1
|
Rodríguez-Borillo O, Roselló-Jiménez L, Guarque-Chabrera J, Palau-Batet M, Gil-Miravet I, Pastor R, Miquel M, Font L. Neural correlates of cocaine-induced conditioned place preference in the posterior cerebellar cortex. Front Behav Neurosci 2023; 17:1174189. [PMID: 37179684 PMCID: PMC10169591 DOI: 10.3389/fnbeh.2023.1174189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/06/2023] [Indexed: 05/15/2023] Open
Abstract
Introduction Addictive drugs are potent neuropharmacological agents capable of inducing long-lasting changes in learning and memory neurocircuitry. With repeated use, contexts and cues associated with consumption can acquire motivational and reinforcing properties of abused drugs, triggering drug craving and relapse. Neuroplasticity underlying drug-induced memories takes place in prefrontal-limbic-striatal networks. Recent evidence suggests that the cerebellum is also involved in the circuitry responsible for drug-induced conditioning. In rodents, preference for cocaine-associated olfactory cues has been shown to correlate with increased activity at the apical part of the granular cell layer in the posterior vermis (lobules VIII and IX). It is important to determine if the cerebellum's role in drug conditioning is a general phenomenon or is limited to a particular sensory modality. Methods The present study evaluated the role of the posterior cerebellum (lobules VIII and IX), together with the medial prefrontal cortex (mPFC), ventral tegmental area (VTA), and nucleus accumbens (NAc) using a cocaine-induced conditioned place preference procedure with tactile cues. Cocaine CPP was tested using ascending (3, 6, 12, and 24 mg/kg) doses of cocaine in mice. Results Compared to control groups (Unpaired and Saline animals), Paired mice were able to show a preference for the cues associated with cocaine. Increased activation (cFos expression) of the posterior cerebellum was found in cocaine CPP groups and showed a positive correlation with CPP levels. Such increases in cFos activity in the posterior cerebellum significantly correlated with cFos expression in the mPFC. Discussion Our data suggest that the dorsal region of the cerebellum could be an important part of the network that mediates cocaine-conditioned behavior.
Collapse
Affiliation(s)
| | | | - Julian Guarque-Chabrera
- Área de Psicobiología, Universitat Jaume I, Castellón de la Plana, Spain
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
| | - María Palau-Batet
- Área de Psicobiología, Universitat Jaume I, Castellón de la Plana, Spain
| | - Isis Gil-Miravet
- Unitat Predepartamental de Medicina, Universitat Jaume I, Castellón de la Plana, Spain
| | - Raúl Pastor
- Área de Psicobiología, Universitat Jaume I, Castellón de la Plana, Spain
| | - Marta Miquel
- Área de Psicobiología, Universitat Jaume I, Castellón de la Plana, Spain
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
| | - Laura Font
- Área de Psicobiología, Universitat Jaume I, Castellón de la Plana, Spain
| |
Collapse
|
2
|
GSK3β Activity in Reward Circuit Functioning and Addiction. NEUROSCI 2021. [DOI: 10.3390/neurosci2040033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Glycogen synthase kinase-3β (GSK3β), primarily described as a regulator of glycogen metabolism, is a molecular hub linking numerous signaling pathways and regulates many cellular processes like cytoskeletal rearrangement, cell migration, apoptosis, and proliferation. In neurons, the kinase is engaged in molecular events related to the strengthening and weakening of synapses, which is a subcellular manifestation of neuroplasticity. Dysregulation of GSK3β activity has been reported in many neuropsychiatric conditions, like schizophrenia, major depressive disorder, bipolar disorder, and Alzheimer’s disease. In this review, we describe the kinase action in reward circuit-related structures in health and disease. The effect of pharmaceuticals used in the treatment of addiction in the context of GSK3β activity is also discussed.
Collapse
|
3
|
4R Tau Modulates Cocaine-Associated Memory through Adult Dorsal Hippocampal Neurogenesis. J Neurosci 2021; 41:6753-6774. [PMID: 34099513 DOI: 10.1523/jneurosci.2848-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/28/2021] [Accepted: 05/25/2021] [Indexed: 02/05/2023] Open
Abstract
The development, persistence and relapse of drug addiction require drug memory that generally develops with drug administration-paired contextual stimuli. Adult hippocampal neurogenesis (AHN) contributes to cocaine memory formation; however, the underlying mechanism remains unclear. Male mice hippocampal expression of Tau was significantly decreased during the cocaine-associated memory formation. Genetic overexpression of four microtubule-binding repeats Tau (4R Tau) in the mice hippocampus disrupted cocaine memory by suppressing AHN. Furthermore, 4R Tau directly interacted with phosphoinositide 3-kinase (PI3K)-p85 and impaired its nuclear translocation and PI3K-AKT signaling, processes required for hippocampal neuron proliferation. Collectively, 4R Tau modulates cocaine memory formation by disrupting AHN, suggesting a novel mechanism underlying cocaine memory formation and provide a new strategy for the treatment of cocaine addiction.SIGNIFICANCE STATEMENT Drug memory that generally develops with drug-paired contextual stimuli and drug administration is critical for the development, persistence and relapse of drug addiction. Previous studies have suggested that adult hippocampal neurogenesis (AHN) plays a role in cocaine memory formation. Here, we showed that Tau was significantly downregulated in the hippocampus in the cocaine memory formation. Tau knock-out (KO) promoted AHN in the hippocampal dentate gyrus (DG), resulting in the enhanced memory formation evoked by cocaine-cue stimuli. In contrast, genetically overexpressed 4R Tau in the hippocampus disrupted cocaine-cue memory by suppressing AHN. In addition, 4R Tau interacted directly with phosphoinositide 3-kinase (PI3K)-p85 and hindered its nuclear translocation, eventually repressing PI3K-AKT signaling, which is essential for hippocampal neuronal proliferation.
Collapse
|
4
|
Salisbury AJ, Blackwood CA, Cadet JL. Prolonged Withdrawal From Escalated Oxycodone Is Associated With Increased Expression of Glutamate Receptors in the Rat Hippocampus. Front Neurosci 2021; 14:617973. [PMID: 33536871 PMCID: PMC7848144 DOI: 10.3389/fnins.2020.617973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/30/2020] [Indexed: 11/30/2022] Open
Abstract
People suffering from opioid use disorder (OUD) exhibit cognitive dysfunctions. Here, we investigated potential changes in the expression of glutamate receptors in rat hippocampi at 2 h and 31 days after the last session of oxycodone self-administration (SA). RNA extracted from the hippocampus was used in quantitative polymerase chain reaction analyses. Rats, given long-access (9 h per day) to oxycodone (LgA), took significantly more drug than rats exposed to short-access (3 h per day) (ShA). In addition, LgA rats could be further divided into higher oxycodone taking (LgA-H) or lower oxycodone taking (LgA-L) groups, based on a cut-off of 50 infusions per day. LgA rats, but not ShA, rats exhibited incubation of oxycodone craving. In addition, LgA rats showed increased mRNA expression of GluA1-3 and GluN2a-c subunits as well as Grm3, Grm5, Grm6, and Grm8 subtypes of glutamate receptors after 31 days but not after 2 h of stopping the SA experiment. Changes in GluA1-3, Grm6, and Grm8 mRNA levels also correlated with increased lever pressing (incubation) after long periods of withdrawal from oxycodone. More studies are needed to elucidate the molecular mechanisms involved in altering the expression of these receptors during withdrawal from oxycodone and/or incubation of drug seeking.
Collapse
Affiliation(s)
| | | | - Jean Lud Cadet
- National Institute on Drug Abuse, Molecular Neuropsychiatry Branch, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
5
|
Chen G, Han W, Li A, Wang J, Xiao J, Huang X, Nazir KA, Shang Q, Qian H, Qiao C, Liu X, Li T. Phosphorylation of GluN2B subunits of N-methyl-d-aspartate receptors in the frontal association cortex involved in morphine-induced conditioned place preference in mice. Neurosci Lett 2021; 741:135470. [PMID: 33157174 DOI: 10.1016/j.neulet.2020.135470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
Morphine is one of the most abused drugs in the world, which has resulted in serious social problems. The frontal association cortex (FrA) has been shown to play a key role in memory formation and drug addiction. N-Methyl-d-aspartate receptors (NMDARs) are abundant in the prefrontal cortex (PFc) and much evidence indicates that GluN2B-containing NMDARs are involved in morphine-induced conditioned place preference (CPP). However, the function of GluN2B in the FrA during morphine-induced CPP has yet to be fully investigated. In the present work, a CPP animal model was employed to measure the expression of phosphorylated (p-) GluN2B (Serine; Ser 1303) in the FrA and NAc in different phases of morphine-induced CPP. We found that p-GluN2B (Ser 1303) was increased in the FrA during the development and reinstatement phases but unchanged in the extinction phase. The use of ifenprodil, a GluN2B-specific antagonist, to block the activity of GluN2B in the two phases attenuated morphine-induced CPP and reinstatement. Furthermore, ifenprodil also blocked morphine-induced upregulation of p-GluN2B (Ser 1303) in the FrA in both phases. These results indicate that GluN2B-containing NMDARs in the FrA may be involved in the regulation of morphine-induced CPP and reinstatement.
Collapse
Affiliation(s)
- Gang Chen
- School of Forensic Science and Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Wei Han
- School of Forensic Science and Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Science and Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China.
| | - Axiang Li
- School of Forensic Science and Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Jing Wang
- School of Forensic Science and Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Jing Xiao
- School of Forensic Science and Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Xin Huang
- School of Forensic Science and Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Khosa Asif Nazir
- School of Forensic Science and Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Qing Shang
- School of Forensic Science and Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Hongyan Qian
- School of Forensic Science and Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Chuchu Qiao
- School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Xinshe Liu
- School of Forensic Science and Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Science and Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China.
| | - Tao Li
- School of Forensic Science and Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Science and Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
6
|
Smaga I, Sanak M, Filip M. Cocaine-induced Changes in the Expression of NMDA Receptor Subunits. Curr Neuropharmacol 2020; 17:1039-1055. [PMID: 31204625 PMCID: PMC7052821 DOI: 10.2174/1570159x17666190617101726] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/31/2019] [Accepted: 06/11/2019] [Indexed: 11/28/2022] Open
Abstract
Cocaine use disorder is manifested by repeated cycles of drug seeking and drug taking. Cocaine exposure causes synaptic transmission in the brain to exhibit persistent changes, which are poorly understood, while the pharmacotherapy of this disease has not been determined. Multiple potential mechanisms have been indicated to be involved in the etiology of co-caine use disorder. The glutamatergic system, especially N-methyl-D-aspartate (NMDA) receptors, may play a role in sever-al physiological processes (synaptic plasticity, learning and memory) and in the pathogenesis of cocaine use disorder. The composition of the NMDA receptor subunits changes after contingent and noncontingent cocaine administration and after drug abstinence in a region-specific and time-dependent manner, as well as depending on the different protocols used for co-caine administration. Changes in the expression of NMDA receptor subunits may underlie the transition from cocaine abuse to dependence, as well as the transition from cocaine dependence to cocaine withdrawal. In this paper, we summarize the cur-rent knowledge regarding neuroadaptations within NMDA receptor subunits and scaffolding proteins observed following voluntary and passive cocaine intake, as well as the effects of NMDA receptor antagonists on cocaine-induced behavioral changes during cocaine seeking and relapse.
Collapse
Affiliation(s)
- Irena Smaga
- Department of Internal Medicine, Jagiellonian University Medical College, Skawińska 8, PL 31-066 Kraków, Poland.,Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, PL 31-343 Kraków, Poland
| | - Marek Sanak
- Department of Internal Medicine, Jagiellonian University Medical College, Skawińska 8, PL 31-066 Kraków, Poland
| | - Małgorzata Filip
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, PL 31-343 Kraków, Poland
| |
Collapse
|
7
|
Duan S, Ma Y, Xie L, Zheng L, Huang J, Guo R, Sun Z, Xie Y, Lv J, Lin Z, Ma S. Effects of Chronic Ephedrine Toxicity on Functional Connections, Cell Apoptosis, and CREB-Related Proteins in the Prefrontal Cortex of Rhesus Monkeys. Neurotox Res 2020; 37:602-615. [PMID: 31858422 DOI: 10.1007/s12640-019-00146-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/20/2019] [Accepted: 11/29/2019] [Indexed: 02/05/2023]
Abstract
Ephedrine abuse has spread in many parts of the world, severely threatening human health. The mechanism of ephedrine toxicity is still unclear. To explore the possible neural mechanisms of ephedrine toxicity, this study established a non-human primate model of ephedrine exposure, analyzed the functional connectivity changes in its prefrontal cortex through resting state BOLD-fMRI, and then inspected the pathophysiological changes as well as the expression of the cyclic adenosine monophosphate response element-binding protein (CREB), phosphorylated CREB (P-CREB), and CREB target proteins (c-fos and fosB) in the prefrontal cortex. After ephedrine toxicity, we found that the prefrontal cortex of monkeys strengthened its functional connectivity with the brain regions that perform motivation, drive, reward, and learning and memory functions and weakened its functional connectivity with the brain regions that perform cognitive control. These results suggest that ephedrine toxicity causes abnormal neural circuits that lead to the amplification and enhancement of drug-related cues and the weakening and damage of cognitive control function. Histology showed that the neurocytotoxicity of ephedrine can cause neuronal degeneration and apoptosis. Real-time PCR and Western blot showed increased expression of CREB mRNA and CREB/P-CREB/c-fos/fosB protein in the prefrontal cortex after ephedrine toxicity. Collectively, the present study indicates that the enhancement of drug-related cues and the weakening of cognitive control caused by abnormal neural circuits after drug exposure may be a major mechanism of brain function changes caused by ephedrine. These histological and molecular changes may be the pathophysiological basis of brain function changes caused by ephedrine.
Collapse
Affiliation(s)
- Shouxing Duan
- Department of Pediatric Surgery, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, Guangdong, 515041, People's Republic of China
- Shantou University Medical College, No. 22 Xinling Road, Shantou, Guangdong, 515041, People's Republic of China
- Guangdong Key Laboratory of Medical Molecular Imaging, No. 57 Changping Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Ye Ma
- Department of Linguistics & Languages, Michigan State University, East Lansing, MI, 48824, USA
| | - Lei Xie
- Shantou University Medical College, No. 22 Xinling Road, Shantou, Guangdong, 515041, People's Republic of China
- Guangdong Key Laboratory of Medical Molecular Imaging, No. 57 Changping Road, Shantou, Guangdong, 515041, People's Republic of China
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Lian Zheng
- Department of Pediatric Surgery, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Jinzhuang Huang
- Shantou University Medical College, No. 22 Xinling Road, Shantou, Guangdong, 515041, People's Republic of China
- Guangdong Key Laboratory of Medical Molecular Imaging, No. 57 Changping Road, Shantou, Guangdong, 515041, People's Republic of China
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Ruiwei Guo
- Shantou University Medical College, No. 22 Xinling Road, Shantou, Guangdong, 515041, People's Republic of China
- Guangdong Key Laboratory of Medical Molecular Imaging, No. 57 Changping Road, Shantou, Guangdong, 515041, People's Republic of China
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Zongbo Sun
- Shantou University Medical College, No. 22 Xinling Road, Shantou, Guangdong, 515041, People's Republic of China
- Guangdong Key Laboratory of Medical Molecular Imaging, No. 57 Changping Road, Shantou, Guangdong, 515041, People's Republic of China
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Yao Xie
- Shantou University Medical College, No. 22 Xinling Road, Shantou, Guangdong, 515041, People's Republic of China
- Guangdong Key Laboratory of Medical Molecular Imaging, No. 57 Changping Road, Shantou, Guangdong, 515041, People's Republic of China
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Junyao Lv
- Department of Forensic Medicine, Shantou University Medical College, No. 22 Xinling Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Zhirong Lin
- Shantou University Medical College, No. 22 Xinling Road, Shantou, Guangdong, 515041, People's Republic of China
- Guangdong Key Laboratory of Medical Molecular Imaging, No. 57 Changping Road, Shantou, Guangdong, 515041, People's Republic of China
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Shuhua Ma
- Shantou University Medical College, No. 22 Xinling Road, Shantou, Guangdong, 515041, People's Republic of China.
- Guangdong Key Laboratory of Medical Molecular Imaging, No. 57 Changping Road, Shantou, Guangdong, 515041, People's Republic of China.
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, Guangdong, 515041, People's Republic of China.
| |
Collapse
|
8
|
Rezapour T, Aupperle RL, Paulus MP, Ekhtiari H. Clinical translation and implementation neuroscience for novel cognitive interventions in addiction medicine. COGNITION AND ADDICTION 2020:393-404. [DOI: 10.1016/b978-0-12-815298-0.00029-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
9
|
Shi X, von Weltin E, Barr JL, Unterwald EM. Activation of GSK3β induced by recall of cocaine reward memories is dependent on GluN2A/B NMDA receptor signaling. J Neurochem 2019; 151:91-102. [PMID: 31361029 DOI: 10.1111/jnc.14842] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/21/2019] [Accepted: 07/26/2019] [Indexed: 12/11/2022]
Abstract
Glycogen synthase kinase-3β (GSK3β) is a critical regulator of the balance between long-term depression and long-term potentiation which is essential for learning and memory. Our previous study demonstrated that GSK3β activity is highly induced during cocaine memory reactivation, and that reconsolidation of cocaine reward memory is attenuated by inhibition of GSK3β. NMDA receptors and protein phosphatase 1 (PP1) are activators of GSK3β. Thus, this study investigated the roles of NMDA receptor subtypes and PP1in the reconsolidation of cocaine contextual reward memory. Cocaine contextual memories were established and evaluated using cocaine conditioned place preference methods. The regulation of GSK3β activity in specific brain areas was assessed by measuring its phosphorylation state using immunoblot assays. Mice underwent cocaine place conditioning for 8 days and were tested for place preference on day 9. Twenty-four hours later, mice were briefly confined to the compartment previous paired with cocaine to reactivate cocaine-associated memories. Administration of the GluN2A- and GluN2B-NMDA receptor antagonists, NVP-AAM077 and ifenprodil, respectively, immediately following recall abrogated an established cocaine place preference, while preventing the activation of GSK3β in the amygdala, nucleus accumbens, and hippocampus during cocaine memory reactivation. PP1 inhibition with okadaic acid also blocked the activation of GSK3β and attenuated a previously established cocaine place preference. These findings suggest that the dephosphorylation of GSK3β that occurred upon activation of cocaine-associated reward memories may be initiated by the activation of PP1 during the induction of NMDA receptor-dependent reconsolidation of cocaine mnemonic traces. Moreover, the importance of NMDA receptors and PP1 in reconsolidation of cocaine memory makes them potential therapeutic targets in treatment of cocaine use disorder and prevention of relapse.
Collapse
Affiliation(s)
- Xiangdang Shi
- Center for Substance Abuse Research and Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Eva von Weltin
- Center for Substance Abuse Research and Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Jeffrey L Barr
- Center for Substance Abuse Research and Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Ellen M Unterwald
- Center for Substance Abuse Research and Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Daneshparvar H, Sadat-Shirazi MS, Fekri M, Khalifeh S, Ziaie A, Esfahanizadeh N, Vousooghi N, Zarrindast MR. NMDA receptor subunits change in the prefrontal cortex of pure-opioid and multi-drug abusers: a post-mortem study. Eur Arch Psychiatry Clin Neurosci 2019; 269:309-315. [PMID: 29766293 DOI: 10.1007/s00406-018-0900-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 04/24/2018] [Indexed: 12/29/2022]
Abstract
Addiction is a chronic relapsing disorder and is one of the most important issues in the world. Changing the level of neurotransmitters and the activities of their receptors, play a major role in the pathophysiology of substance abuse disorders. It is well-established that N-methyl-D-aspartate receptors (NMDARs) play a significant role in the molecular basis of addiction. NMDAR has two obligatory GluN1 and two regionally localized GluN2 subunits. This study investigated changes in the protein level of GluN1, GluN2A, and GluN2B in the prefrontal cortex of drug abusers. The medial prefrontal cortex (mPFC), lateral prefrontal cortex (lPFC), and orbitofrontal cortex (OFC) were dissected from the brain of 101 drug addicts brains and were compared with the brains of non-addicts (N = 13). Western blotting technique was used to show the alteration in NMDAR subunits level. Data obtained using Western blotting technique showed a significant increase in the level of GluN1 and GluN2B, but not in GluN2A subunits in all the three regions (mPFC, lPFC, and OFC) of men whom suffered from addiction as compared to the appropriate controls. These findings showed a novel role for GluN1, GluN2B subunits, rather than the GluN2A subunit of NMDARs, in the pathophysiology of addiction and suggested their role in the drug-induced plasticity of NMDARs.
Collapse
Affiliation(s)
| | - Mitra-Sadat Sadat-Shirazi
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, P.O.Box: 13145-784, Iran.,Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Monir Fekri
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, P.O.Box: 13145-784, Iran
| | - Solmaz Khalifeh
- Cognitive and Neuroscience research Center (CNRC), Islamic Azad University, Tehran Medical Sciences Branch, Tehran, Iran
| | | | - Nasrin Esfahanizadeh
- Department of Periodontics, Tehran Dental Branch, Islamic Azad University, Tehran, Iran
| | - Nasim Vousooghi
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, P.O.Box: 13145-784, Iran.,Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, P.O.Box: 13145-784, Iran. .,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Naloxone effects on extinction of ethanol- and cocaine-induced conditioned place preference in mice. Psychopharmacology (Berl) 2017; 234:2747-2759. [PMID: 28653079 PMCID: PMC5709191 DOI: 10.1007/s00213-017-4672-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/06/2017] [Indexed: 01/07/2023]
Abstract
RATIONALE Previous studies found that naloxone (NLX) facilitated choice extinction of ethanol conditioned place preference (CPP) using long (60 min) test sessions, but there is little information on the variables determining this effect. OBJECTIVES These studies examined repeated exposure to NLX during extinction of ethanol- or cocaine-induced CPP using both short and long tests. METHODS DBA/2J mice were injected with NLX (0 or 10 mg/kg) before three 10- or 60-min choice extinction tests (experiment 1). All mice received a final 60-min test without NLX. Post-test NLX was given in experiment 2. Experiment 3 tested whether NLX would affect a forced extinction procedure. Experiment 4 tested its effect on extinction of cocaine-induced CPP. RESULTS Pre-test (but not post-test) injections of NLX-facilitated choice extinction of ethanol CPP at both test durations. Pre-test NLX also facilitated forced extinction. However, pre-test NLX had no effect on choice extinction of cocaine CPP. CONCLUSIONS Extinction test duration is not critical for engaging the opioid system during ethanol CPP extinction (experiment 1). Moreover, NLX's effect does not depend on CPP expression during extinction, just exposure to previously conditioned cues (experiment 3). The null effect of post-test NLX eliminates a memory consolidation interpretation (experiment 2) and the failure to alter cocaine CPP extinction argues against alteration of general learning or memory processes (experiment 4). Overall, these data suggest that the endogenous opioid system mediates a conditioned motivational effect that normally maintains alcohol-induced seeking behavior, which may underlie the efficacy of opiate antagonists in the treatment of alcoholism.
Collapse
|
12
|
Reconsolidation and psychopathology: Moving towards reconsolidation-based treatments. Neurobiol Learn Mem 2016; 142:162-171. [PMID: 27838441 DOI: 10.1016/j.nlm.2016.11.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/19/2016] [Accepted: 11/04/2016] [Indexed: 01/14/2023]
Abstract
Interfering with memory reconsolidation has valuable potential to be used as a treatment for maladaptive memories and psychiatric disorders. Numerous studies suggest that reconsolidation-based therapies may benefit psychiatric populations, but much remains unanswered. After reviewing the literature in clinical and healthy human populations, we discuss some of the major limitations to reconsolidation studies and clinical application. Finally, we provide recommendations for developing improved reconsolidation-based treatments, namely exploiting known boundary conditions and focusing on a novel unconditioned stimulus-retrieval paradigm.
Collapse
|
13
|
Szumlinski KK, Wroten MG, Miller BW, Sacramento AD, Cohen M, Ben-Shahar O, Kippin TE. Cocaine Self-Administration Elevates GluN2B within dmPFC Mediating Heightened Cue-Elicited Operant Responding. ACTA ACUST UNITED AC 2016; 2. [PMID: 27478879 PMCID: PMC4962921 DOI: 10.21767/2471-853x.100022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cue-elicited drug-craving correlates with hyperactivity within prefrontal cortex (PFC), which is theorized to result from dysregulated excitatory neurotransmission. The NMDA glutamate receptor is highly implicated in addiction-related neuroplasticity. As NMDA receptor function is regulated critically by its GluN2 subunits, herein, we assayed the relation between incubated cue-elicited cocaine-seeking following extended access to intravenous cocaine (6 h/d; 0.25 mg/infusion for 10 d) and the expression of GluN2A/B receptor subunits within PFC sub regions during early versus late withdrawal (respectively, 3 vs. 30 days). Cocaine-seeking rats exhibited elevated GluN2B expression within the dorsomedial aspect of the PFC (dmPFC); this effect was apparent at both 3 and 30 days withdrawal and occurred in cocaine-experienced rats, regardless of experiencing an extinction test or not. Thus, elevated dmPFC GluN2B expression appears to reflect a pharmacodynamic response to excessive cocaine intake that is independent of the duration of drug withdrawal or re-exposure to drug-taking context. The functional relevance of elevated dmPFC GluN2B expression for drug-seeking was assessed by the local infusion of the prototypical GluN2B-selective antagonist ifenprodil (1.0 µg/side). Ifenprodil did not alter cue-elicited responding in animals with a history of saline self-administration. In contrast, ifenprodil lowered cue-elicited cocaine-seeking, while potentiating cue-elicited sucrose-seeking. Thus, the effects of an intra-dmPFC ifenprodil infusion upon cue reactivity are reinforcer-specific, arguing in favor of targeting GluN2B-containing NMDA receptors as a pharmacological strategy for reducing behavioral reactivity to drug-associated cues with the potential benefit of heightening the reinforcing properties of cues associated with non-drug primary rewards.
Collapse
Affiliation(s)
- Karen K Szumlinski
- Department of Psychological and Brain Sciences & Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Melissa G Wroten
- Department of Psychological and Brain Sciences & Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Bailey W Miller
- Department of Psychological and Brain Sciences & Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Arianne D Sacramento
- Department of Psychological and Brain Sciences & Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Matan Cohen
- Department of Psychological and Brain Sciences & Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Osnat Ben-Shahar
- Department of Psychological and Brain Sciences & Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Tod E Kippin
- Department of Psychological and Brain Sciences & Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
14
|
Sun WL, Quizon PM, Zhu J. Molecular Mechanism: ERK Signaling, Drug Addiction, and Behavioral Effects. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 137:1-40. [PMID: 26809997 DOI: 10.1016/bs.pmbts.2015.10.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Addiction to psychostimulants has been considered as a chronic psychiatric disorder characterized by craving and compulsive drug seeking and use. Over the past two decades, accumulating evidence has demonstrated that repeated drug exposure causes long-lasting neurochemical and cellular changes that result in enduring neuroadaptation in brain circuitry and underlie compulsive drug consumption and relapse. Through intercellular signaling cascades, drugs of abuse induce remodeling in the rewarding circuitry that contributes to the neuroplasticity of learning and memory associated with addiction. Here, we review the role of the extracellular signal-regulated kinase (ERK), a member of the mitogen-activated protein kinase, and its related intracellular signaling pathways in drug-induced neuroadaptive changes that are associated with drug-mediated psychomotor activity, rewarding properties and relapse of drug seeking behaviors. We also discuss the neurobiological and behavioral effects of pharmacological and genetic interferences with ERK-associated molecular cascades in response to abused substances. Understanding the dynamic modulation of ERK signaling in response to drugs may provide novel molecular targets for therapeutic strategies to drug addiction.
Collapse
Affiliation(s)
- Wei-Lun Sun
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Pamela M Quizon
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA.
| |
Collapse
|