration of 22 types of immune cells and GSVA algorithm was used to calculate ferroptosis and cuproptosis scores. Using the "WGCNA" R package, we established a gene co-expression network and analyzed the correlation between M1 macrophages, ferroptosis and cuproptosis scores and module characteristic genes. Subsequently, candidate genes were screened by WGCNA and differential expression gene analysis. The LASSO-SVM analysis was used to identify biomarkers co-associated with M1 macrophages, ferroptosis and cuproptosis. Finally, we validated these potential biomarkers using GEO datasets (GSE155907, GSE142530 and GSE97234) and a mouse model of AH. Results The infiltration level of M1 macrophages was significantly increased in AH patients. Ferroptosis and cuproptosis scores were also increased in AH patients. In addition, M1 macrophages, ferroptosis and cuproptosis were positively correlated with each other. Combining bioinformatics analysis with a mouse model of AH, we found that ALDOA, COL3A1, LUM, THBS2 and TIMP1 may be potential biomarkers co-associated with M1 macrophages, ferroptosis and cuproptosis in AH patients. Conclusion We identified 5 potential biomarkers that are promising new targets for the treatment and diagnosis of AH patients.
Collapse
Affiliation(s)
- Shasha Hou
- Department of Life Science and Engineering, Jining University, Jining, China
| | - Dan Wang
- College of Life Science, Mudanjiang Medical University, Mudanjiang, China
| | - Xiaxia Yuan
- Department of Life Science and Engineering, Jining University, Jining, China
| | - Xiaohuan Yuan
- College of Life Science, Mudanjiang Medical University, Mudanjiang, China
| | - Qi Yuan
- College of Life Science, Mudanjiang Medical University, Mudanjiang, China
- *Correspondence: Qi Yuan,
| |
Collapse
|
8
|
Mahmoudi A, Moallem SA, Johnston TP, Sahebkar A. Liver Protective Effect of Fenofibrate in NASH/NAFLD Animal Models. PPAR Res 2022; 2022:5805398. [PMID: 35754743 PMCID: PMC9232374 DOI: 10.1155/2022/5805398] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/19/2022] [Accepted: 06/02/2022] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is initiated by excessive fat buildup in the liver, affecting around 35% of the world population. Various circumstances contribute to the initiation and progression of NAFLD, and it encompasses a wide range of disorders, from simple steatosis to nonalcoholic steatohepatitis (NASH), cirrhosis, and liver cancer. Although several treatments have been proposed, there is no definitive cure for NAFLD. In recent decades, several medications related to other metabolic disorders have been evaluated in preclinical studies and in clinical trials due to the correlation of NAFLD with other metabolic diseases. Fenofibrate is a fibrate drug approved for dyslipidemia that could be used for modulation of hepatic fat accumulation, targeting peroxisome proliferator-activator receptors, and de novo lipogenesis. This drug offers potential therapeutic efficacy for NAFLD due to its capacity to decrease the accumulation of hepatic lipids, as well as its antioxidant, anti-inflammatory, and antifibrotic properties. To better elucidate the pathophysiological processes underlying NAFLD, as well as to test therapeutic agents/interventions, experimental animal models have been extensively used. In this article, we first reviewed experimental animal models that have been used to evaluate the protective effects of fenofibrate on NAFLD/NASH. Next, we investigated the impact of fenofibrate on the hepatic microcirculation in NAFLD and then summarized the beneficial effects of fenofibrate, as compared to other drugs, for the treatment of NAFLD. Lastly, we discuss possible adverse side effects of fenofibrate on the liver.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Seyed Adel Moallem
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thomas P. Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Yan S, Yin XM. Gut microbiome in liver pathophysiology and cholestatic liver disease. LIVER RESEARCH 2021; 5:151-163. [PMID: 35355516 PMCID: PMC8963136 DOI: 10.1016/j.livres.2021.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An increasing amount of evidence has shown critical roles of gut microbiome in host pathophysiology. The gut and the liver are anatomically and physiologically connected. Given the critical role of gut-liver axis in the homeostasis of the liver, gut microbiome interplays with a diverse spectrum of hepatic changes, including steatosis, inflammation, fibrosis, cholestasis, and tumorigenesis. In clinic, cholestasis manifests with fatigue, pruritus, and jaundice, caused by the impairment in bile formation or flow. Studies have shown that the gut microbiome is altered in cholestatic liver disease. In this review, we will explore the interaction between the gut microbiome and the liver with a focus on the alteration and the role of gut microbiome in cholestatic liver disease. We will also discuss the prospect of exploiting the gut microbiome in the development of novel therapies for cholestatic liver disease.
Collapse
|