1
|
Sicher AR, Crowley NA. Adolescent Alcohol Exposure Dysregulates Developing Cortical GABA Circuits. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1473:159-177. [PMID: 40128479 DOI: 10.1007/978-3-031-81908-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Adolescence is a critical developmental period during which physical, behavioral, and neurobiological maturation occurs. Within the brain, the prefrontal cortex is one of the last brain regions to undergo remodeling, often into adulthood. These relatively late developmental changes leave the prefrontal cortex uniquely vulnerable to insults beginning in adolescence-including alcohol exposure. Adolescents initiate alcohol consumption at a high rate, increasing the risk of lasting consequences through impairing the typical development of the prefrontal cortex. In this chapter, we discuss the development of prefrontal circuitry and the current literature investigating how alcohol influences prefrontal development. We primarily focus on preclinical studies in rodent models, which allow for the study of specific populations of neurons in the prefrontal cortex. We identify several future directions for adolescent alcohol research, including greater focus on neuropeptides and stronger understanding of sex differences in brain maturation and alcohol consumption.
Collapse
Affiliation(s)
- Avery R Sicher
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
- Neuroscience Graduate Program, Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Nicole A Crowley
- Department of Biology, The Pennsylvania State University, University Park, PA, USA.
- Neuroscience Graduate Program, Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, USA.
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA.
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
2
|
Zallar LJ, Rivera-Irizarry JK, Hamor PU, Pigulevskiy I, Rico Rozo AS, Mehanna H, Liu D, Welday JP, Bender R, Asfouri JJ, Levine OB, Skelly MJ, Hadley CK, Fecteau KM, Nelson S, Miller J, Ghazal P, Bellotti P, Singh A, Hollmer LV, Erikson DW, Geri J, Pleil KE. Rapid nongenomic estrogen signaling controls alcohol drinking behavior in mice. Nat Commun 2024; 15:10725. [PMID: 39737915 PMCID: PMC11686278 DOI: 10.1038/s41467-024-54737-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/19/2024] [Indexed: 01/01/2025] Open
Abstract
Ovarian-derived estrogen can signal non-canonically at membrane-associated receptors in the brain to rapidly regulate neuronal function. Early alcohol drinking confers greater risk for alcohol use disorder in women than men, and binge alcohol drinking is correlated with high estrogen levels, but a causal role for estrogen in driving alcohol drinking has not been established. We found that female mice displayed greater binge alcohol drinking and reduced avoidance when estrogen was high during the estrous cycle than when it was low. The pro-drinking, but not anxiolytic, effect of high endogenous estrogen occurred via rapid signaling at membrane-associated estrogen receptor alpha in the bed nucleus of the stria terminalis, which promoted synaptic excitation of corticotropin-releasing factor neurons and facilitated their activity during alcohol drinking. Thus, this study demonstrates a rapid, nongenomic signaling mechanism for ovarian-derived estrogen in the brain controlling behavior in gonadally intact females.
Collapse
Affiliation(s)
- Lia J Zallar
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jean K Rivera-Irizarry
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Peter U Hamor
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Irena Pigulevskiy
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Ana-Sofia Rico Rozo
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Hajar Mehanna
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Dezhi Liu
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jacqueline P Welday
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Rebecca Bender
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Joseph J Asfouri
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Olivia B Levine
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Mary Jane Skelly
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Psychology Department, Iona University, New Rochelle, NY, USA
| | - Colleen K Hadley
- Weill Cornell/Rockefeller/Sloan Kettering Tri-institutional MD-PhD Program, New York, NY, 10065, USA
| | - Kristopher M Fecteau
- Endocrine Technologies Core, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Scottie Nelson
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - John Miller
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Pasha Ghazal
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Peter Bellotti
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Ashna Singh
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Lauren V Hollmer
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - David W Erikson
- Endocrine Technologies Core, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Jacob Geri
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Kristen E Pleil
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
3
|
Frasier RM, Sergio TDO, Starski PA, Hopf FW. Heart rate variability: A primer for alcohol researchers. Alcohol 2024; 120:41-50. [PMID: 38906390 PMCID: PMC11423806 DOI: 10.1016/j.alcohol.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/23/2024]
Abstract
Problem alcohol drinking remains a major cost and burden for society. Also, rates of problem drinking in women have dramatically increased in recent decades, and women are at risk for more alcohol problems and comorbidities. The purpose of this commentary is to discuss the potential utility of cardiac measures, including heart rate (HR) and HR variability (HRV), as markers of individual and sex differences in the drive to drink alcohol. We recently used cardiac telemetry in female and male adult rats to determine whether different cardiac markers, including HR and HRV, would differently predict alcohol and anxiety-like behavior across the sexes. Indeed, female behaviors related to HRV measures that indicate more parasympathetic (PNS) influence (the "rest and digest" system). In contrast, male behaviors are associated more with sympathetic (SNS) indicators (the activation system). Remarkably, similar sex differences in PNS versus SNS engagement under challenge are seen in several human studies, suggesting strong cross-species convergence in differential autonomic regulation in females and males. Here, we describe the larger challenges that alcohol addiction presents, and how HRV measures may provide new biomarkers to help enhance development of more individualized and sex-specific treatments. We briefly explain the physiological systems underlying cardiac PNS and SNS states, and how specific HRV metrics are defined and validated, especially why particular HRV measures are considered to reflect more PNS versus SNS influence. Finally, we describe hormonal influences and sex differences in brain circuits related to cardiac autonomic regulation. Together, these findings show that HR and HRV have potential for uncovering key underlying mechanisms of sex and individual differences in autonomic drivers, which could guide more personalized treatment.
Collapse
Affiliation(s)
- Raizel M Frasier
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University School of Medicine, Medical Scientist Training Program, Indianapolis, IN, USA
| | - Thatiane de Oliveira Sergio
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, USA
| | - Phillip A Starski
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, USA
| | - F Woodward Hopf
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
4
|
Zallar LJ, Rivera-Irizarry JK, Hamor PU, Pigulevskiy I, Rico Rozo AS, Mehanna H, Liu D, Welday JP, Bender R, Asfouri JJ, Levine OB, Skelly MJ, Hadley CK, Fecteau KM, Nelson S, Miller J, Ghazal P, Bellotti P, Singh A, Hollmer LV, Erikson DW, Geri J, Pleil KE. Rapid nongenomic estrogen signaling controls alcohol drinking behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.02.565358. [PMID: 37961707 PMCID: PMC10635092 DOI: 10.1101/2023.11.02.565358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Ovarian-derived estrogen is a key modulator of numerous physiological processes via genomic and nongenomic mechanisms, including signaling non-canonically at membrane-associated estrogen receptors in the brain to rapidly regulate neuronal function. However, the mechanisms mediating estrogen regulation of behaviors such as alcohol consumption remain unclear. Early alcohol drinking confers greater risk for alcohol use disorder in women than men, and binge alcohol drinking is correlated with high circulating estrogen levels, but a causal role for estrogen signaling in driving alcohol drinking in gonadally-intact animals has not been established. We found that female mice displayed greater binge alcohol drinking and reduced avoidance behavior when circulating estrogen was high during the proestrus phase of the estrous cycle than when it was low, contributing to sex differences in these behaviors. The pro-drinking, but not anxiolytic, effect of high endogenous estrogen state occurred via rapid estrogen signaling at membrane-associated estrogen receptor alpha in the bed nucleus of the stria terminalis, which promoted synaptic excitation of corticotropin-releasing factor neurons and facilitated their activity during alcohol drinking behavior. This study is the first to demonstrate a rapid, nongenomic signaling mechanism for ovarian-derived estrogen signaling in the brain controlling behavior in gonadally intact females, and it establishes a causal role for estrogen in an intact hormonal context for driving alcohol consumption that contributes to known sex differences in this behavior.
Collapse
Affiliation(s)
- Lia J. Zallar
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jean K. Rivera-Irizarry
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Peter U. Hamor
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Irena Pigulevskiy
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Ana-Sofia Rico Rozo
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Hajar Mehanna
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Dezhi Liu
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jacqueline P. Welday
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Rebecca Bender
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Joseph J. Asfouri
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Olivia B. Levine
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Mary Jane Skelly
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Colleen K. Hadley
- Weill Cornell/Rockefeller/Sloan Kettering Tri-institutional MD-PhD Program, New York, NY 10065, USA
| | - Kristopher M. Fecteau
- Endocrine Technologies Core, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Scottie Nelson
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - John Miller
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Pasha Ghazal
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Peter Bellotti
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Ashna Singh
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Lauren V. Hollmer
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - David W. Erikson
- Endocrine Technologies Core, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Jacob Geri
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Kristen E. Pleil
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| |
Collapse
|
5
|
De Oliveira Sergio T, Darevsky D, Kellner J, de Paula Soares V, de Cassia Albino M, Maulucci D, Wean S, Hopf FW. Sex- and estrous-related response patterns for alcohol depend critically on the level of compulsion-like challenge. Prog Neuropsychopharmacol Biol Psychiatry 2024; 133:111008. [PMID: 38641236 PMCID: PMC11423807 DOI: 10.1016/j.pnpbp.2024.111008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/29/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
Alcohol use disorder is a substantial social and economic burden. During the last years, the number of women with drinking problems has been increasing, and one main concern is that they are particularly more vulnerable to negative consequences of alcohol. However, little is known about female-specific response patterns for alcohol, and potential underlying differences in brain mechanisms, including for compulsion-like alcohol drinking (when intake persists despite adverse consequences). We used lickometry to assess behavioral microstructure in adult Wistar male and female rats (n = 28-30) during alcohol-only drinking or moderate- or higher-challenge alcohol compulsion (10 or 60 mg/l quinine in alcohol, respectively). Estrous stages were determined and related to drinking levels and patterns of responding to alcohol, as was ovariectomy. Our findings showed that females (where we didn't determine estrus stage) had similar total licks in a session as males, but significantly longer licking bouts under alcohol-only and moderate-challenge, suggesting greater persistence. Further, greater intake under alcohol-only and moderate-challenge was related to faster licking in males, while female consumption was not related to licking speed. Thus, females could have increased persistence without greater vigor, unlike males. However, under higher-challenge, faster licking did predict higher intake in females, similar to males. To better understand female higher-challenge responding, we examined drinking in relation to phases of the estrous cycle. Higher-challenge had longer bouts only in late diestrus. In addition, ovariectomy led to longer bouts only under higher-challenge, suggesting that conditions with reduced hormone levels could increase female persistence for alcohol under higher-challenge. However, ovariectomy also reduced alcohol-only and moderate-challenge drinking but did not reduce bout length. Thus, intake level and response strategy could be regulated somewhat differently by ovarian hormones. Finally, moderate-challenge licking speed was less variable during early diestrus, and we previously showed more stereotyped responding specifically under moderate-challenge in males. By combining behavioral microstructure and sex- and estrus-related changes in drinking patterns, our results suggest that females have greater persistence for alcohol under lower-challenge drinking, while late diestrus and ovariectomy unmasked greater persistence under higher-challenge. Together, our novel insights could help develop more effective and personalized treatments for problematic alcohol use.
Collapse
Affiliation(s)
- Thatiane De Oliveira Sergio
- Department of Psychiatry, Indiana University School of Medicine (IUSOM), Indianapolis, IN, USA; Stark Neuroscience Research Institute, IUSOM, Indianapolis, IN, USA
| | - David Darevsky
- University of California at Berkeley-UCSF Graduate Program in Bioengineering, USA; UCSF Medical Scientist Training Program, San Francisco, CA, USA
| | - Jacob Kellner
- Department of Psychiatry, Indiana University School of Medicine (IUSOM), Indianapolis, IN, USA; Stark Neuroscience Research Institute, IUSOM, Indianapolis, IN, USA
| | - Vanessa de Paula Soares
- Laboratory of Psychopharmacology, Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Maryelle de Cassia Albino
- Laboratory of Psychopharmacology, Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Danielle Maulucci
- Department of Psychiatry, Indiana University School of Medicine (IUSOM), Indianapolis, IN, USA; Stark Neuroscience Research Institute, IUSOM, Indianapolis, IN, USA
| | - Sarah Wean
- Department of Psychiatry, Indiana University School of Medicine (IUSOM), Indianapolis, IN, USA; Stark Neuroscience Research Institute, IUSOM, Indianapolis, IN, USA
| | - Frederic W Hopf
- Department of Psychiatry, Indiana University School of Medicine (IUSOM), Indianapolis, IN, USA; Stark Neuroscience Research Institute, IUSOM, Indianapolis, IN, USA.
| |
Collapse
|
6
|
Navarro D, Gasparyan A, Navarrete F, Manzanares J. Fetal Cannabinoid Syndrome: Behavioral and Brain Alterations of the Offspring Exposed to Dronabinol during Gestation and Lactation. Int J Mol Sci 2024; 25:7453. [PMID: 39000559 PMCID: PMC11242182 DOI: 10.3390/ijms25137453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
This study establishes a fetal cannabinoid syndrome model to evaluate the effects of high doses of dronabinol (synthetic THC) during pregnancy and lactation on behavioral and brain changes in male and female progeny and their susceptibility to alcohol consumption. Female C57BL/6J mice received dronabinol (10 mg/kg/12 h, p.o.) from gestational day 5 to postnatal day 21. On the weaning day, the offspring were separated by sex, and on postnatal day 60, behavioral and neurobiological changes were analyzed. Mice exposed to dronabinol exhibited increased anxiogenic and depressive-like behaviors and cognitive impairment. These behaviors were associated with neurodevelopment-related gene and protein expression changes, establishing, for the first time, an association among behavioral changes, cognitive impairment, and neurobiological alterations. Exposure to dronabinol during pregnancy and lactation disrupted the reward system, leading to increased motivation to consume alcohol in the offspring. All these modifications exhibited sex-dependent patterns. These findings reveal the pronounced adverse effects on fetal neurodevelopment resulting from cannabis use during pregnancy and lactation and strongly suggest the need to prevent mothers who use cannabis in this period from the severe and permanent side effects on behavior and brain development that may occur in their children.
Collapse
Affiliation(s)
- Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| |
Collapse
|
7
|
Frasier RM, Starski PA, de Oliveira Sergio T, Grippo AJ, Hopf FW. Sex differences in heart rate variability measures that predict alcohol drinking in rats. Addict Biol 2024; 29:e13387. [PMID: 38502109 PMCID: PMC11061848 DOI: 10.1111/adb.13387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/23/2024] [Accepted: 02/13/2024] [Indexed: 03/20/2024]
Abstract
Problem alcohol drinking continues to be a substantial cost and burden. In addition, alcohol consumption in women has increased in recent decades, and women can have greater alcohol problems and comorbidities. Thus, there is a significant need for novel therapeutics to enhance sex-specific, individualized treatment. Heart rate (HR) and HR variability (HRV) are of broad interest because they may be both biomarkers for and drivers of pathological states. HRV reflects the dynamic balance between sympathetic (SNS, 'fight or flight') and parasympathetic (PNS, 'rest and digest') systems. Evidence from human studies suggest PNS predominance in women and SNS in men during autonomic regulation, indicating the possibility of sex differences in risk factors and physiological drivers of problem drinking. To better understand the association between HRV sex differences and alcohol drinking, we examined whether alcohol consumption levels correlated with time domain HRV measures (SDNN and rMSSD) at baseline, at alcohol drinking onset, and across 10 min of drinking, in adult female and male Wistar rats. In particular, we compared both HRV and HR measures under alcohol-only and compulsion-like conditions (alcohol + 10 mg/L quinine), because compulsion can often be a significant barrier to treatment of alcohol misuse. Importantly, previous work supports the possibility that different HRV measures could be interpreted to reflect PNS versus SNS influences. Here, we show that females with higher putative PNS indicators at baseline and at drinking onset had greater alcohol consumption. In contrast, male intake levels related to increased potential SNS measures at drinking onset. Once alcohol was consumed, HR predicted intake level in females, perhaps a pharmacological effect of alcohol. However, HRV changes were greater during compulsion-like intake versus alcohol-only, suggesting HRV changes (reduced SNS in females, reduced PNS and increased HR in males) specifically related to aversion-resistant intake. We find novel and likely clinically relevant autonomic differences associated with biological sex and alcohol drinking, suggesting that different autonomic mechanisms may promote differing aspects of female and male alcohol consumption.
Collapse
Affiliation(s)
- Raizel M. Frasier
- Department of PsychiatryIndiana University School of MedicineIndianapolisIndianaUSA
- Medical Scientist Training ProgramIndiana University School of MedicineIndianapolisIndianaUSA
| | - Phillip A. Starski
- Department of PsychiatryIndiana University School of MedicineIndianapolisIndianaUSA
| | | | - Angela J. Grippo
- Department of PsychologyNorthern Illinois UniversityDeKalbIllinoisUSA
| | - F. Woodward Hopf
- Department of PsychiatryIndiana University School of MedicineIndianapolisIndianaUSA
- Stark Neurosciences Research InstituteIndiana UniversityIndianapolisIndianaUSA
| |
Collapse
|