1
|
Miliano C, Dong Y, Proffit M, Corvalan N, Natividad LA, Gregus AM, Buczynski MW. Chronic intermittent ethanol produces nociception through endocannabinoid-independent mechanisms in mice. Neuropharmacology 2025:110502. [PMID: 40360036 DOI: 10.1016/j.neuropharm.2025.110502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/18/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025]
Abstract
Alcohol use disorder (AUD) affects millions of people and represents a significant health and economic burden. Pain is a frequently under-treated aspect of hyperkatifeia during alcohol withdrawal, yet to date no drugs have received FDA approval for the treatment of this indication in AUD patients. This study aims to evaluate the potential of targeting bioactive lipid signaling pathways as a therapeutic approach for treating alcohol withdrawal-related pain hypersensitivity. We utilized a chronic intermittent ethanol (CIE) vapor exposure model in C57BL/6J mice of both sexes to establish alcohol dependence and demonstrated that CIE produced robust tactile allodynia and thermal hyperalgesia during withdrawal that was independent of prior blood alcohol levels. Next, we evaluated four drugs for their efficacy in reversing tactile allodynia during abstinence from CIE using a cross-over treatment design that included FDA-approved naltrexone as well as commercially available inhibitors targeting the inflammatory lipid signaling enzymes fatty acid amide hydrolase (FAAH), monoacylglycerol lipase (MAGL), and 15-Lipoxygenase (LOX). None of these compounds produced significant therapeutic benefit in reversing established CIE-induced tactile allodynia, despite attenuating pain-like behaviors at these doses in other chronic pain models. Additionally, we assessed plasma endocannabinoid levels in both sexes during withdrawal. We found that there was an inherent sex difference in the endogenous anti-inflammatory endocannabinoid tone in naive mice and that CIE treatment affected endocannabinoids levels in female mice only. These findings underscore the need to better understand the underlying causes of AUD-induced allodynia and to develop novel therapeutic approaches to mitigate pain hypersensitivity in AUD patients.
Collapse
Affiliation(s)
- C Miliano
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| | - Y Dong
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| | - M Proffit
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| | - N Corvalan
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| | - L A Natividad
- College of Pharmacy, Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, Texas, USA
| | - A M Gregus
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061.
| | - M W Buczynski
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061.
| |
Collapse
|
2
|
Montagud-Romero S, González-Portilla M, Mellado S, Grandes P, de Fonseca FR, Pascual M, Rodríguez-Arias M. Oleoylethanolamide effects on stress-induced ethanol consumption: A lipid at the crossroads between stress, reward and neuroinflammation. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111365. [PMID: 40250786 DOI: 10.1016/j.pnpbp.2025.111365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/19/2025] [Accepted: 04/12/2025] [Indexed: 04/20/2025]
Abstract
The endocannabinoid system is involved in multiple drug-related behaviors and the transient increase in endogenous cannabinoids and endocannabinoid-like molecules contributes to healthy adaptation to stress exposure. Oleoylethanolamide (OEA) belongs to the N-acylethanolamines and interacts with the endocannabinoid system. In this study, we investigated the effect of systemic OEA treatment (10 mg/kg), before or after social defeat (SD), on ethanol self-administration (SA). Mice were divided into non-stressed (EXP) and stressed (SD) groups and randomly assigned to a treatment condition (control-CTRL, OEA or 10OEA). The EXP/SD-OEA group of mice received four doses of OEA before each SD encounter, while mice in the EXP/SD-10OEA group received a daily dose for 10 consecutive days following stress exposure. Three weeks after SD, mice were trained to self-administer a 20 % (vol/vol) ethanol solution. Upon extinction, a cue-induced reinstatement test was performed. Our results showed that both OEA treatments effectively prevented the stress-induced increase in ethanol consumption observed in defeated mice. No significant effects of OEA on relapse-like behavior were observed. Additionally, we found that animals exposed to OEA during SD encounters showed reduced nuclear factor kappa B (NF-κB) levels, suggesting an anti-inflammatory effect of OEA, while tumor necrosis factor (TNFα) gene expression decreased in defeated animals. In summary, these findings suggest that exogenously increasing OEA levels counteracts the adverse effects of stress on ethanol drinking while having some impact on inflammatory patterns.
Collapse
Affiliation(s)
- Sandra Montagud-Romero
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Avda. Blasco Ibáñez 21, 46010, Valencia, Spain; Atención primaria, cronicidad y promoción de la salud, Red de investigación en atención primaria de adicciones (RIAPAD) Rd21/0009/0005, Spain
| | - Macarena González-Portilla
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Avda. Blasco Ibáñez 21, 46010, Valencia, Spain
| | - Susana Mellado
- Atención primaria, cronicidad y promoción de la salud, Red de investigación en atención primaria de adicciones (RIAPAD) Rd21/0009/0005, Spain
| | - Pedro Grandes
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain. Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain; Atención primaria, cronicidad y promoción de la salud, Red de investigación en atención primaria de adicciones (RIAPAD) Rd21/0009/0005, Spain
| | - Fernando Rodríguez de Fonseca
- Mental Health Clinical Management Unit, Institute of Biomedical Research of Malaga-IBIMA, Regional University Hospital of Málaga, 29010 Málaga, Spain; Atención primaria, cronicidad y promoción de la salud, Red de investigación en atención primaria de adicciones (RIAPAD) Rd21/0009/0005, Spain
| | - María Pascual
- Atención primaria, cronicidad y promoción de la salud, Red de investigación en atención primaria de adicciones (RIAPAD) Rd21/0009/0005, Spain; Department of Physiology, School of Medicine and Dentistry, University of Valencia, Avda. Blasco Ibáñez 15, 46010, Valencia, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Avda. Blasco Ibáñez 21, 46010, Valencia, Spain; Atención primaria, cronicidad y promoción de la salud, Red de investigación en atención primaria de adicciones (RIAPAD) Rd21/0009/0005, Spain.
| |
Collapse
|
3
|
Miliano C, Dong Y, Proffit M, Corvalan N, Natividad LA, Gregus AM, Buczynski MW. Chronic intermittent ethanol produces nociception through endocannabinoid-independent mechanisms in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.08.622656. [PMID: 39975399 PMCID: PMC11838487 DOI: 10.1101/2024.11.08.622656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Alcohol use disorder (AUD) affects millions of people and represents a significant health and economic burden. Pain represents a frequently under-treated aspect of hyperkatifeia during alcohol withdrawal, yet to date no drugs have received FDA approval for the treatment of this indication in AUD patients. This study aims to evaluate the potential of targeting bioactive lipid signaling pathways as a therapeutic approach for treating alcohol withdrawal-related pain. We utilized a chronic intermittent ethanol (CIE) vapor exposure model in C57BL/6J mice of both sexes to establish alcohol dependence, and demonstrated that CIE mice developed robust tactile allodynia and thermal hyperalgesia during withdrawal that was independent of prior blood alcohol levels. Next, we evaluated four drugs for their efficacy in reversing tactile allodynia during abstinence from CIE using a cross-over treatment design that included FDA-approved naltrexone as well as commercially available inhibitors targeting inflammatory lipid signaling enzymes including fatty acid amide hydrolase (FAAH), monoacylglycerol lipase (MAGL), and 15-Lipoxygenase (LOX). None of these compounds produced significant therapeutic benefit in reversing established CIE-induced tactile allodynia, despite attenuating pain-like behaviors at these doses in other chronic pain models. Additionally, we assessed plasma endocannabinoid levels in both sexes during withdrawal. We found that there is an inherent sex difference in the endogenous anti-inflammatory endocannabinoid tone in naive mice and CIE treatment affected endocannabinoids levels in female mice only. These findings underscore the need to better understand the driving causes of AUD induced pain and to develop novel therapeutic approaches to mitigate pain in AUD patients.
Collapse
Affiliation(s)
- C Miliano
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| | - Y Dong
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| | - M Proffit
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| | - N Corvalan
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| | - LA Natividad
- College of Pharmacy, Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, Texas, USA
| | - AM Gregus
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| | - MW Buczynski
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| |
Collapse
|
4
|
Luján MÁ, Kim Y, Zhang LY, Cheer JF. Cannabinoid-based Pharmacology for the Management of Substance Use Disorders. Curr Top Behav Neurosci 2025. [PMID: 39813001 DOI: 10.1007/7854_2024_551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
In the last two decades, the endocannabinoid system has emerged as a crucial modulator of motivation and emotional processing. Due to its widespread neuroanatomical distribution and characteristic retrograde signaling nature, cannabinoid type I receptors and their endogenous ligands finely orchestrate somatic and axon terminal activity of dopamine neurons. Owing to these unique features, this signaling system is a promising pharmacological target to ameliorate dopamine-mediated drug-seeking behaviors while circumventing the adverse side effects of, for instance, dopaminergic antagonists. Despite considerable preclinical efforts, an agreement on the efficacy of endocannabinoid-targeting compounds for treating drug substance use disorders in humans has not been reached. In the following chapter, we will summarize preclinical and clinical evidence addressing the therapeutic potential of cannabinoids and endocannabinoid-targeting compounds in substance use disorders. To bridge the gap between animal and clinical research, we capitalize on studies evaluating the impact of endocannabinoid-targeting compounds in relevant settings, such as the management of drug relapse. Finally, we discuss the therapeutic potential of novel cannabinoid compounds that hold promise for treating substance use disorders.
Collapse
Affiliation(s)
- M Á Luján
- Department of Neurobiology, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Y Kim
- Department of Neurobiology, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - L Y Zhang
- Department of Neurobiology, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - J F Cheer
- Department of Neurobiology, University of Maryland, School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
González-Portilla M, Montagud-Romero S, Mellado S, de Fonseca FR, Pascual M, Rodríguez-Arias M. Region-Specific Gene Expression Changes Associated with Oleoylethanolamide-Induced Attenuation of Alcohol Self-Administration. Int J Mol Sci 2024; 25:9002. [PMID: 39201687 PMCID: PMC11354326 DOI: 10.3390/ijms25169002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/10/2024] [Accepted: 08/17/2024] [Indexed: 09/03/2024] Open
Abstract
Oleoylethanolamide (OEA) is a lipid with anti-inflammatory activity that modulates multiple reward-related behaviors. Previous studies have shown that OEA treatment reduces alcohol self-administration (SA) while inhibiting alcohol-induced inflammatory signaling. Nevertheless, the specific mechanisms that OEA targets to achieve these effects have not been widely explored. Here, we tested the effects of OEA treatment during alcohol SA, extinction or previous to cue-induced reinstatement of alcohol seeking. In addition, we measured gene expression changes in the striatum and hippocampus of relevant receptors for alcohol consumption (Drd1, Drd2, Cnr1, Oprm) as well as immune-related proteins (Il-6, Il-1β, Tlr4) and the brain-derived neurotrophic factor (Bdnf). Our results confirmed that when administered contingently, systemic OEA administration reduced alcohol SA and attenuated cue-induced reinstatement. Interestingly, we also observed that OEA treatment reduced the number of sessions needed for the extinction of alcohol seeking. Biochemical analyses showed that OEA induced gene expression changes in dopamine and cannabinoid receptors in the striatum and hippocampus. In addition, OEA treatment modulated the long-term immune response and increased Bdnf expression. These results suggest that boosting OEA levels may be an effective strategy for reducing alcohol SA and preventing relapse.
Collapse
Affiliation(s)
- Macarena González-Portilla
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Avda. Blasco Ibáñez 21, 46010 Valencia, Spain; (M.G.-P.); (S.M.-R.)
| | - Sandra Montagud-Romero
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Avda. Blasco Ibáñez 21, 46010 Valencia, Spain; (M.G.-P.); (S.M.-R.)
| | - Susana Mellado
- Department of Physiology, School of Medicine, Universitat de Valencia, Avda. Blasco Ibáñez 15, 46010 Valencia, Spain; (S.M.); (M.P.)
| | - Fernando Rodríguez de Fonseca
- Mental Health Clinical Management Unit, Institute of Biomedical Research of Malaga-IBIMA, Regional University Hospital of Málaga, 29010 Málaga, Spain;
- Atención Primaria, Cronicidad y Promoción de la Salud, Red de Investigación en Atención Primaria de Adicciones (RIAPAD) Rd21/0009/0005/0003, Valencia, Spain
| | - María Pascual
- Department of Physiology, School of Medicine, Universitat de Valencia, Avda. Blasco Ibáñez 15, 46010 Valencia, Spain; (S.M.); (M.P.)
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Avda. Blasco Ibáñez 21, 46010 Valencia, Spain; (M.G.-P.); (S.M.-R.)
- Atención Primaria, Cronicidad y Promoción de la Salud, Red de Investigación en Atención Primaria de Adicciones (RIAPAD) Rd21/0009/0005/0003, Valencia, Spain
| |
Collapse
|
6
|
Fuentes JJ, Mayans J, Guarro M, Canosa I, Mestre-Pintó JI, Fonseca F, Torrens M. Peripheral endocannabinoids in major depressive disorder and alcohol use disorder: a systematic review. BMC Psychiatry 2024; 24:551. [PMID: 39118031 PMCID: PMC11308641 DOI: 10.1186/s12888-024-05986-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Major Depressive Disorder (MDD) and Alcohol Use Disorder (AUD) are two high-prevalent conditions where the Endocannabinoid system (ECS) is believed to play an important role. The ECS regulates how different neurotransmitters interact in both disorders, which is crucial for controlling emotions and responses to stress and reward stimuli. Measuring peripheral endocannabinoids (eCBs) in human serum and plasma can help overcome the limitations of detecting endocannabinoid levels in the brain. This systematic review aims to identify levels of peripheral eCBs in patients with MDD and/or AUD and find eCBs to use as diagnostic, prognostic biomarkers, and potential therapeutic targets. METHODS We conducted a systematic literature search according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines from the earliest manuscript until October 22, 2023, in three electronic databases. We included studies of human adults who had a current diagnosis of AUD and/or MDD and evaluated plasma or serum endocannabinoids. We carefully considered known variables that may affect endocannabinoid levels. RESULTS We included 17 articles in this systematic review, which measured peripheral eCBs in 170 AUD and 359 MDD patients. Stressors increase peripheral 2-arachidonyl-glycerol (2-AG) concentrations, and 2-AG may be a particular feature of depression severity and chronicity. Anxiety symptoms are negatively correlated with anandamide (AEA) concentrations, and AEA significantly increases during early abstinence in AUD. Studies suggest a negative correlation between Oleoylethanolamide (OEA) and length of abstinence in AUD patients. They also show a significant negative correlation between peripheral levels of AEA and OEA and fatty acid amide hydrolase (FAAH) activity. Eicosapentaenoylethanolamide (EPEA) is correlated to clinical remission rates in depression. Included studies show known variables such as gender, chronicity, symptom severity, comorbid psychiatric symptoms, length of abstinence in the case of AUD, and stress-inducibility that can affect peripheral eCBs. CONCLUSIONS This systematic review highlights the important role that the ECS plays in MDD and AUD. Peripheral eCBs appear to be useful biomarkers for these disorders, and further research may identify potential therapeutic targets. Using accessible biological samples such as blood in well-designed clinical studies is crucial to develop novel therapies for these disorders.
Collapse
Affiliation(s)
- J J Fuentes
- Mental Health Institute, Hospital del Mar, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallés, Spain
| | - J Mayans
- Department of Psychiatry, Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Spain
| | - M Guarro
- Mental Health Institute, Hospital del Mar, Barcelona, Spain
| | - I Canosa
- Mental Health Institute, Hospital del Mar, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
| | - J I Mestre-Pintó
- Hospital del Mar Research Institute, Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - F Fonseca
- Mental Health Institute, Hospital del Mar, Barcelona, Spain.
- Hospital del Mar Research Institute, Barcelona, Spain.
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| | - M Torrens
- Mental Health Institute, Hospital del Mar, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
7
|
Tovar R, de Ceglia M, Ubaldi M, Rodríguez-Pozo M, Soverchia L, Cifani C, Rojo G, Gavito A, Hernandez-Folgado L, Jagerovic N, Ciccocioppo R, Baixeras E, Rodríguez de Fonseca F, Decara J. Administration of Linoleoylethanolamide Reduced Weight Gain, Dyslipidemia, and Inflammation Associated with High-Fat-Diet-Induced Obesity. Nutrients 2023; 15:4448. [PMID: 37892524 PMCID: PMC10609991 DOI: 10.3390/nu15204448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/27/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Acylethanolamides (NAEs) are bioactive lipids derived from diet fatty acids that modulate important homeostatic functions, including appetite, fatty acid synthesis, mitochondrial respiration, inflammation, and nociception. Among the naturally circulating NAEs, the pharmacology of those derived from either arachidonic acid (Anandamide), oleic acid (OEA), and palmitic acid (PEA) have been extensively characterized in diet-induced obesity. For the present work, we extended those studies to linoleoylethanolamide (LEA), one of the most abundant NAEs found not only in plasma and body tissues but also in foods such as cereals. In our initial study, circulating concentrations of LEA were found to be elevated in overweight humans (body mass index (BMI, Kg/m2) > 25) recruited from a representative population from the south of Spain, together with AEA and the endocannabinoid 2-Arachidonoyl glycerol (2-AG). In this population, LEA concentrations correlated with the circulating levels of cholesterol and triglycerides. In order to gain insight into the pharmacology of LEA, we administered it for 14 days (10 mg/kg i.p. daily) to obese male Sprague Dawley rats receiving a cafeteria diet or a standard chow diet for 12 consecutive weeks. LEA treatment resulted in weight loss and a reduction in circulating triglycerides, cholesterol, and inflammatory markers such as Il-6 and Tnf-alpha. In addition, LEA reduced plasma transaminases and enhanced acetyl-CoA-oxidase (Acox) and Uncoupling protein-2 (Ucp2) expression in the liver of the HFD-fed animals. Although the liver steatosis induced by the HFD was not reversed by LEA, the overall data suggest that LEA contributes to the homeostatic signals set in place in response to diet-induced obesity, potentially contributing with OEA to improve lipid metabolism after high fat intake. The anti-inflammatory response associated with its administration suggests its potential for use as a nutrient supplement in non-alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Rubén Tovar
- Grupo de Neuropsicofarmacología, Instituto IBIMA-Plataforma BIONAND, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Avda, Carlos Haya 82, Sótano, 29010 Málaga, Spain; (R.T.); (M.d.C.); (M.R.-P.); (A.G.); (E.B.)
| | - Marialuisa de Ceglia
- Grupo de Neuropsicofarmacología, Instituto IBIMA-Plataforma BIONAND, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Avda, Carlos Haya 82, Sótano, 29010 Málaga, Spain; (R.T.); (M.d.C.); (M.R.-P.); (A.G.); (E.B.)
| | - Massimo Ubaldi
- School of Pharmacy, Pharmacology Unit, University of Camerino, 62032 Camerino, Italy; (M.U.); (L.S.); (C.C.); (R.C.)
| | - Miguel Rodríguez-Pozo
- Grupo de Neuropsicofarmacología, Instituto IBIMA-Plataforma BIONAND, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Avda, Carlos Haya 82, Sótano, 29010 Málaga, Spain; (R.T.); (M.d.C.); (M.R.-P.); (A.G.); (E.B.)
| | - Laura Soverchia
- School of Pharmacy, Pharmacology Unit, University of Camerino, 62032 Camerino, Italy; (M.U.); (L.S.); (C.C.); (R.C.)
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, 62032 Camerino, Italy; (M.U.); (L.S.); (C.C.); (R.C.)
| | - Gema Rojo
- Department of Endocrinology and Nutrition, Hospital Regional Universitario de Málaga, Instituto IBIMA-Plataforma BIONAND, 29010 Málaga, Spain;
| | - Ana Gavito
- Grupo de Neuropsicofarmacología, Instituto IBIMA-Plataforma BIONAND, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Avda, Carlos Haya 82, Sótano, 29010 Málaga, Spain; (R.T.); (M.d.C.); (M.R.-P.); (A.G.); (E.B.)
| | - Laura Hernandez-Folgado
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Avenida Juan de la Cierva, 28006 Madrid, Spain; (L.H.-F.); (N.J.)
| | - Nadine Jagerovic
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Avenida Juan de la Cierva, 28006 Madrid, Spain; (L.H.-F.); (N.J.)
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, 62032 Camerino, Italy; (M.U.); (L.S.); (C.C.); (R.C.)
| | - Elena Baixeras
- Grupo de Neuropsicofarmacología, Instituto IBIMA-Plataforma BIONAND, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Avda, Carlos Haya 82, Sótano, 29010 Málaga, Spain; (R.T.); (M.d.C.); (M.R.-P.); (A.G.); (E.B.)
| | - Fernando Rodríguez de Fonseca
- Grupo de Neuropsicofarmacología, Instituto IBIMA-Plataforma BIONAND, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Avda, Carlos Haya 82, Sótano, 29010 Málaga, Spain; (R.T.); (M.d.C.); (M.R.-P.); (A.G.); (E.B.)
- Unidad Clínica de Neurología, Hospital Regional Universitario de Málaga, Instituto IBMA-Plataforma BIONAND, 29010 Málaga, Spain
- Andalusian Network for Clinical and Translational Research in Neurology [NEURO-RECA], 29010 Malaga, Spain
| | - Juan Decara
- Grupo de Neuropsicofarmacología, Instituto IBIMA-Plataforma BIONAND, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Avda, Carlos Haya 82, Sótano, 29010 Málaga, Spain; (R.T.); (M.d.C.); (M.R.-P.); (A.G.); (E.B.)
| |
Collapse
|
8
|
Boachie N, Gaudette E, Bazinet RP, Lin L, Tyndale RF, Mansouri E, Huestis MA, Tong J, Le Foll B, Kish SJ, George TP, Boileau I. Circulating Endocannabinoids and N-Acylethanolamines in Individuals with Cannabis Use Disorder-Preliminary Findings. Brain Sci 2023; 13:1375. [PMID: 37891745 PMCID: PMC10605789 DOI: 10.3390/brainsci13101375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Endocannabinoids and related N-acylethanolamines (NAEs) are bioactive lipids with important physiological functions and putative roles in mental health and addictions. Although chronic cannabis use is associated with endocannabinoid system changes, the status of circulating endocannabinoids and related NAEs in people with cannabis use disorder (CUD) is uncertain. METHODS Eleven individuals with CUD and 54 healthy non-cannabis using control participants (HC) provided plasma for measurement by high-performance liquid chromatography-mass spectrometry of endocannabinoids (2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine (AEA)) and related NAE fatty acids (N-docosahexaenoylethanolamine (DHEA) and N-oleoylethanolamine (OEA)). Participants were genotyped for the functional gene variant of FAAH (rs324420, C385A) which may affect concentrations of AEA as well as other NAEs (OEA, DHEA). RESULTS In overnight abstinent CUD, AEA, OEA and DHEA concentrations were significantly higher (31-40%; p < 0.05) and concentrations of the endocannabinoid 2-AG were marginally elevated (55%, p = 0.13) relative to HC. There were no significant correlations between endocannabinoids/NAE concentrations and cannabis analytes, self-reported cannabis use frequency or withdrawal symptoms. DHEA concentration was inversely related with marijuana craving (r = -0.86; p = 0.001). Genotype had no significant effect on plasma endocannabinoids/NAE concentrations. CONCLUSIONS Our preliminary findings, requiring replication, might suggest that activity of the endocannabinoid system is elevated in chronic cannabis users. It is unclear whether this elevation is a compensatory response or a predating state. Studies examining endocannabinoids and NAEs during prolonged abstinence as well as the potential role of DHEA in craving are warranted.
Collapse
Affiliation(s)
- Nadia Boachie
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada; (N.B.)
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Erin Gaudette
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada; (N.B.)
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Richard P. Bazinet
- Department of Nutritional Sciences, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Lin Lin
- Department of Nutritional Sciences, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Anatomy and Neurobiology, Faculty of Medicine, University of California, Irvine, CA 92697, USA
| | - Rachel F. Tyndale
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Esmaeil Mansouri
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada; (N.B.)
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Marilyn A. Huestis
- Institute of Emerging Health Professions, Thomas Jefferson University, Severna Park, Philadelphia, PA 19144, USA
| | - Junchao Tong
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada; (N.B.)
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada
| | - Bernard Le Foll
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada; (N.B.)
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A1, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Addictions Division and Institute of Mental Health Policy and Research, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada
- Departments of Family and Community Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Waypoint Research Institute, Waypoint Centre for Mental Health Care, Penetanguishene, ON L9M 1G3, Canada
| | - Stephen J. Kish
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada; (N.B.)
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A1, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Tony P. George
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada; (N.B.)
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A1, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Addictions Division and Institute of Mental Health Policy and Research, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada
| | - Isabelle Boileau
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada; (N.B.)
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A1, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Addictions Division and Institute of Mental Health Policy and Research, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada
| |
Collapse
|
9
|
Ibáñez C, Acuña T, Quintanilla ME, Pérez-Reytor D, Morales P, Karahanian E. Fenofibrate Decreases Ethanol-Induced Neuroinflammation and Oxidative Stress and Reduces Alcohol Relapse in Rats by a PPAR-α-Dependent Mechanism. Antioxidants (Basel) 2023; 12:1758. [PMID: 37760061 PMCID: PMC10525752 DOI: 10.3390/antiox12091758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
High ethanol consumption triggers neuroinflammation, implicated in sustaining chronic alcohol use. This inflammation boosts glutamate, prompting dopamine release in reward centers, driving prolonged drinking and relapse. Fibrate drugs, activating peroxisome proliferator-activated receptor alpha (PPAR-α), counteract neuroinflammation in other contexts, prompting investigation into their impact on ethanol-induced inflammation. Here, we studied, in UChB drinker rats, whether the administration of fenofibrate in the withdrawal stage after chronic ethanol consumption reduces voluntary intake when alcohol is offered again to the animals (relapse-type drinking). Furthermore, we determined if fenofibrate was able to decrease ethanol-induced neuroinflammation and oxidative stress in the brain. Animals treated with fenofibrate decreased alcohol consumption by 80% during post-abstinence relapse. Furthermore, fenofibrate decreased the expression of the proinflammatory cytokines tumor necrosis factor-alpha (TNF-α) and interleukins IL-1β and IL-6, and of an oxidative stress-induced gene (heme oxygenase-1), in the hippocampus, nucleus accumbens, and prefrontal cortex. Animals treated with fenofibrate showed an increase M2-type microglia (with anti-inflammatory proprieties) and a decrease in phagocytic microglia in the hippocampus. A PPAR-α antagonist (GW6471) abrogated the effects of fenofibrate, indicating that they are dependent on PPAR-α activation. These findings highlight the potential of fenofibrate, an FDA-approved dyslipidemia medication, as a supplementary approach to alleviating relapse severity in individuals with alcohol use disorder (AUD) during withdrawal.
Collapse
Affiliation(s)
- Cristina Ibáñez
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago 8910060, Chile; (C.I.); (D.P.-R.)
- Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use Disorders, Santiago 8910060, Chile;
| | - Tirso Acuña
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
| | - María Elena Quintanilla
- Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use Disorders, Santiago 8910060, Chile;
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
| | - Diliana Pérez-Reytor
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago 8910060, Chile; (C.I.); (D.P.-R.)
| | - Paola Morales
- Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use Disorders, Santiago 8910060, Chile;
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Eduardo Karahanian
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago 8910060, Chile; (C.I.); (D.P.-R.)
- Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use Disorders, Santiago 8910060, Chile;
| |
Collapse
|
10
|
Best LM, Hendershot CS, Buckman JF, Jagasar S, McPhee MD, Muzumdar N, Tyndale RF, Houle S, Logan R, Sanches M, Kish SJ, Le Foll B, Boileau I. Association Between Fatty Acid Amide Hydrolase and Alcohol Response Phenotypes: A Positron Emission Tomography Imaging Study With [ 11C]CURB in Heavy-Drinking Youth. Biol Psychiatry 2023; 94:405-415. [PMID: 36868890 DOI: 10.1016/j.biopsych.2022.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/18/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Reductions in fatty acid amide hydrolase (FAAH), the catabolic enzyme for the endocannabinoid anandamide, may play a role in drinking behavior and risk for alcohol use disorder. We tested the hypotheses that lower brain FAAH levels in heavy-drinking youth are related to increased alcohol intake, hazardous drinking, and differential response to alcohol. METHODS FAAH levels in the striatum, prefrontal cortex, and whole brain were determined using positron emission tomography imaging of [11C]CURB in heavy-drinking youth (N = 31; 19-25 years of age). C385A FAAH genotype (rs324420) was determined. Behavioral (n = 29) and cardiovascular (n = 22) responses to alcohol were measured during a controlled intravenous alcohol infusion. RESULTS Lower [11C]CURB binding was not significantly related to frequency of use but was positively associated with hazardous drinking and reduced sensitivity to the negative effects of alcohol. During alcohol infusion, lower [11C]CURB binding related to greater self-reported stimulation and urges and lower sedation (p < .05). Lower heart rate variability was related to both greater alcohol-induced stimulation and lower [11C]CURB binding (p < .05). Family history of alcohol use disorder (n = 14) did not relate to [11C]CURB binding. CONCLUSIONS In line with preclinical studies, lower FAAH in the brain was related to a dampened response to the negative, impairing effects of alcohol, increased drinking urges, and alcohol-induced arousal. Lower FAAH might alter positive or negative effects of alcohol and increase urges to drink, thereby contributing to the addiction process. Determining whether FAAH influences motivation to drink through increased positive/arousing effects of alcohol or greater tolerance should be investigated.
Collapse
Affiliation(s)
- Laura M Best
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Addictions Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Christian S Hendershot
- Addictions Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jennifer F Buckman
- Department of Kinesiology and Health, Rutgers University, New Brunswick, New Jersey; Center of Alcohol and Substance Use Studies, Rutgers University, New Brunswick, New Jersey
| | - Samantha Jagasar
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Matthew D McPhee
- Addictions Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychological Clinical Science, University of Toronto, Toronto, Ontario, Canada
| | - Neel Muzumdar
- Department of Kinesiology and Health, Rutgers University, New Brunswick, New Jersey
| | - Rachel F Tyndale
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Sylvain Houle
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Renee Logan
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Marcos Sanches
- Biostatistics Core, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Stephen J Kish
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Bernard Le Foll
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Addictions Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Community and Family Medicine, University of Toronto, Toronto, Ontario, Canada; Waypoint Research Institute, Waypoint Centre for Mental Health Care, Penetanguishene, Ontario, Canada
| | - Isabelle Boileau
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Addictions Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
11
|
Sangiamo DT, Weingarten MJ, Nelson NG, Choi CY, Das A, Liang NC. Experience with dronabinol consumption facilitated a stimulant effect of alcohol and affected alcohol-related changes in frontal cortical endocannabinoid levels in male rats. Behav Brain Res 2023; 452:114587. [PMID: 37467963 PMCID: PMC10528712 DOI: 10.1016/j.bbr.2023.114587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/28/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
Combined use of cannabis and alcohol is common in adolescents. However, the extent to which such polydrug exposure affects the brain and behaviors remains under-investigated in preclinical studies. This study tested the hypothesis that combined exposure of Δ-9-tetrahydrocannabinol (THC), the main psychoactive constituent of cannabis, and alcohol will have additive effects on cognitive impairments and altered endocannabinoid levels in the hippocampus and frontal cortex. Male Long Evans rats were provided with daily access to cookies laced with oil or dronabinol, a synthetic THC, during adolescence. Three days after discontinuation of edible THC, the effect of orally administered 3 g/kg alcohol on Barnes maze performance was assessed. The results showed that experience with edible THC facilitated the occurrence of increased moving speed on the maze induced by repeated alcohol administration. However, contrasting to the hypothesis, the combined THC and alcohol exposure did not lead to additive deficits in learning and memory on the Barnes maze. While little effect on endocannabinoid levels was observed in the hippocampus, acute abstinence from alcohol significantly reduced endocannabinoid levels in the frontal cortex. In particular, reduction of N-oleoyl ethanolamine (OEA) and N-stearoyl ethanolamine (SEA) were robust and had an interactive effect with discontinuation from edible THC. These findings add to the scarce literature on THC and alcohol associated changes in endocannabinoid levels and provide insights to future investigations on the roles of OEA and SEA on physiology and behaviors following THC and alcohol co-exposure during adolescence.
Collapse
Affiliation(s)
- Daniel T Sangiamo
- Neuroscience Program, University of Illinois at Urbana-Champaign, USA
| | | | - Nnamdi G Nelson
- Neuroscience Program, University of Illinois at Urbana-Champaign, USA; Innovation and New Ventures Office, Northwestern University, USA
| | - Chan Young Choi
- Department of Psychology, University of Illinois at Urbana-Champaign, USA
| | - Aditi Das
- Neuroscience Program, University of Illinois at Urbana-Champaign, USA; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, USA; School of Chemistry and Biochemistry, Georgia Institute of Technology, USA
| | - Nu-Chu Liang
- Neuroscience Program, University of Illinois at Urbana-Champaign, USA; Department of Psychology, University of Illinois at Urbana-Champaign, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, USA.
| |
Collapse
|
12
|
Shahen-Zoabi S, Smoum R, Bingor A, Grad E, Nemirovski A, Shekh-Ahmad T, Mechoulam R, Yaka R. N-oleoyl glycine and N-oleoyl alanine attenuate alcohol self-administration and preference in mice. Transl Psychiatry 2023; 13:273. [PMID: 37524707 PMCID: PMC10390512 DOI: 10.1038/s41398-023-02574-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023] Open
Abstract
The endocannabinoid system (ECS) plays a key modulatory role during synaptic plasticity and homeostatic processes in the brain and has an important role in the neurobiological processes underlying drug addiction. We have previously shown that an elevated ECS response to psychostimulant (cocaine) is involved in regulating the development and expression of cocaine-conditioned reward and sensitization. We therefore hypothesized that drug-induced elevation in endocannabinoids (eCBs) and/or eCB-like molecules (eCB-Ls) may represent a protective mechanism against drug insult, and boosting their levels exogenously may strengthen their neuroprotective effects. Here, we determine the involvement of ECS in alcohol addiction. We first measured the eCBs and eCB-Ls levels in different brain reward system regions following chronic alcohol self-administration using LC-MS. We have found that following chronic intermittent alcohol consumption, N-oleoyl glycine (OlGly) levels were significantly elevated in the prefrontal cortex (PFC), and N-oleoyl alanine (OlAla) was significantly elevated in the PFC, nucleus accumbens (NAc) and ventral tegmental area (VTA) in a region-specific manner. We next tested whether exogenous administration of OlGly or OlAla would attenuate alcohol consumption and preference. We found that systemic administration of OlGly or OlAla (60 mg/kg, intraperitoneal) during intermittent alcohol consumption significantly reduced alcohol intake and preference without affecting the hedonic state. These findings suggest that the ECS negatively regulates alcohol consumption and boosting selective eCBs exogenously has beneficial effects against alcohol consumption and potentially in preventing relapse.
Collapse
Affiliation(s)
- Samah Shahen-Zoabi
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Reem Smoum
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Alexey Bingor
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Etty Grad
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Alina Nemirovski
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Tawfeeq Shekh-Ahmad
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Raphael Mechoulam
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Rami Yaka
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel.
| |
Collapse
|
13
|
González-Portilla M, Moya M, Montagud-Romero S, de Fonseca FR, Orio L, Rodríguez-Arias M. Oleoylethanolamide attenuates the stress-mediated potentiation of rewarding properties of cocaine associated with an increased TLR4 proinflammatory response. Prog Neuropsychopharmacol Biol Psychiatry 2023; 124:110722. [PMID: 36724838 DOI: 10.1016/j.pnpbp.2023.110722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
The lipid-derived messenger oleoylethanolamide (OEA) has been involved in multiple physiological functions including metabolism and the immune response. More recently, OEA has been observed to affect reward-related behavior. Stress is a major risk factor for drug use and a predictor of drug relapse. In the laboratory, social stress has been largely studied using the social defeat (SD) model. Here, we explored the effects of different OEA administration schedules on the increased rewarding properties of cocaine induced by SD. In addition, we evaluated the anti-inflammatory action of OEA pretreatment in TLR4 expression caused by SD in the cerebellum, a novel brain structure that has been involved in the development of cocaine addiction. Adult OF1 mice were assigned to an experimental group according to the stress condition (exploration or SD) and treatment (OEA before SD, OEA before conditioning or subchronic OEA treatment). Mice were administered with OEA i.p (10 mg/kg) 10 min previously to the corresponding event. Three weeks after the last SD encounter, conditioned place preference (CPP) was induced by a subthreshold cocaine dose (1 mg/kg). As expected, socially defeated mice presented greater vulnerability to the cocaine reinforcing effects and expressed CPP. Conversely, this effect was not observed under a non-stressed condition. Most importantly, we observed that OEA pretreatment before SD or before conditioning prevented cocaine CPP in defeated mice. Biochemical analysis showed that OEA administration before SD decreased proinflammatory TLR4 upregulation in the cerebellum caused by social stress. In summary, our results suggest that OEA may have a protective effect on stress-induced increased cocaine sensitivity by exerting an anti-inflammatory action.
Collapse
Affiliation(s)
- Macarena González-Portilla
- Department of Psychobiology, Facultad de Psicología, Universitat de València, Avda. Blasco Ibáñez 21, 46010 Valencia, Spain.
| | - Marta Moya
- Department of Psychobiology and Methods in Behavioral Science, Faculty of Psychology, Complutense University of Madrid (UCM), 28223 Pozuelo de Alarcón, Spain
| | - Sandra Montagud-Romero
- Department of Psychobiology, Facultad de Psicología, Universitat de València, Avda. Blasco Ibáñez 21, 46010 Valencia, Spain
| | - Fernando Rodríguez de Fonseca
- Mental Health Clinical Management Unit, Institute of Biomedical Research of Malaga-IBIMA, Regional University Hospital of Málaga, 29010, Málaga, Spain; Atención Primaria, Cronicidad y Promoción de la Salud. Red de Investigación en Atención Primaria de Adicciones (RIAPAD) Rd21/0009/0005, Spain
| | - Laura Orio
- Department of Psychobiology and Methods in Behavioral Science, Faculty of Psychology, Complutense University of Madrid (UCM), 28223 Pozuelo de Alarcón, Spain; Atención Primaria, Cronicidad y Promoción de la Salud. Red de Investigación en Atención Primaria de Adicciones (RIAPAD) Rd21/0009/0005, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Facultad de Psicología, Universitat de València, Avda. Blasco Ibáñez 21, 46010 Valencia, Spain; Atención Primaria, Cronicidad y Promoción de la Salud. Red de Investigación en Atención Primaria de Adicciones (RIAPAD) Rd21/0009/0005, Spain.
| |
Collapse
|
14
|
Herrera-Imbroda J, Flores-López M, Requena-Ocaña N, Araos P, Ropero J, García-Marchena N, Bordallo A, Suarez J, Pavón-Morón FJ, Serrano A, Mayoral F, Rodríguez de Fonseca F. Antipsychotic Medication Influences the Discriminative Value of Acylethanolamides as Biomarkers of Substance Use Disorder. Int J Mol Sci 2023; 24:ijms24119371. [PMID: 37298321 DOI: 10.3390/ijms24119371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/01/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Plasma acylethanolamides (NAEs), including the endocannabinoid anandamide (AEA), have been proposed as circulating biomarkers of substance use disorders. However, the concentration of these lipid transmitters might be influenced by the use of drugs prescribed for either the treatment of addiction or the associated psychiatric co-morbidities such as psychosis. As an example, neuroleptics, used for attenuation of psychotic symptoms and sedation, might theoretically interfere with the monoamine-mediated production of NAEs, obstructing the interpretation of plasma NAEs as clinical biomarkers. To solve the lack of information on the impact of neuroleptics on the concentration of NAEs, we evaluated the concentrations of NAEs in a control group and compared them to those present in (a) substance use disorders (SUD) patients that are not prescribed with neuroleptics, and (b) SUD patients (both alcohol use disorder and cocaine use disorder patients) using neuroleptics. The results demonstrate that SUD patients exhibited greater concentrations of NAEs than the control population, affecting all species with the exception of stearoylethanolamide (SEA) and palmitoleoylethanolamide (POEA). Neuroleptic treatment enhanced the concentrations of NAEs, especially those of AEA, linoleoylethanolamide (LEA), and oleoylethanolamide (OEA). This effect of neuroleptic treatment was observed independently of the drug addiction that motivated the demand for treatment (either alcohol or cocaine). This study remarks the need to control the current use of psychotropic medication as a potential confounding variable when considering the use of NAEs as biomarkers in SUD.
Collapse
Affiliation(s)
- Jesús Herrera-Imbroda
- Grupo de Neuropsicofarmacología, IBIMA-Plataforma BIONAND, 29590 Málaga, Spain
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, IBIMA-Plataforma BIONAND, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Facultad de Medicina, Universidad de Málaga, Andalucía Tech, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - María Flores-López
- Grupo de Neuropsicofarmacología, IBIMA-Plataforma BIONAND, 29590 Málaga, Spain
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, IBIMA-Plataforma BIONAND, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Nerea Requena-Ocaña
- Grupo de Neuropsicofarmacología, IBIMA-Plataforma BIONAND, 29590 Málaga, Spain
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, IBIMA-Plataforma BIONAND, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Pedro Araos
- Grupo de Neuropsicofarmacología, IBIMA-Plataforma BIONAND, 29590 Málaga, Spain
- Departamento de Psicología Básica, Facultad de Psicología, Universidad de Málaga, 29071 Málaga, Spain
| | - Jessica Ropero
- Grupo de Neuropsicofarmacología, IBIMA-Plataforma BIONAND, 29590 Málaga, Spain
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, IBIMA-Plataforma BIONAND, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Nuria García-Marchena
- Grupo de Neuropsicofarmacología, IBIMA-Plataforma BIONAND, 29590 Málaga, Spain
- Departamento de Psicobiología y Metodología, Facultad de Psicología, Universidad Complutense de Madrid, 28223 Madrid, Spain
| | - Antonio Bordallo
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, IBIMA-Plataforma BIONAND, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Juan Suarez
- Grupo de Neuropsicofarmacología, IBIMA-Plataforma BIONAND, 29590 Málaga, Spain
- Departamento de Anatomía, Medicina Legal e Historia de la Ciencia, Facultad de Medicina, Universidad de Málaga, 29071 Málaga, Spain
| | - Francisco Javier Pavón-Morón
- Unidad Clínica Área del Corazón, Hospital Universitario Virgen de la Victoria, IBIMA-Plataforma BIONAND, 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Antonia Serrano
- Grupo de Neuropsicofarmacología, IBIMA-Plataforma BIONAND, 29590 Málaga, Spain
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, IBIMA-Plataforma BIONAND, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Fermín Mayoral
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, IBIMA-Plataforma BIONAND, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Grupo de Neuropsicofarmacología, IBIMA-Plataforma BIONAND, 29590 Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad Clínica de Neurología, Hospital Regional Universitario de Málaga, IBIMA-Plataforma BIONAND, 29010 Málaga, Spain
- Andalusian Network for Clinical and Translational Research in Neurology [NEURO-RECA], 29001 Málaga, Spain
| |
Collapse
|
15
|
Romano A, Friuli M, Eramo B, Gallelli CA, Koczwara JB, Azari EK, Paquot A, Arnold M, Langhans W, Muccioli GG, Lutz TA, Gaetani S. "To brain or not to brain": evaluating the possible direct effects of the satiety factor oleoylethanolamide in the central nervous system. Front Endocrinol (Lausanne) 2023; 14:1158287. [PMID: 37234803 PMCID: PMC10206109 DOI: 10.3389/fendo.2023.1158287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/12/2023] [Indexed: 05/28/2023] Open
Abstract
Introduction Oleoylethanolamide (OEA), an endogenous N-acylethanolamine acting as a gut-to-brain signal to control food intake and metabolism, has been attracting attention as a target for novel therapies against obesity and eating disorders. Numerous observations suggested that the OEA effects might be peripherally mediated, although they involve central pathways including noradrenergic, histaminergic and oxytocinergic systems of the brainstem and the hypothalamus. Whether these pathways are activated directly by OEA or whether they are downstream of afferent nerves is still highly debated. Some early studies suggested vagal afferent fibers as the main route, but our previous observations have contradicted this idea and led us to consider the blood circulation as an alternative way for OEA's central actions. Methods To test this hypothesis, we first investigated the impact of subdiaphragmatic vagal deafferentation (SDA) on the OEA-induced activation of selected brain nuclei. Then, we analyzed the pattern of OEA distribution in plasma and brain at different time points after intraperitoneal administration in addition to measuring food intake. Results Confirming and extending our previous findings that subdiaphragmatic vagal afferents are not necessary for the eating-inhibitory effect of exogenous OEA, our present results demonstrate that vagal sensory fibers are also not necessary for the neurochemical effects of OEA. Rather, within a few minutes after intraperitoneal administration, we found an increased concentration of intact OEA in different brain areas, associated with the inhibition of food intake. Conclusion Our results support that systemic OEA rapidly reaches the brain via the circulation and inhibits eating by acting directly on selected brain nuclei.
Collapse
Affiliation(s)
- Adele Romano
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Marzia Friuli
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Barbara Eramo
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Cristina Anna Gallelli
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Justyna Barbara Koczwara
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Rome, Italy
| | | | - Adrien Paquot
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, UCLouvain, Brussels, Belgium
| | - Myrtha Arnold
- Physiology and Behavior Laboratory, ETH Zurich, Zurich, Switzerland
| | | | - Giulio G. Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, UCLouvain, Brussels, Belgium
| | - Thomas Alexander Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Silvana Gaetani
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
16
|
Mock ED, Gagestein B, van der Stelt M. Anandamide and other N-acylethanolamines: A class of signaling lipids with therapeutic opportunities. Prog Lipid Res 2023; 89:101194. [PMID: 36150527 DOI: 10.1016/j.plipres.2022.101194] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 01/18/2023]
Abstract
N-acylethanolamines (NAEs), including N-palmitoylethanolamine (PEA), N-oleoylethanolamine (OEA), N-arachidonoylethanolamine (AEA, anandamide), N-docosahexaenoylethanolamine (DHEA, synaptamide) and their oxygenated metabolites are a lipid messenger family with numerous functions in health and disease, including inflammation, anxiety and energy metabolism. The NAEs exert their signaling role through activation of various G protein-coupled receptors (cannabinoid CB1 and CB2 receptors, GPR55, GPR110, GPR119), ion channels (TRPV1) and nuclear receptors (PPAR-α and PPAR-γ) in the brain and periphery. The biological role of the oxygenated NAEs, such as prostamides, hydroxylated anandamide and DHEA derivatives, are less studied. Evidence is accumulating that NAEs and their oxidative metabolites may be aberrantly regulated or are associated with disease severity in obesity, metabolic syndrome, cancer, neuroinflammation and liver cirrhosis. Here, we comprehensively review NAE biosynthesis and degradation, their metabolism by lipoxygenases, cyclooxygenases and cytochrome P450s and the biological functions of these signaling lipids. We discuss the latest findings and therapeutic potential of modulating endogenous NAE levels by inhibition of their degradation, which is currently under clinical evaluation for neuropsychiatric disorders. We also highlight NAE biosynthesis inhibition as an emerging topic with therapeutic opportunities in endocannabinoid and NAE signaling.
Collapse
Affiliation(s)
- Elliot D Mock
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Berend Gagestein
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands.
| |
Collapse
|
17
|
Cutuli D, Sampedro-Piquero P. BDNF and its Role in the Alcohol Abuse Initiated During Early Adolescence: Evidence from Preclinical and Clinical Studies. Curr Neuropharmacol 2022; 20:2202-2220. [PMID: 35748555 PMCID: PMC9886842 DOI: 10.2174/1570159x20666220624111855] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/23/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a crucial brain signaling protein that is integral to many signaling pathways. This neurotrophin has shown to be highly involved in brain plastic processes such as neurogenesis, synaptic plasticity, axonal growth, and neurotransmission, among others. In the first part of this review, we revise the role of BDNF in different neuroplastic processes within the central nervous system. On the other hand, its deficiency in key neural circuits is associated with the development of psychiatric disorders, including alcohol abuse disorder. Many people begin to drink alcohol during adolescence, and it seems that changes in BDNF are evident after the adolescent regularly consumes alcohol. Therefore, the second part of this manuscript addresses the involvement of BDNF during adolescent brain maturation and how this process can be negatively affected by alcohol abuse. Finally, we propose different BNDF enhancers, both behavioral and pharmacological, which should be considered in the treatment of problematic alcohol consumption initiated during the adolescence.
Collapse
Affiliation(s)
- Debora Cutuli
- Department of Psychology, Medicine and Psychology Faculty, University Sapienza of Rome, Rome, Italy; ,I.R.C.C.S. Fondazione Santa Lucia, Laboratorio di Neurofisiologia Sperimentale e del Comportamento, Via del Fosso di Fiorano 64, 00143 Roma, Italy; ,Address correspondence to these authors at the Department of Biological and Health Psychology, Psychology Faculty, Autonomous University of Madrid, Madrid, Spain, Spain and Cutuli, D. at Fondazione Santa Lucia. Laboratorio di Neurofisiologia Sperimentale e del Comportamento. Via del Fosso di Fiorano 64, 00143 Roma, Italy; E-mails: ;
| | - Piquero Sampedro-Piquero
- Department of Biological and Health Psychology, Psychology Faculty, Autonomous University of Madrid, Madrid, Spain,Address correspondence to these authors at the Department of Biological and Health Psychology, Psychology Faculty, Autonomous University of Madrid, Madrid, Spain, Spain and Cutuli, D. at Fondazione Santa Lucia. Laboratorio di Neurofisiologia Sperimentale e del Comportamento. Via del Fosso di Fiorano 64, 00143 Roma, Italy; E-mails: ;
| |
Collapse
|
18
|
Fang X, Davis X, Flack KD, Duncan C, Li F, White M, Grilo C, Small DM. Dietary adaptation for weight loss maintenance at Yale (DAWLY): Protocol and predictions for a randomized controlled trial. Front Nutr 2022; 9:940064. [PMID: 35967820 PMCID: PMC9369668 DOI: 10.3389/fnut.2022.940064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background Current therapies for obesity treatment are effective at producing short-term weight loss, but weight loss maintenance remains a significant challenge. Here we investigate the impact of pre-intervention dietary fat intake on the efficacy of a dietary supplement to support weight loss maintenance. Preclinical work demonstrates that a vagal afferent pathway critical for sensing dietary lipids is blunted by a high-fat diet (HFD), resulting in a reduced preference for a low-fat emulsion and severe blunting of the dopamine (DA) response to the gastric infusion of lipids. Infusion of the gut lipid messenger oleoylethanolamide (OEA), which is also depleted by HFD, immediately reverses this DA blunting and restores preference for the low-fat emulsion. Studies of OEA supplementation for weight loss in humans have had limited success. Given the strong effect of HFD on this pathway, we designed a study to test whether the efficacy of OEA as a weight loss treatment is related to pre-intervention habitual intake of dietary fat. Methods/Design We employed a randomized, double-blind, placebo-controlled trial in which 100 adults with overweight/obesity (OW/OB) were randomized to receive either OEA or placebo daily for 16 months. Following a baseline evaluation of diet, metabolic health, adiposity, and brain response to a palatable an energy dense food, participants in both groups underwent a 4-month behavioral weight loss intervention (LEARN®) followed by a 1-year maintenance period. The study aims are to (1) determine if pre-intervention dietary fat intake moderates the ability of OEA to improve weight loss and weight loss maintenance after a gold standard behavioral weight loss treatment; (2) identify biomarkers that predict outcome and optimize a stratification strategy; and (3) test a model underlying OEA's effectiveness. Discussion Focusing on interventions that target the gut-brain axis is supported by mounting evidence for the role of gut-brain signaling in food choice and the modulation of this circuit by diet. If successful, this work will provide support for targeting the gut-brain pathway for weight loss maintenance using a precision medicine approach that is easy and inexpensive to implement. Clinical Trial Registration [www.ClinicalTrials.gov], identifier [NCT04614233].
Collapse
Affiliation(s)
- Xi Fang
- Modern Diet and Physiology Research Center, New Haven, CT, United States
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Xue Davis
- Modern Diet and Physiology Research Center, New Haven, CT, United States
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Kyle D. Flack
- Department of Dietetics and Human Nutrition, College of Agriculture, Foods, and Environment, University of Kentucky, Lexington, KY, United States
| | - Chavonn Duncan
- Modern Diet and Physiology Research Center, New Haven, CT, United States
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Fangyong Li
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, CT, United States
| | - Marney White
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Department of Social and Behavioral Sciences, Yale School of Public Health, New Haven, CT, United States
| | - Carlos Grilo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Dana M. Small
- Modern Diet and Physiology Research Center, New Haven, CT, United States
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
19
|
Sánchez-Marín L, Javier Pavón-Morón F, Rodríguez de Fonseca F, Serrano A. Attenuation of Oleoylethanolamide-Induced Reduction of Alcohol Consumption in Adult Rats Exposed Intermittently to Alcohol During Adolescence. Neurosci Lett 2022; 781:136670. [DOI: 10.1016/j.neulet.2022.136670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/15/2022]
|
20
|
Voegel CD, Kroll SL, Schmid MW, Kexel AK, Baumgartner MR, Kraemer T, Binz TM, Quednow BB. Alterations of Stress-Related Glucocorticoids and Endocannabinoids in Hair of Chronic Cocaine Users. Int J Neuropsychopharmacol 2021; 25:226-237. [PMID: 34676867 PMCID: PMC8929753 DOI: 10.1093/ijnp/pyab070] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/06/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Previous research in animals and humans has demonstrated a potential role of stress regulatory systems, such as the hypothalamic-pituitary-adrenal (HPA) axis and the endocannabinoid (eCB) system, in the development of substance use disorders. We thus investigated alterations of HPA and eCB markers in individuals with chronic cocaine use disorder by using an advanced hair analysis technique. METHODS We compared hair concentrations of glucocorticoids (cortisone, cortisol) and the eCBs 2-arachidonylglycerol, anandamide (AEA), oleoylethanolamide (OEA), and palmitoylethanolamide (PEA) between 48 recreational cocaine users (RCU), 25 dependent cocaine users (DCU), and 67 stimulant-naïve controls. Self-reported substance use and hair concentrations of substances were also assessed. RESULTS Significantly higher concentrations of hair cortisone were found in RCU and DCU compared with controls. Hair concentrations of OEA and PEA were significantly lower in DCU compared with RCU and controls. Additionally, within cocaine users, elevated cocaine hair concentration was a significant predictor for increased glucocorticoid and decreased OEA hair levels. Moreover, higher 3,4-methylenedioxymethamphetamine hair concentration was correlated with elevated cortisone and AEA, OEA, and PEA levels in hair within cocaine users, whereas more self-reported cannabis use was associated with lower eCBs levels in hair across the total sample. CONCLUSION Our findings support the hypothesis that the HPA axis and eCB system might be important regulators for substance use disorders. The mechanistic understanding of changes in glucocorticoid and eCB levels in future research might be a promising pharmacological target to reduce stress-induced craving and relapse specifically in cocaine use disorder.
Collapse
Affiliation(s)
- Clarissa D Voegel
- Center for Forensic Hair Analytics, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Sara L Kroll
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, University of Zurich, Zurich, Switzerland,Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | | | - Ann-Kathrin Kexel
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, University of Zurich, Zurich, Switzerland
| | - Markus R Baumgartner
- Center for Forensic Hair Analytics, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Thomas Kraemer
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Tina M Binz
- Center for Forensic Hair Analytics, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Boris B Quednow
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, University of Zurich, Zurich, Switzerland,Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology, Zurich, Switzerland,Correspondence: B. B. Quednow, PhD, Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, Zurich, Lenggstrasse 31, CH-8032 Zurich, Switzerland ()
| |
Collapse
|
21
|
Meredith LR, Burnette EM, Grodin EN, Irwin MR, Ray LA. Immune treatments for alcohol use disorder: A translational framework. Brain Behav Immun 2021; 97:349-364. [PMID: 34343618 PMCID: PMC9044974 DOI: 10.1016/j.bbi.2021.07.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/10/2021] [Accepted: 07/28/2021] [Indexed: 12/14/2022] Open
Abstract
While the immune system is essential for survival, an excessive or prolonged inflammatory response, such as that resulting from sustained heavy alcohol use, can damage the host and contribute to psychiatric disorders. A growing body of literature indicates that the immune system plays a critical role in the development and maintenance of alcohol use disorder (AUD). As such, there is enthusiasm for treatments that can restore healthy levels of inflammation as a mechanism to reduce drinking and promote recovery. In this qualitative literature review, we provide a conceptual rationale for immune therapies and discuss progress in medications development for AUD focused on the immune system as a treatment target. This review is organized into sections based on primary signaling pathways targeted by the candidate therapies, namely: (a) toll-like receptors, (b) phosphodiesterase inhibitors, (c) peroxisome proliferator-activated receptors, (d) microglia and astrocytes, (e) other immune pharmacotherapies, and (f) behavioral therapies. As relevant within each section, we examine the basic biological mechanisms of each class of therapy and evaluate preclinical research testing the role of the therapy on mitigating alcohol-related behaviors in animal models. To the extent available, translational findings are reviewed with discussion of completed and ongoing randomized clinical trials and their findings to date. An applied and clinically focused approach is taken to identify the potential clinical applications of the various treatments reviewed. We conclude by delineating the most promising candidate treatments and discussing future directions by considering opportunities for immune treatment development and personalized medicine for AUD.
Collapse
Affiliation(s)
- Lindsay R Meredith
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Elizabeth M Burnette
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Erica N Grodin
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael R Irwin
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA; Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA, USA; Cousins Center for Psychoneuroimmunology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lara A Ray
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
22
|
Prentice RN, Younus M, Krittaphol-Bailey W, Rizwan SB. A sensitive LC-MS/MS method for the study of exogenously administered 13 C-oleoylethanolamide in rat plasma and brain tissue. J Sep Sci 2021; 44:2693-2704. [PMID: 33939878 DOI: 10.1002/jssc.202001210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 04/15/2021] [Accepted: 04/27/2021] [Indexed: 01/10/2023]
Abstract
Oleoylethanolamide is an endogenous molecule with neuroprotective effects. It has been reported that exogenous oleoylethanolamide can be administered therapeutically, but the confounding presence of the endogenous molecule has led to conflicting reports regarding the mechanisms of the effects and highlights a need for an adequate methodology to differentiate them. We have developed a liquid chromatography-tandem mass spectrometry method to study oleoylethanolamide in rat plasma and brain using a 13 C-labeled isotope, 13 C-oleoylethanolamide. 13 C-oleoylethanolamide was extracted using a liquid-liquid extraction employing acetonitrile and tert-butyl methyl ether (1:4). Analysis was performed using a gradient with a total run time of 12 min. 13 C-oleoylethanolamide, d4 -oleoylethanolamide (internal standard), and 12 C-oleoylethanolamide (endogenous background) eluted simultaneously at 1.64 min. The method was validated for specificity, sensitivity, accuracy, and precision and found to be capable of quantification within acceptable limits of ±15% over the calibration range of 0.39-25 ng/mL for the plasma and 1.17-75 ng/g for the brain. It was then applied to quantify 13 C-oleoylethanolamide over 90 min after intravenous administration of a solution (1 mg/kg) in rats. Results suggest that 13 C-oleoylethanolamide does not reach therapeutic concentrations in the brain, despite a relatively prolonged plasma circulation, suggesting that rapid degradation in the brain remains an obstacle to its clinical application to neurological disease.
Collapse
Affiliation(s)
| | - Mohammad Younus
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
23
|
Ballesta A, Alen F, Orio L, Arco R, Vadas E, Decara J, Vargas A, Gómez de Heras R, Ramírez‐López M, Serrano A, Pavón FJ, Suárez J, Rodríguez de Fonseca F. Abrupt cessation of reboxetine along alcohol deprivation results in alcohol intake escalation after reinstatement of drinking. Addict Biol 2021; 26:e12957. [PMID: 32815666 DOI: 10.1111/adb.12957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/10/2020] [Accepted: 07/24/2020] [Indexed: 01/19/2023]
Abstract
Major depression (MD) is a frequent comorbidity in alcohol use disorder (AUD) patients. Antidepressant prescription is often limited by poor clinical outcomes or unwanted side effects in comorbid AUD-MD patients. Recent studies suggest that abrupt cessation of selective serotonin reuptake inhibitors antidepressant treatment increases alcohol consumption after an alcohol deprivation period in rats. However, the appearance of this effect after the treatment with selective noradrenaline reuptake inhibitors (SNRIs) is not known. Here, we report that interruption of subchronic (14 days) treatment with the SNRIs reboxetine (15 mg/kg/day intraperitoneally) resulted in escalation of ethanol intake when the animals resume alcohol self-administration. This effect of reboxetine treatment cessation was associated with a profound deactivation of the endocannabinoid/acylethanolamide signaling system in the prefrontal cortex but not in the dorsal hippocampus, as reflected by the decrease in the protein expression of the cannabinoid CB1 receptor, the PPARα receptor, the 2-arachidonoylglycerol synthesizing enzymes DAGLα and DGALβ, and the endocanabinoid degrading enzyme MAGL. This was associated with dysregulation of the expression of glutamic acid receptors GluN1, GluA1, and mGlu5 in the medial prefrontal cortex and the dorsal hippocampus of the animals exposed to reboxetine. The present results further support the idea that abrupt cessation of antidepressant therapy along alcohol deprivation time can boost alcohol intake after relapse through mechanisms associated with endocannabinoid/glutamate signaling dysregulation. This finding might be relevant for patients suffering AUD/MD comorbidity where antidepressant therapy must be monitored with caution for avoiding unwanted side effects if adherence to the treatment is not fully achieved.
Collapse
Affiliation(s)
- Antonio Ballesta
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología Universidad Complutense de Madrid Madrid Spain
| | - Francisco Alen
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología Universidad Complutense de Madrid Madrid Spain
- Laboratorio de Medicina Regenerativa, Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental Hospital Regional Universitario de Málaga Málaga Spain
| | - Laura Orio
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología Universidad Complutense de Madrid Madrid Spain
| | - Rocío Arco
- Laboratorio de Medicina Regenerativa, Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental Hospital Regional Universitario de Málaga Málaga Spain
| | - Evelyn Vadas
- Laboratorio de Medicina Regenerativa, Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental Hospital Regional Universitario de Málaga Málaga Spain
| | - Juan Decara
- Laboratorio de Medicina Regenerativa, Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental Hospital Regional Universitario de Málaga Málaga Spain
| | - Antonio Vargas
- Laboratorio de Medicina Regenerativa, Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental Hospital Regional Universitario de Málaga Málaga Spain
| | - Raquel Gómez de Heras
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología Universidad Complutense de Madrid Madrid Spain
| | - Mayte Ramírez‐López
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología Universidad Complutense de Madrid Madrid Spain
| | - Antonia Serrano
- Laboratorio de Medicina Regenerativa, Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental Hospital Regional Universitario de Málaga Málaga Spain
| | - Francisco Javier Pavón
- Laboratorio de Medicina Regenerativa, Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental Hospital Regional Universitario de Málaga Málaga Spain
| | - Juan Suárez
- Laboratorio de Medicina Regenerativa, Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental Hospital Regional Universitario de Málaga Málaga Spain
| | - Fernando Rodríguez de Fonseca
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología Universidad Complutense de Madrid Madrid Spain
- Laboratorio de Medicina Regenerativa, Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental Hospital Regional Universitario de Málaga Málaga Spain
| |
Collapse
|
24
|
Namba MD, Leyrer-Jackson JM, Nagy EK, Olive MF, Neisewander JL. Neuroimmune Mechanisms as Novel Treatment Targets for Substance Use Disorders and Associated Comorbidities. Front Neurosci 2021; 15:650785. [PMID: 33935636 PMCID: PMC8082184 DOI: 10.3389/fnins.2021.650785] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Recent studies examining the neurobiology of substance abuse have revealed a significant role of neuroimmune signaling as a mechanism through which drugs of abuse induce aberrant changes in synaptic plasticity and contribute to substance abuse-related behaviors. Immune signaling within the brain and the periphery critically regulates homeostasis of the nervous system. Perturbations in immune signaling can induce neuroinflammation or immunosuppression, which dysregulate nervous system function including neural processes associated with substance use disorders (SUDs). In this review, we discuss the literature that demonstrates a role of neuroimmune signaling in regulating learning, memory, and synaptic plasticity, emphasizing specific cytokine signaling within the central nervous system. We then highlight recent preclinical studies, within the last 5 years when possible, that have identified immune mechanisms within the brain and the periphery associated with addiction-related behaviors. Findings thus far underscore the need for future investigations into the clinical potential of immunopharmacology as a novel approach toward treating SUDs. Considering the high prevalence rate of comorbidities among those with SUDs, we also discuss neuroimmune mechanisms of common comorbidities associated with SUDs and highlight potentially novel treatment targets for these comorbid conditions. We argue that immunopharmacology represents a novel frontier in the development of new pharmacotherapies that promote long-term abstinence from drug use and minimize the detrimental impact of SUD comorbidities on patient health and treatment outcomes.
Collapse
Affiliation(s)
- Mark D. Namba
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | | | - Erin K. Nagy
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | - M. Foster Olive
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | | |
Collapse
|
25
|
Klockars A, Levine AS, Head MA, Perez-Leighton CE, Kotz CM, Olszewski PK. Impact of Gut and Metabolic Hormones on Feeding Reward. Compr Physiol 2021; 11:1425-1447. [PMID: 33577129 DOI: 10.1002/cphy.c190042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ingestion of food activates a cascade of endocrine responses (thereby reflecting a contemporaneous feeding status) that include the release of hormones from the gastrointestinal (GI) tract, such as cholecystokinin (CCK), glucagonlike peptide YY (PYY), peptide PP, and oleoylethanolamide, as well as suppression of ghrelin secretion. The pancreas and adipose tissue, on the other hand, release hormones that serve as a measure of the current metabolic state or the long-term energy stores, that is, insulin, leptin, and adiponectin. It is well known and intuitively understandable that these hormones target either directly (by crossing the blood-brain barrier) or indirectly (e.g., via vagal input) the "homeostatic" brainstem-hypothalamic pathways involved in the regulation of appetite. The current article focuses on yet another target of the metabolic and GI hormones that is critical in inducing changes in food intake, namely, the reward system. We discuss the physiological basis of this functional interaction, its importance in the control of appetite, and the impact that disruption of this crosstalk has on energy intake in select physiological and pathophysiological states. We conclude that metabolic and GI hormones have a capacity to strengthen or weaken a response of the reward system to a given food, and thus, they are fundamental in ensuring that feeding reward is plastic and dependent on the energy status of the organism. © 2021 American Physiological Society. Compr Physiol 11:1425-1447, 2021.
Collapse
Affiliation(s)
- Anica Klockars
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
| | - Allen S Levine
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
| | - Mitchell A Head
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
| | | | - Catherine M Kotz
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA.,Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Pawel K Olszewski
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand.,Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA.,Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
26
|
Sagheddu C, Torres LH, Marcourakis T, Pistis M. Endocannabinoid-Like Lipid Neuromodulators in the Regulation of Dopamine Signaling: Relevance for Drug Addiction. Front Synaptic Neurosci 2021; 12:588660. [PMID: 33424577 PMCID: PMC7786397 DOI: 10.3389/fnsyn.2020.588660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/16/2020] [Indexed: 01/11/2023] Open
Abstract
The family of lipid neuromodulators has been rapidly growing, as the use of different -omics techniques led to the discovery of a large number of naturally occurring N-acylethanolamines (NAEs) and N-acyl amino acids belonging to the complex lipid signaling system termed endocannabinoidome. These molecules exert a variety of biological activities in the central nervous system, as they modulate physiological processes in neurons and glial cells and are involved in the pathophysiology of neurological and psychiatric disorders. Their effects on dopamine cells have attracted attention, as dysfunctions of dopamine systems characterize a range of psychiatric disorders, i.e., schizophrenia and substance use disorders (SUD). While canonical endocannabinoids are known to regulate excitatory and inhibitory synaptic inputs impinging on dopamine cells and modulate several dopamine-mediated behaviors, such as reward and addiction, the effects of other lipid neuromodulators are far less clear. Here, we review the emerging role of endocannabinoid-like neuromodulators in dopamine signaling, with a focus on non-cannabinoid N-acylethanolamines and their receptors. Mounting evidence suggests that these neuromodulators contribute to modulate synaptic transmission in dopamine regions and might represent a target for novel medications in alcohol and nicotine use disorder.
Collapse
Affiliation(s)
- Claudia Sagheddu
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Larissa Helena Torres
- Department of Food and Drugs, School of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Tania Marcourakis
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marco Pistis
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.,Neuroscience Institute, National Research Council of Italy (CNR), Section of Cagliari, Cagliari, Italy
| |
Collapse
|
27
|
García-Baos A, Alegre-Zurano L, Cantacorps L, Martín-Sánchez A, Valverde O. Role of cannabinoids in alcohol-induced neuroinflammation. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110054. [PMID: 32758518 DOI: 10.1016/j.pnpbp.2020.110054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/13/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
Alcohol is a psychoactive substance highly used worldwide, whose harmful use might cause a broad range of mental and behavioural disorders. Underlying brain impact, the neuroinflammatory response induced by alcohol is recognised as a key contributing factor in the progression of other neuropathological processes, such as neurodegeneration. These sequels are determined by multiple factors, including age of exposure. Strikingly, it seems that the endocannabinoid system modulation could regulate the alcohol-induced neuroinflammation. Although direct CB1 activation can worsen alcohol consequences, targeting other components of the expanded endocannabinoid system may counterbalance the pro-inflammatory response. Indeed, specific modulations of the expanded endocannabinoid system have been proved to exert anti-inflammatory effects, primarily through the CB2 and PPARγ signalling. Among them, some endo- and exogeneous cannabinoids can block certain pro-inflammatory mediators, such as NF-κB, thereby neutralizing the neuroinflammatory intracellular cascades. Furthermore, a number of cannabinoids are able to activate complementary anti-inflammatory pathways, which are necessary for the transition from chronically overactivated microglia to a regenerative microglial phenotype. Thus, cannabinoid modulation provides cooperative anti-inflammatory mechanisms that may be advantageous to resolve a pathological neuroinflammation in an alcohol-dependent context.
Collapse
Affiliation(s)
- Alba García-Baos
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Laia Alegre-Zurano
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Lídia Cantacorps
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ana Martín-Sánchez
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Programme, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Programme, IMIM-Hospital del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
28
|
N-acylethanolamine acid amidase (NAAA) inhibition decreases the motivation for alcohol in Marchigian Sardinian alcohol-preferring rats. Psychopharmacology (Berl) 2021; 238:249-258. [PMID: 33037452 PMCID: PMC7796956 DOI: 10.1007/s00213-020-05678-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
RATIONALE N-acylethanolamine acid amidase (NAAA) is an intracellular cysteine hydrolase that terminates the biological actions of oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), two endogenous lipid-derived agonists of the nuclear receptor, and peroxisome proliferator-activated receptor-α. OEA and PEA are important regulators of energy balance, pain, and inflammation, but recent evidence suggests that they might also contribute to the control of reward-related behaviors. OBJECTIVES AND METHODS In the present study, we investigated the effects of systemic and intracerebral NAAA inhibition in the two-bottle choice model of voluntary alcohol drinking and on operant alcohol self-administration. RESULTS Intraperitoneal injections of the systemically active NAAA inhibitor ARN19702 (3 and 10 mg/kg) lowered voluntary alcohol intake in a dose-dependent manner, achieving ≈ 47% reduction at the 10 mg/kg dose (p < 0.001). Water, food, or saccharin consumption was not affected by the inhibitor. Similarly, ARN19702 dose-dependently attenuated alcohol self-administration under both fixed ratio 1 (FR-1) and progressive ratio schedules of reinforcement. Furthermore, microinjection of ARN19702 (1, 3 and 10 μg/μl) or of two chemically different NAAA inhibitors, ARN077 and ARN726 (both at 3 and 10 μg/μl), into the midbrain ventral tegmental area produced dose-dependent decreases in alcohol self-administration under FR-1 schedule. Microinjection of ARN19702 into the nucleus accumbens had no such effect. CONCLUSION Collectively, the results point to NAAA as a possible molecular target for the treatment of alcohol use disorder.
Collapse
|
29
|
Grigsby KB, Savarese AM, Metten P, Mason BJ, Blednov YA, Crabbe JC, Ozburn AR. Effects of Tacrolimus and Other Immune Targeting Compounds on Binge-Like Ethanol Drinking in High Drinking in the Dark Mice. Neurosci Insights 2020; 15:2633105520975412. [PMID: 33294845 PMCID: PMC7705291 DOI: 10.1177/2633105520975412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
High Drinking in the Dark (HDID-1) mice represent a unique genetic risk model of binge-like drinking and a novel means of screening potential pharmacotherapies to treat alcohol use disorders (AUDs). We tested the effects of tacrolimus (0, 0.5, 1, and 2 mg/kg), sirolimus (0, 5, 10, and 20 mg/kg), palmitoylethanolamide (PEA; 0, 75, 150, and 225 mg/kg), and secukinumab (0, 5, 20, and 60 mg/kg) on binge-like ethanol intake (2-day, "Drinking in the Dark" [DID]) and blood alcohol levels (BALs) in HDID-1 mice. Tacrolimus reduced ethanol intake and BALs. Tacrolimus had no effect on water intake, but reduced saccharin intake. There was no effect of sirolimus, PEA, or secukinumab on ethanol intake or BALs. These results compare and contrast with previous work addressing these compounds or their targeted mechanisms of action on ethanol drinking, highlighting the importance of screening a wide range of models and genotypes to inform the role of neuroimmune signaling in AUDs.
Collapse
Affiliation(s)
- Kolter B Grigsby
- Portland Alcohol Research Center,
Department of Behavioral Neuroscience at Oregon Health and Science University and VA
Portland Health Care System, Portland, OR, USA
| | - Antonia M Savarese
- Portland Alcohol Research Center,
Department of Behavioral Neuroscience at Oregon Health and Science University and VA
Portland Health Care System, Portland, OR, USA
| | - Pamela Metten
- Portland Alcohol Research Center,
Department of Behavioral Neuroscience at Oregon Health and Science University and VA
Portland Health Care System, Portland, OR, USA
| | - Barbara J Mason
- Department of Molecular Medicine, The
Scripps Research Institute, La Jolla, CA, USA
| | - Yuri A Blednov
- Waggoner Center for Alcoholism and
Addiction Research, University of Texas at Austin, Austin, TX, USA
| | - John C Crabbe
- Portland Alcohol Research Center,
Department of Behavioral Neuroscience at Oregon Health and Science University and VA
Portland Health Care System, Portland, OR, USA
| | - Angela R Ozburn
- Portland Alcohol Research Center,
Department of Behavioral Neuroscience at Oregon Health and Science University and VA
Portland Health Care System, Portland, OR, USA
| |
Collapse
|
30
|
García-Marchena N, Pizarro N, Pavón FJ, Martínez-Huélamo M, Flores-López M, Requena-Ocaña N, Araos P, Silva-Peña D, Suárez J, Santín LJ, de la Torre R, Rodríguez de Fonseca F, Serrano A. Potential association of plasma lysophosphatidic acid (LPA) species with cognitive impairment in abstinent alcohol use disorders outpatients. Sci Rep 2020; 10:17163. [PMID: 33051508 PMCID: PMC7555527 DOI: 10.1038/s41598-020-74155-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/28/2020] [Indexed: 12/17/2022] Open
Abstract
Lysophosphatidic acid (LPA) species are bioactive lipids participating in neurodevelopmental processes. The aim was to investigate whether the relevant species of LPA were associated with clinical features of alcohol addiction. A total of 55 abstinent alcohol use disorder (AUD) patients were compared with 34 age/sex/body mass index-matched controls. Concentrations of total LPA and 16:0-LPA, 18:0-LPA, 18:1-LPA, 18:2-LPA and 20:4-LPA species were quantified and correlated with neuroplasticity-associated growth factors including brain derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1) and IGF-2, and neurotrophin-3 (NT-3). AUD patients showed dysexecutive syndrome (22.4%) and memory impairment (32.6%). Total LPA, 16:0-LPA, 18:0-LPA and 18:1-LPA concentrations, were decreased in the AUD group compared to control group. Total LPA, 16:0-LPA, 18:2-LPA and 20:4-LPA concentrations were decreased in men compared to women. Frontal lobe functions correlated with plasma LPA species. Alcohol-cognitive impairments could be related with the deregulation of the LPA species, especially in 16:0-LPA, 18:1-LPA and 20:4-LPA. Concentrations of BDNF correlated with total LPA, 18:2-LPA and 20:4-LPA species. The relation between LPA species and BDNF is interesting in plasticity and neurogenesis functions, their involvement in AUD might serve as a biomarker of cognitive impairment.
Collapse
Affiliation(s)
- Nuria García-Marchena
- Laboratorio de Medicina Regenerativa, Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Avda. Carlos Haya 82, sótano, 29010, Málaga, Spain. .,Institut D, Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Unidad de Adicciones-Servicio de Medicina Interna, Campus Can Ruti, Carrer del Canyet s/n, 08916, Badalona, Spain.
| | - Nieves Pizarro
- Integrative Pharmacology and Systems Neurosciences Research Group, Programa de Investigación en Neurociencias, Institut Hospital del Mar d'Investigacions Mediques (IMIM), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Francisco J Pavón
- Laboratorio de Medicina Regenerativa, Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Avda. Carlos Haya 82, sótano, 29010, Málaga, Spain.,Unidad de Gestión Clínica del Corazón, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria de Málaga, Malaga, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Miriam Martínez-Huélamo
- Integrative Pharmacology and Systems Neurosciences Research Group, Programa de Investigación en Neurociencias, Institut Hospital del Mar d'Investigacions Mediques (IMIM), Dr. Aiguader 88, 08003, Barcelona, Spain.,Departamento de Nutrición, Ciencias de los Alimentos y Gastronomía, Facultad de Farmacia y Ciencias de los Alimentos, Universidad de Barcelona, Barcelona, Spain
| | - María Flores-López
- Laboratorio de Medicina Regenerativa, Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Avda. Carlos Haya 82, sótano, 29010, Málaga, Spain
| | - Nerea Requena-Ocaña
- Laboratorio de Medicina Regenerativa, Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Avda. Carlos Haya 82, sótano, 29010, Málaga, Spain
| | - Pedro Araos
- Laboratorio de Medicina Regenerativa, Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Avda. Carlos Haya 82, sótano, 29010, Málaga, Spain.,Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Psicología, Universidad de Málaga (UMA), Malaga, Spain
| | - Daniel Silva-Peña
- Laboratorio de Medicina Regenerativa, Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Avda. Carlos Haya 82, sótano, 29010, Málaga, Spain
| | - Juan Suárez
- Laboratorio de Medicina Regenerativa, Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Avda. Carlos Haya 82, sótano, 29010, Málaga, Spain
| | - Luis J Santín
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Psicología, Universidad de Málaga (UMA), Malaga, Spain
| | - Rafael de la Torre
- Integrative Pharmacology and Systems Neurosciences Research Group, Programa de Investigación en Neurociencias, Institut Hospital del Mar d'Investigacions Mediques (IMIM), Dr. Aiguader 88, 08003, Barcelona, Spain.
| | - Fernando Rodríguez de Fonseca
- Laboratorio de Medicina Regenerativa, Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Avda. Carlos Haya 82, sótano, 29010, Málaga, Spain.
| | - Antonia Serrano
- Laboratorio de Medicina Regenerativa, Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Avda. Carlos Haya 82, sótano, 29010, Málaga, Spain.
| |
Collapse
|
31
|
Oleoylethanolamide decreases frustration stress-induced binge-like eating in female rats: a novel potential treatment for binge eating disorder. Neuropsychopharmacology 2020; 45:1931-1941. [PMID: 32353860 PMCID: PMC7609309 DOI: 10.1038/s41386-020-0686-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/04/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023]
Abstract
Binge eating disorder (BED) is the most frequent eating disorder, for which current pharmacotherapies show poor response rates and safety concerns, thus highlighting the need for novel treatment options. The lipid-derived messenger oleoylethanolamide (OEA) acts as a satiety signal inhibiting food intake through the involvement of central noradrenergic and oxytocinergic neurons. We investigated the anti-binge effects of OEA in a rat model of binge-like eating, in which, after cycles of intermittent food restrictions/refeeding and palatable food consumptions, female rats show a binge-like intake of palatable food, following a 15-min exposure to their sight and smell ("frustration stress"). Systemically administered OEA dose-dependently (2.5, 5, and 10 mg kg-1) prevented binge-like eating. This behavioral effect was associated with a decreased activation (measured by mapping the expression of c-fos, an early gene widely used as a marker of cellular activation) of brain areas responding to stress (such as the nucleus accumbens and amygdala) and to a stimulation of areas involved in the control of food intake, such as the VTA and the PVN. These effects were paralleled, also, to the modulation of monoamine transmission in key brain areas involved in both homeostatic and hedonic control of eating. In particular, a decreased dopaminergic response to stress was observed by measuring dopamine extracellular concentrations in microdialysates from the nucleus accumbens shell, whereas an increased serotonergic and noradrenergic tone was detected in tissue homogenates of selected brain areas. Finally, a decrease in corticotropin-releasing factor (CRF) mRNA levels was induced by OEA in the central amygdala, while an increase in oxytocin mRNA levels was induced in the PVN. The restoration of a normal oxytocin receptor density in the striatum paralleled the oxytocinergic stimulation produced by OEA. In conclusion, we provide evidence suggesting that OEA might represent a novel potential pharmacological target for the treatment of binge-like eating behavior.
Collapse
|
32
|
Suárez J, Khom S, Alén F, Natividad LA, Varodayan FP, Patel RR, Kirson D, Arco R, Ballesta A, Bajo M, Rubio L, Martin-Fardon R, de Fonseca FR, Roberto M. Cessation of fluoxetine treatment increases alcohol seeking during relapse and dysregulates endocannabinoid and glutamatergic signaling in the central amygdala. Addict Biol 2020; 25:e12813. [PMID: 31339221 PMCID: PMC8050940 DOI: 10.1111/adb.12813] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/17/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023]
Abstract
Administration of selective serotonin reuptake inhibitors (SSRIs), typically used as antidepressants, induces long-lasting behavioral changes associated with alcohol use disorder (AUD). However, the contribution of SSRI (fluoxetine)-induced alterations in neurobiological processes underlying alcohol relapse such as endocannabinoid and glutamate signaling in the central amygdala (CeA) remains largely unknown. We utilized an integrative approach to study the effects of repeated fluoxetine administration during abstinence on ethanol drinking. Gene expression and biochemical and electrophysiological studies explored the hypothesis that dysregulation in glutamatergic and endocannabinoid mechanisms in the CeA underlie the susceptibility to alcohol relapse. Cessation of daily treatment with fluoxetine (10 mg/kg) during abstinence resulted in a marked increase in ethanol seeking during re-exposure periods. The increase in ethanol self-administration was associated with (a) reductions in levels of the endocannabinoids N-arachidonoylethanolomine and 2-arachidonoylglycerol in the CeA, (b) increased amygdalar gene expression of cannabinoid type-1 receptor (CB1), N-acyl phosphatidylethanolamine phospholipase D (Nape-pld), fatty acid amid hydrolase (Faah), (c) decreased amygdalar gene expression of ionotropic AMPA (GluA2 and GluA4) and metabotropic (mGlu3) glutamate receptors, and (d) increased glutamatergic receptor function. Overall, our data suggest that the administration of the antidepressant fluoxetine during abstinence dysregulates endocannabinoid signaling and glutamatergic receptor function in the amygdala, facts that likely facilitate alcohol drinking behavior during relapse.
Collapse
Affiliation(s)
- Juan Suárez
- Instituto de Investigación Biomédica de Malaga (IBIMA), Mental Health UGC, Hospital Universitario Regional de Málaga, Málaga, Spain
- Fulbright Visiting Scholar Program, Department of Neuroscience, The Scripps Research Institute (TSRI), La Jolla, CA, USA
| | - Sophia Khom
- Department of Neuroscience, The Scripps Research Institute (TSRI), La Jolla, CA, USA
| | - Francisco Alén
- Instituto de Investigación Biomédica de Malaga (IBIMA), Mental Health UGC, Hospital Universitario Regional de Málaga, Málaga, Spain
- Department of Psychobiology. Universidad Complutense de Madrid, Madrid, Spain
| | - Luis A. Natividad
- Department of Neuroscience, The Scripps Research Institute (TSRI), La Jolla, CA, USA
| | - Florence P. Varodayan
- Department of Neuroscience, The Scripps Research Institute (TSRI), La Jolla, CA, USA
| | - Reesha R. Patel
- Department of Neuroscience, The Scripps Research Institute (TSRI), La Jolla, CA, USA
| | - Dean Kirson
- Department of Neuroscience, The Scripps Research Institute (TSRI), La Jolla, CA, USA
| | - Rocío Arco
- Instituto de Investigación Biomédica de Malaga (IBIMA), Mental Health UGC, Hospital Universitario Regional de Málaga, Málaga, Spain
| | - Antonio Ballesta
- Department of Psychobiology. Universidad Complutense de Madrid, Madrid, Spain
| | - Michal Bajo
- Department of Neuroscience, The Scripps Research Institute (TSRI), La Jolla, CA, USA
| | - Leticia Rubio
- Department of Anatomy and Forensic and Legal Medicine. Universidad de Málaga, Málaga, Spain
| | - Rémi Martin-Fardon
- Department of Neuroscience, The Scripps Research Institute (TSRI), La Jolla, CA, USA
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Malaga (IBIMA), Mental Health UGC, Hospital Universitario Regional de Málaga, Málaga, Spain
- Department of Psychobiology. Universidad Complutense de Madrid, Madrid, Spain
| | - Marisa Roberto
- Department of Neuroscience, The Scripps Research Institute (TSRI), La Jolla, CA, USA
| |
Collapse
|
33
|
Matheson J, Le Foll B. Therapeutic Potential of Peroxisome Proliferator-Activated Receptor (PPAR) Agonists in Substance Use Disorders: A Synthesis of Preclinical and Human Evidence. Cells 2020; 9:cells9051196. [PMID: 32408505 PMCID: PMC7291117 DOI: 10.3390/cells9051196] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022] Open
Abstract
Targeting peroxisome proliferator-activated receptors (PPARs) has received increasing interest as a potential strategy to treat substance use disorders due to the localization of PPARs in addiction-related brain regions and the ability of PPAR ligands to modulate dopamine neurotransmission. Robust evidence from animal models suggests that agonists at both the PPAR-α and PPAR-γ isoforms can reduce both positive and negative reinforcing properties of ethanol, nicotine, opioids, and possibly psychostimulants. A reduction in the voluntary consumption of ethanol following treatment with PPAR agonists seems to be the most consistent finding. However, the human evidence is limited in scope and has so far been less promising. There have been no published human trials of PPAR agonists for treatment of alcohol use disorder, despite the compelling preclinical evidence. Two trials of PPAR-α agonists as potential smoking cessation drugs found no effect on nicotine-related outcomes. The PPAR-γ agonist pioglitazone showed some promise in reducing heroin, nicotine, and cocaine craving in two human laboratory studies and one pilot trial, yet other outcomes were unaffected. Potential explanations for the discordance between the animal and human evidence, such as the potency and selectivity of PPAR ligands and sex-related variability in PPAR physiology, are discussed.
Collapse
Affiliation(s)
- Justin Matheson
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, 27 King’s College Circle, Toronto, ON M5S 3H7, Canada;
- Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, 33 Russell Street, Toronto, ON M5S 2S1, Canada
- Correspondence: ; Tel.: +1-416-535-8501 (ext. 34727)
| | - Bernard Le Foll
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, 27 King’s College Circle, Toronto, ON M5S 3H7, Canada;
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, 33 Russell Street, Toronto, ON M5S 2S1, Canada
- Addictions Division, Centre for Addiction and Mental Health, 100 Stokes Street, Toronto, ON M6J 1H4, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, 250 College Street, Toronto, ON M5T 1R8, Canada
- Institute of Medical Sciences, University of Toronto, 1 King’s College Circle, Room 2374, Toronto, ON M5S 1A8, Canada
- Department of Family and Community Medicine, University of Toronto, 500 University Avenue, 5th Floor, Toronto, ON M5G 1V7, Canada
| |
Collapse
|
34
|
Sanchez-Marin L, Gavito AL, Decara J, Pastor A, Castilla-Ortega E, Suarez J, de la Torre R, Pavon FJ, Rodriguez de Fonseca F, Serrano A. Impact of intermittent voluntary ethanol consumption during adolescence on the expression of endocannabinoid system and neuroinflammatory mediators. Eur Neuropsychopharmacol 2020; 33:126-138. [PMID: 32057593 DOI: 10.1016/j.euroneuro.2020.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/09/2020] [Accepted: 01/22/2020] [Indexed: 01/14/2023]
Abstract
The adolescent brain displays high vulnerability to the deleterious effects of ethanol, including greater risk of developing alcohol use disorder later in life. Here, we characterized the gene expression of the endocannabinoid system (ECS) and relevant signaling systems associated with neuroinflammation and emotional behaviors in the brain of young adult control and ethanol-exposed (EtOH) rats. We measured mRNA levels of candidate genes using quantitative real time PCR in the medial prefrontal cortex (mPFC), amygdala and hippocampus. EtOH rats were generated by maintenance on an intermittent and voluntary ethanol consumption during adolescence using the two-bottle choice paradigm (4 days/week for 4 weeks) followed by 2 week-withdrawal, a time-point of withdrawal with no physical symptoms. Mean differences and effect sizes were calculated using t-test and Cohen's d values. In the mPFC and hippocampus, EtOH rats had significantly higher mRNA expression of endocannabinoid-signaling (mPFC: Ppara, Dagla, Daglb and Napepld; and hippocampus: Cnr2, Dagla and Mgll) and neuroinflammation-associated genes (mPFC: Gfap; and hippocampus: Aif1) than in controls. Moreover, EtOH rats had significantly higher mRNA expression of neuropeptide Y receptor genes (Npy1r, Npy2r and Npy5r) in the hippocampus. Finally, EtOH rats also displayed higher plasma endocannabinoid levels than controls. In conclusion, these results suggest that adolescent ethanol exposure can lead to long-term alterations in the gene expression of the ECS and other signaling systems involved in neuroinflammation and regulation of emotional behaviors in key brain areas for the development of addiction.
Collapse
Affiliation(s)
- L Sanchez-Marin
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, Sótano, Málaga 29010, Spain
| | - A L Gavito
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, Sótano, Málaga 29010, Spain
| | - J Decara
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, Sótano, Málaga 29010, Spain
| | - A Pastor
- Programa de Neurociencias, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - E Castilla-Ortega
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, Sótano, Málaga 29010, Spain
| | - J Suarez
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, Sótano, Málaga 29010, Spain
| | - R de la Torre
- Programa de Neurociencias, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - F J Pavon
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, Sótano, Málaga 29010, Spain; Unidad Gestión Clínica del Corazón, IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| | - F Rodriguez de Fonseca
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, Sótano, Málaga 29010, Spain.
| | - A Serrano
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, Sótano, Málaga 29010, Spain.
| |
Collapse
|
35
|
Orio L. The multifaceted potential of the lipid transmitter oleoylethanolamide to treat alcohol-induced neuroinflammation and alcohol use disorders. Neural Regen Res 2020; 15:71-72. [PMID: 31535652 PMCID: PMC6862416 DOI: 10.4103/1673-5374.264457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Laura Orio
- Department of Psychobiology and Methods in Behavioural Sciences, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
36
|
Pavón FJ, Serrano A, Stouffer DG, Polis I, Roberto M, Cravatt BF, Martin-Fardon R, de Fonseca FR, Parsons LH. Ethanol-induced alterations in endocannabinoids and relevant neurotransmitters in the nucleus accumbens of fatty acid amide hydrolase knockout mice. Addict Biol 2019; 24:1204-1215. [PMID: 30421483 PMCID: PMC6551299 DOI: 10.1111/adb.12695] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/24/2018] [Accepted: 10/12/2018] [Indexed: 01/05/2023]
Abstract
Deletion of fatty acid amide hydrolase (FAAH), enzyme responsible for degrading endocannabinoids, increases alcohol consumption and preference. However, there is a lack of data on neurochemical events in mice exposed to alcohol in the absence of FAAH. Extracellular levels of endocannabinoids and relevant neurotransmitters were measured by in vivo microdialysis in the nucleus accumbens (NAc) of FAAH knockout (KO) and wild-type (WT) mice during an ethanol (EtOH; 2 g/kg, ip) challenge in EtOH-naive and repeated (r) EtOH-treated mice. In both genotypes, EtOH treatment caused no changes in baseline endocannabinoid levels, although FAAH KO mice displayed higher baseline N-arachidonoylethanolamine levels than WT mice. EtOH challenge caused a sustained increase in 2-arachidonoylglycerol (2-AG) levels in EtOH-naive WT mice but not in FAAH KO mice. In contrast, 2-AG levels were decreased following EtOH challenge in (r)EtOH-treated mice in both genotypes. Whereas (r)EtOH-treated mice showed higher baseline dopamine and serotonin levels than EtOH-naive mice in WT mice, these differences were attenuated in FAAH KO mice. Significant differences in baseline γ-aminobutyric acid (GABA) and glutamate levels by EtOH history were observed in WT mice but not in FAAH KO mice. Moreover, opposed effects on glutamate response were observed after EtOH challenge in EtOH-naive and (r)EtOH-treated FAAH KO mice. Finally, FAAH deletion failed to show EtOH-induced locomotion sensitivity. These data provide evidence of a potential influence of 2-AG in the neurochemical response to EtOH exposure in the NAc.
Collapse
Affiliation(s)
- Francisco J. Pavón
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Antonia Serrano
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - David G. Stouffer
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Ilham Polis
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Marisa Roberto
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Benjamin F. Cravatt
- Department of Chemical Physiology, Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Rémi Martin-Fardon
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Loren H. Parsons
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
37
|
Abstract
Research in the cannabinoid field, namely on phytocannabinoids, the endogenous cannabinoids anandamide and 2-arachidonoyl glycerol and their metabolizing and synthetic enzymes, the cannabinoid receptors, and anandamide-like cannabinoid compounds, has expanded tremendously over the last few years. Numerous endocannabinoid-like compounds have been discovered. The Cannabis plant constituent cannabidiol (CBD) was found to exert beneficial effects in many preclinical disease models ranging from epilepsy, cardiovascular disease, inflammation, and autoimmunity to neurodegenerative and kidney diseases and cancer. CBD was recently approved in the United States for the treatment of rare forms of childhood epilepsy. This has triggered the development of many CBD-based products for human use, often with overstated claims regarding their therapeutic effects. In this article, the recently published research on the chemistry and biological effects of plant cannabinoids (specifically CBD), endocannabinoids, certain long-chain fatty acid amides, and the variety of relevant receptors is critically reviewed.
Collapse
Affiliation(s)
- Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20852, USA;
| | - Natalya M Kogan
- Institute for Drug Research, Faculty of Medicine, Hebrew University, Jerusalem 9112102, Israel;
| | - Raphael Mechoulam
- Institute for Drug Research, Faculty of Medicine, Hebrew University, Jerusalem 9112102, Israel;
| |
Collapse
|
38
|
Petrie GN, Wills KL, Piscitelli F, Smoum R, Limebeer CL, Rock EM, Humphrey AE, Sheppard-Perkins M, Lichtman AH, Mechoulam R, Di Marzo V, Parker LA. Oleoyl glycine: interference with the aversive effects of acute naloxone-precipitated MWD, but not morphine reward, in male Sprague-Dawley rats. Psychopharmacology (Berl) 2019; 236:2623-2633. [PMID: 30993360 DOI: 10.1007/s00213-019-05237-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/19/2019] [Indexed: 12/18/2022]
Abstract
RATIONALE Oleoyl glycine (OlGly), a recently discovered fatty acid amide that is structurally similar to N- acylethanolamines, which include the endocannabinoid, anandamide (AEA), as well as endogenous peroxisome proliferator-activated receptor alpha (PPARα) agonists oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), has been shown to interfere with nicotine reward and dependence in mice. OBJECTIVES AND METHODS Behavioral and molecular techniques were used to investigate the ability of OlGly to interfere with the affective properties of morphine and morphine withdrawal (MWD) in male Sprague-Dawley rats. RESULTS Synthetic OlGly (1-30 mg/kg, intraperitoneal [ip]) produced neither a place preference nor aversion on its own; however, at doses of 1 and 5 mg/kg, ip, it blocked the aversive effects of MWD in a place aversion paradigm. This effect was reversed by the cannabinoid 1 (CB1) receptor antagonist, AM251 (1 mg/kg, ip), but not the PPARα antagonist, MK886 (1 mg/kg, ip). OlGly (5 or 30 mg/kg, ip) did not interfere with a morphine-induced place preference or reinstatement of a previously extinguished morphine-induced place preference. Ex vivo analysis of tissue (nucleus accumbens, amygdala, prefrontal cortex, and interoceptive insular cortex) collected from rats experiencing naloxone-precipitated MWD revealed that OlGly was selectively elevated in the nucleus accumbens. MWD did not modify levels of the endocannabinoids 2-AG and AEA, nor those of the PPARα ligands, OEA and PEA, in any region evaluated. CONCLUSION Here, we show that OlGly interferes with the aversive properties of acute naloxone-precipitated morphine withdrawal in rats. These results suggest that OlGly may reduce the impact of MWD and may possess efficacy in treating opiate withdrawal.
Collapse
Affiliation(s)
- Gavin N Petrie
- Department of Psychology and Collaborative, University of Guelph, Guelph, Ontario, N1H 2GW, Canada
| | - Kiri L Wills
- Department of Psychology and Collaborative, University of Guelph, Guelph, Ontario, N1H 2GW, Canada
| | - Fabiana Piscitelli
- Institute of Biomolecular Chemistry, Endocannabinoid Research Group, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy
| | - Reem Smoum
- Institute for Drug Research, Medical Faculty, Hebrew University, Jerusalem, Israel
| | - Cheryl L Limebeer
- Department of Psychology and Collaborative, University of Guelph, Guelph, Ontario, N1H 2GW, Canada
| | - Erin M Rock
- Department of Psychology and Collaborative, University of Guelph, Guelph, Ontario, N1H 2GW, Canada
| | - Ashlyn E Humphrey
- Department of Psychology and Collaborative, University of Guelph, Guelph, Ontario, N1H 2GW, Canada
| | | | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Raphael Mechoulam
- Institute for Drug Research, Medical Faculty, Hebrew University, Jerusalem, Israel
| | - Vincenzo Di Marzo
- Institute of Biomolecular Chemistry, Endocannabinoid Research Group, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy
| | - Linda A Parker
- Department of Psychology and Collaborative, University of Guelph, Guelph, Ontario, N1H 2GW, Canada.
| |
Collapse
|
39
|
Romero-Sanchiz P, Nogueira-Arjona R, Pastor A, Araos P, Serrano A, Boronat A, Garcia-Marchena N, Mayoral F, Bordallo A, Alen F, Suárez J, de la Torre R, Pavón FJ, Rodríguez de Fonseca F. Plasma concentrations of oleoylethanolamide in a primary care sample of depressed patients are increased in those treated with selective serotonin reuptake inhibitor-type antidepressants. Neuropharmacology 2019; 149:212-220. [DOI: 10.1016/j.neuropharm.2019.02.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/03/2019] [Accepted: 02/21/2019] [Indexed: 11/15/2022]
|
40
|
Silva-Peña D, Rivera P, Alén F, Vargas A, Rubio L, García-Marchena N, Pavón FJ, Serrano A, Rodríguez de Fonseca F, Suárez J. Oleoylethanolamide Modulates BDNF-ERK Signaling and Neurogenesis in the Hippocampi of Rats Exposed to Δ 9-THC and Ethanol Binge Drinking During Adolescence. Front Mol Neurosci 2019; 12:96. [PMID: 31068789 PMCID: PMC6491684 DOI: 10.3389/fnmol.2019.00096] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/01/2019] [Indexed: 01/08/2023] Open
Abstract
Oleoylethanolamide is an endogenous NAE that modulates ethanol-seeking behavior and ethanol-induced neuroinflammation. In the present study we further analyze the role of OEA in hippocampal neurogenesis, BDNF-ERK signaling, and spatial memory that are affected by alcohol. Additionally, we addressed the effects of OEA on the association of alcohol and cannabis, a frequent combination in human alcohol addicts, and whose long-term effects are far from being understood. To this end, OEA (10 mg/kg/day, i.p.) was pharmacologically administered for 5 days/week in a preclinical model of adolescent rats with binge-like consumption (1 day/week) of ethanol (3 g/kg, i.g.) combined or not with acute administrations of Δ9-THC (5 mg/kg, i.p.) for 5 weeks. OEA restored ethanol/THC-related decreases in both short-term spatial memory (spontaneous alternation by Y-maze) and circulating levels of BDNF, reduced cell proliferation (Mki67 and IdU+ cells) and maturation (Dcx, Calb1), and improved cell survival (Casp3 and BrdU+ cells) in the dorsal hippocampus. Interestingly, OEA alone or combined with THC also decreased the mRNA levels of neurotrophic factors (Bdnf, Ntf3) and the NT3 receptor TrkC, but increased the BDNF receptor TrkB in the hippocampus of ethanol-exposed rats. These effects were likely associated with a OEA-specific phosphorylation of AKT and ERK1, key signaling regulators of cell proliferation and survival. These results suggest a regulatory role of OEA in short-term spatial memory and hippocampal neurogenesis through BDNF/AKT/ERK1 signaling in response to acute THC in an alcoholic context during adolescence.
Collapse
Affiliation(s)
- Daniel Silva-Peña
- Instituto de Investigación Biomédica de Málaga, U.G.C. de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Patricia Rivera
- Department of Endocrinology, Fundación Investigación Biomédica del Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Francisco Alén
- Departamento de Psicobiología, Universidad Complutense Madrid, Pozuelo de Alarcón, Spain
| | - Antonio Vargas
- Instituto de Investigación Biomédica de Málaga, U.G.C. de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Leticia Rubio
- Departamento de Anatomía y Medicina Legal, Universidad de Málaga, Málaga, Spain
| | - Nuria García-Marchena
- Instituto de Investigación Biomédica de Málaga, U.G.C. de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Francisco Javier Pavón
- Instituto de Investigación Biomédica de Málaga, U.G.C. de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Antonia Serrano
- Instituto de Investigación Biomédica de Málaga, U.G.C. de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga, U.G.C. de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, Spain.,Departamento de Psicobiología, Universidad Complutense Madrid, Pozuelo de Alarcón, Spain
| | - Juan Suárez
- Instituto de Investigación Biomédica de Málaga, U.G.C. de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, Spain
| |
Collapse
|
41
|
Rivera P, Silva-Peña D, Blanco E, Vargas A, Arrabal S, Serrano A, Pavón FJ, Bindila L, Lutz B, Rodríguez de Fonseca F, Suárez J. Oleoylethanolamide restores alcohol-induced inhibition of neuronal proliferation and microglial activity in striatum. Neuropharmacology 2019; 146:184-197. [DOI: 10.1016/j.neuropharm.2018.11.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/08/2018] [Accepted: 11/25/2018] [Indexed: 01/19/2023]
|
42
|
Orio L, Alen F, Pavón FJ, Serrano A, García-Bueno B. Oleoylethanolamide, Neuroinflammation, and Alcohol Abuse. Front Mol Neurosci 2019; 11:490. [PMID: 30687006 PMCID: PMC6333756 DOI: 10.3389/fnmol.2018.00490] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/18/2018] [Indexed: 12/28/2022] Open
Abstract
Neuroinflammation is a complex process involved in the physiopathology of many central nervous system diseases, including addiction. Alcohol abuse is characterized by induction of peripheral inflammation and neuroinflammation, which hallmark is the activation of innate immunity toll-like receptors 4 (TLR4). In the last years, lipid transmitters have generated attention as modulators of parts of the addictive process. Specifically, the bioactive lipid oleoylethanolamide (OEA), which is an endogenous acylethanolamide, has shown a beneficial profile for alcohol abuse. Preclinical studies have shown that OEA is a potent anti-inflammatory and antioxidant compound that exerts neuroprotective effects in alcohol abuse. Exogenous administration of OEA blocks the alcohol-induced TLR4-mediated pro-inflammatory cascade, reducing the release of proinflammatory cytokines and chemokines, oxidative and nitrosative stress, and ultimately, preventing the neural damage in frontal cortex of rodents. The mechanisms of action of OEA are discussed in this review, including a protective action in the intestinal barrier. Additionally, OEA blocks cue-induced reinstatement of alcohol-seeking behavior and reduces the severity of withdrawal symptoms in animals, together with the modulation of alcohol-induced depression-like behavior and other negative motivational states associated with the abstinence, such as the anhedonia. Finally, exposure to alcohol induces OEA release in blood and brain of rodents. Clinical evidences will be highlighted, including the OEA release and the correlation of plasma OEA levels with TLR4-dependent peripheral inflammatory markers in alcohol abusers. In base of these evidences we hypothesize that the endogenous release of OEA could be a homeostatic signal to counteract the toxic action of alcohol and we propose the exploration of OEA-based pharmacotherapies to treat alcohol-use disorders.
Collapse
Affiliation(s)
- Laura Orio
- Department of Psychobiology and Methods in Behavioral Science, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain.,Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Francisco Alen
- Department of Psychobiology and Methods in Behavioral Science, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain
| | - Francisco Javier Pavón
- Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga-Universidad de Málaga, Málaga, Spain
| | - Antonia Serrano
- Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga-Universidad de Málaga, Málaga, Spain
| | - Borja García-Bueno
- Department of Pharmacology and Toxicology, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental, IMAS and IUING, Madrid, Spain
| |
Collapse
|
43
|
Millón C, Flores-Burgess A, Castilla-Ortega E, Gago B, García-Fernandez M, Serrano A, Rodriguez de Fonseca F, Narváez JA, Fuxe K, Santín L, Díaz-Cabiale Z. Central administration of galanin N-terminal fragment 1-15 decreases the voluntary alcohol intake in rats. Addict Biol 2019; 24:76-87. [PMID: 29210146 DOI: 10.1111/adb.12582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/27/2017] [Accepted: 10/27/2017] [Indexed: 11/28/2022]
Abstract
Alcohol consumption is considered a major risk factor for disease and mortality worldwide. In the absence of effective treatments in alcohol use disorders, it is important to find new biological targets that could modulate alcohol consumption. We tested the role of the N-terminal galanin fragment (1-15) [GAL(1-15)] in voluntary ethanol consumption in rats using the two-bottle choice paradigm as well as compare the effects of GAL(1-15) with the whole molecule of GAL. We describe for the first time that GAL(1-15), via central mechanisms, induces a strong reduction in preference and ethanol consumption in rats. These effects were significantly different than GAL. GAL receptor (GALR) 2 was involved in these effects, because the specific GALR2 antagonist M871 blocked GAL(1-15) mediated actions in preference and ethanol intake. Importantly, the mechanism of this action involves changes in GALR expression and also in immediate-early gene C-Fos and receptors-internalization-related gene Rab5 in the striatum. The relevance of the striatum as a target for GAL(1-15) was supported by the effect of GAL(1-15) on the locomotor activity of rats after ethanol administration. These results may give the basis for the development of novel therapeutics strategies using GAL(1-15) analogues for the treatment of alcohol use disorders in humans.
Collapse
Affiliation(s)
- Carmelo Millón
- Facultad de Medicina, Instituto de Investigación Biomédica de Málaga; Universidad de Málaga; Spain
| | - Antonio Flores-Burgess
- Facultad de Medicina, Instituto de Investigación Biomédica de Málaga; Universidad de Málaga; Spain
| | - Estela Castilla-Ortega
- Unidad de Gestión Clínica de Salud Mental e Instituto de Investigación Biomédica de Málaga; Hospital Regional Universitario de Málaga; Spain
| | - Belén Gago
- Facultad de Medicina, Instituto de Investigación Biomédica de Málaga; Universidad de Málaga; Spain
| | - María García-Fernandez
- Facultad de Medicina, Instituto de Investigación Biomédica de Málaga; Universidad de Málaga; Spain
| | - Antonia Serrano
- Unidad de Gestión Clínica de Salud Mental e Instituto de Investigación Biomédica de Málaga; Hospital Regional Universitario de Málaga; Spain
| | - Fernando Rodriguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental e Instituto de Investigación Biomédica de Málaga; Hospital Regional Universitario de Málaga; Spain
| | - José Angel Narváez
- Facultad de Medicina, Instituto de Investigación Biomédica de Málaga; Universidad de Málaga; Spain
| | - Kjell Fuxe
- Department of Neuroscience; Karolinska Institute; Sweden
| | - Luis Santín
- Instituto de Investigación Biomédica de Málaga, Facultad de Psicología; Universidad de Málaga; Spain
| | - Zaida Díaz-Cabiale
- Facultad de Medicina, Instituto de Investigación Biomédica de Málaga; Universidad de Málaga; Spain
| |
Collapse
|
44
|
Antón M, Rodríguez-González A, Rodríguez-Rojo IC, Pastor A, Correas Á, Serrano A, Ballesta A, Alén F, Gómez de Heras R, de la Torre R, Rodríguez de Fonseca F, Orio L. Increased plasma oleoylethanolamide and palmitoleoylethanolamide levels correlate with inflammatory changes in alcohol binge drinkers: the case of HMGB1 in women. Addict Biol 2018; 23:1242-1250. [PMID: 29178411 DOI: 10.1111/adb.12580] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 10/19/2017] [Indexed: 01/15/2023]
Abstract
Alcohol binge drinking is a heavy pattern of alcohol consumption increasingly used by young people. In a previous study, we reported that young drinkers with a 2-year history of binge alcohol consumption had an overactivation of the innate immune system and peripheral inflammation when compared with controls. In the present study, we measured several biolipids that are fatty acid derivatives belonging to the acylethanolamide or 2-acylglycerol families in the plasma of the same subjects (n = 42; 20 men and 22 women). We found that during abstinence, alcohol binge drinkers had elevated plasma levels of oleoylethanolamide, palmitoleoylethanolamide, arachidonoylethanolamide, dihomo-γ-linolenoyl ethanolamide and linoleoyl ethanolamide, which positively correlated with changes in the mRNA expression of key inflammatory markers in peripheral blood mononuclear cells, such as toll-like receptors (TLR4), pro-inflammatory cytokines/chemokines interleukin-1 beta, interleukin-6 and monocyte chemoattractant protein-1, and cyclooxygenase-2. Additionally, plasma oleoylethanolamide positively correlated with plasma levels of high mobility group box-1, which is a danger-associated molecular pattern and an endogenous TLR4 agonist, specifically in female alcohol binge drinkers. No changes were observed in 2-acylglycerols in alcohol binge drinkers, although sex-related differences in these bioactive lipids as well as in palmitoleoylethanolamide and docosatetraenoylethanolamide levels were detected. These results extend the previous clinical findings observed in patients diagnosed with long-term alcohol use disorder to young users and suggest a prominent role for these lipids in the response to acute alcohol exposure.
Collapse
Affiliation(s)
- María Antón
- Departamento de Psicobiología, Facultad de Psicología; Universidad Complutense de Madrid; Spain
| | | | | | - Antoni Pastor
- Programa de Neurociencias; Institut Hospital del Mar d'Investigacions Mèdiques (IMIM); Spain
| | - Ángeles Correas
- Laboratorio de Neurociencia Cognitiva y Computacional; Centro de Tecnología Biomédica (CTB); Spain
| | - Antonia Serrano
- Red de Trastornos Adictivos (RTA) del Instituto de Salud Carlos III (ISCIII); Spain
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica (IBIMA); Hospital Regional Universitario de Málaga; Spain
| | - Antonio Ballesta
- Departamento de Psicobiología, Facultad de Psicología; Universidad Complutense de Madrid; Spain
| | - Francisco Alén
- Departamento de Psicobiología, Facultad de Psicología; Universidad Complutense de Madrid; Spain
| | - Raquel Gómez de Heras
- Departamento de Psicobiología, Facultad de Psicología; Universidad Complutense de Madrid; Spain
| | - Rafael de la Torre
- Programa de Neurociencias; Institut Hospital del Mar d'Investigacions Mèdiques (IMIM); Spain
| | - Fernando Rodríguez de Fonseca
- Departamento de Psicobiología, Facultad de Psicología; Universidad Complutense de Madrid; Spain
- Red de Trastornos Adictivos (RTA) del Instituto de Salud Carlos III (ISCIII); Spain
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica (IBIMA); Hospital Regional Universitario de Málaga; Spain
| | - Laura Orio
- Departamento de Psicobiología, Facultad de Psicología; Universidad Complutense de Madrid; Spain
- Red de Trastornos Adictivos (RTA) del Instituto de Salud Carlos III (ISCIII); Spain
| |
Collapse
|
45
|
Stopponi S, Fotio Y, Domi A, Borruto AM, Natividad L, Roberto M, Ciccocioppo R, Cannella N. Inhibition of fatty acid amide hydrolase in the central amygdala alleviates co-morbid expression of innate anxiety and excessive alcohol intake. Addict Biol 2018; 23:1223-1232. [PMID: 29071769 DOI: 10.1111/adb.12573] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 09/15/2017] [Indexed: 01/18/2023]
Abstract
Fatty acid amide hydrolase (FAAH) is an enzyme that prominently degrades the major endocannabinoid N-arachidonoylethanolamine (anandamide). Inhibition of this enzyme leads to increased anandamide levels in brain regions that modulate stress and anxiety. Recently, we found that genetically selected Marchigian Sardinian alcohol-preferring (msP) rats display hyperactive FAAH in amygdalar regions that was associated with increased stress sensitivity and a hyper-anxious phenotype. Our previous work has also demonstrated that msPs display an innate preference for and excessive consumption of alcohol, potentially reflecting a form of self-medication to gain relief from hyper-anxious states. Here, we expand on our previous work by microinjecting the selective FAAH inhibitor URB597 (vehicle, 0.03, 0.1 and 1.0 μg per rat) into the central amygdala (CeA) and basolateral amygdala in msP versus non-selected Wistar rats to evaluate the effects of localized FAAH inhibition on operant alcohol self-administration and restraint-induced anxiety using the elevated plus maze. Intra-CeA URB597 significantly reduced alcohol self-administration in msP but not in Wistar rats. Intra-basolateral amygdala URB597 also attenuated alcohol drinking in msPs, although the effect was less pronounced relative to CeA treatment. In contrast, control experiments administering URB597 into the ventral tegmental area produced no genotypic differences in drinking. We also found that URB597 treatment in the CeA significantly reduced the anxiogenic effects of restraint stress in msPs, although no effects were detected in Wistars. Dysregulation of FAAH regulated systems in the major output region of the amygdala may drive the propensity for co-morbid expression of anxiety and excessive alcohol use.
Collapse
Affiliation(s)
- Serena Stopponi
- School of Pharmacy, Pharmacology Unit; University of Camerino; Camerino Italy
| | - Yannick Fotio
- School of Pharmacy, Pharmacology Unit; University of Camerino; Camerino Italy
| | - Ana Domi
- School of Pharmacy, Pharmacology Unit; University of Camerino; Camerino Italy
| | - Anna Maria Borruto
- School of Pharmacy, Pharmacology Unit; University of Camerino; Camerino Italy
| | - Luis Natividad
- Department of Neuroscience; The Scripps Research Institute; La Jolla CA USA
| | - Marisa Roberto
- Department of Neuroscience; The Scripps Research Institute; La Jolla CA USA
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit; University of Camerino; Camerino Italy
| | - Nazzareno Cannella
- School of Pharmacy, Pharmacology Unit; University of Camerino; Camerino Italy
| |
Collapse
|
46
|
Antón M, Rodríguez-González A, Ballesta A, González N, Del Pozo A, de Fonseca FR, Gómez-Lus ML, Leza JC, García-Bueno B, Caso JR, Orio L. Alcohol binge disrupts the rat intestinal barrier: the partial protective role of oleoylethanolamide. Br J Pharmacol 2018; 175:4464-4479. [PMID: 30248186 DOI: 10.1111/bph.14501] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 09/04/2018] [Accepted: 09/12/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Chronic alcohol consumption alters the gut-brain axis, but little is known about alcohol binge episodes on the functioning of the intestinal barrier. We investigated the influence of ethanol binges on bacterial translocation, gut inflammation and immunity, and tight junction (TJ) structure and the ability of the biolipid oleoylethanolamide (OEA) to prevent ethanol binge-induced intestinal barrier dysfunction. EXPERIMENTAL APPROACH OEA was injected i.p. before repeated ethanol administration by oral gavage. Plasma, spleen, liver and mesenteric lymph nodes (MLN) were collected in sterile conditions for determination of bacterial load. Immune/inflammatory parameters, TJ proteins and apoptotic markers were determined in colonic tissue by RT-PCR and Western blotting. TJ ultrastructure was examined by transmission electron microscopy. KEY RESULTS Ethanol binges induced bacterial translocation to the MLN (mainly) and spleen. Colonic tissues showed signs of inflammation, and activation of innate (Toll-like receptor-4) and adaptive (IgA) immune systems and TJ proteins (occludin and claudin-3) were decreased after ethanol binges. Pretreatment with OEA reduced intestinal inflammation and immune activation and partially preserved the TJ structure affected by alcohol binges but had no effect on alcohol-induced apoptosis. Ultrastructural analyses of colonic TJs revealed dilated TJs in all ethanol groups, with less electron-dense material in non-pretreated rats. The protective effects of i.p. OEA did not reduce bacterial translocation to the MLN. However, intragastric OEA administration significantly reduced plasma LPS levels and bacterial translocation to the MLN. CONCLUSION AND IMPLICATIONS OEA-based pharmacotherapies could potentially be useful to treat disorders characterized by intestinal barrier dysfunction, including alcohol abuse.
Collapse
Affiliation(s)
- M Antón
- Department of Psychobiology and Behavioral Science Methods, Faculty of Psychology, Complutense University, Madrid (UCM), and Red de Trastornos Adictivos (RTA) Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - A Rodríguez-González
- Department of Psychobiology and Behavioral Science Methods, Faculty of Psychology, Complutense University, Madrid (UCM), and Red de Trastornos Adictivos (RTA) Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - A Ballesta
- Department of Psychobiology and Behavioral Science Methods, Faculty of Psychology, Complutense University, Madrid (UCM), and Red de Trastornos Adictivos (RTA) Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - N González
- Department of Medicine Microbiology, Faculty of Medicine, UCM, Madrid, Spain
| | - A Del Pozo
- Department of Psychobiology and Behavioral Science Methods, Faculty of Psychology, Complutense University, Madrid (UCM), and Red de Trastornos Adictivos (RTA) Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - F R de Fonseca
- Department of Psychobiology and Behavioral Science Methods, Faculty of Psychology, Complutense University, Madrid (UCM), and Red de Trastornos Adictivos (RTA) Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - M L Gómez-Lus
- Department of Medicine Microbiology, Faculty of Medicine, UCM, Madrid, Spain
| | - J C Leza
- Department of Pharmacology and Toxicology, Faculty of Medicine, UCM, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Imas12 and IUINQ, Madrid, Spain
| | - B García-Bueno
- Department of Pharmacology and Toxicology, Faculty of Medicine, UCM, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Imas12 and IUINQ, Madrid, Spain
| | - J R Caso
- Department of Pharmacology and Toxicology, Faculty of Medicine, UCM, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Imas12 and IUINQ, Madrid, Spain
| | - L Orio
- Department of Psychobiology and Behavioral Science Methods, Faculty of Psychology, Complutense University, Madrid (UCM), and Red de Trastornos Adictivos (RTA) Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
47
|
PPARα/CB1 receptor dual ligands as a novel therapy for alcohol use disorder: Evaluation of a novel oleic acid conjugate in preclinical rat models. Biochem Pharmacol 2018; 157:235-243. [PMID: 30195735 DOI: 10.1016/j.bcp.2018.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 09/05/2018] [Indexed: 11/20/2022]
Abstract
Recent studies have demonstrated the utility of drugs modulating the endogenous cannabinoid system to control excessive alcohol intake. Among them, drugs interacting with acylethanolamide receptors including cannabinoid CB1 receptor antagonists/inverse agonists, peroxisome proliferator-activated receptor alpha (PPARα) agonists or peroxisome proliferator-activated receptor gamma (PPARγ) agonists have demonstrated utility in the reduction of alcohol intake in animal models. However, few studies have addressed the potential utility of combining these classes of drugs, especially because of expected safety problems. In the present work we took the advantage of the availability of two novel dual ligands for these receptors, to test the hypothesis that these types of drugs might reproduce and even improve the pharmacological profile of those drugs interacting with single targets. To this end we tested (R)-3-[(4-Benzyl-2-oxooxazolidin-3-yl)methyl]-N-[4-(dodecylcarbamoyl)phenyl]benzamide (NF 10-360), a dual PPARα/γ agonist, and N-[1-(3,4-dihydroxyphenyl)propan-2-yl]oleamide (OLHHA), a dual CB1 receptor antagonist/PPARα agonist, in animal models of alcohol consumption. Both drugs were effective in reducing alcohol intake and alcohol self-administration, being OLHHA a very potent alcohol intake inhibitor (EC50 0.2 mg/kg). OLHHA also reduced self-administration of the opioid oxycodone. OLHHA actions on alcohol self-administration were replicated in alcohol-preferring Marchigian-Sardinian msP rats. Repeated administration of OLHHA did result neither in tolerance nor in toxicological or deleterious metabolic changes in the liver of msP rats. These data support the feasibility of developing novel dual ligands interacting with cannabinoid targets to treat alcohol use disorder in humans.
Collapse
|
48
|
Pharmacological blockade of fatty acid amide hydrolase (FAAH) by URB597 improves memory and changes the phenotype of hippocampal microglia despite ethanol exposure. Biochem Pharmacol 2018; 157:244-257. [PMID: 30098312 DOI: 10.1016/j.bcp.2018.08.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/06/2018] [Indexed: 12/16/2022]
Abstract
Changes in endogenous cannabinoid homeostasis are associated with both ethanol-related neuroinflammation and memory decline. Extensive research is still required to unveil the role of endocannabinoid signaling activation on hippocampal microglial cells after ethanol exposure. Either microglial morphology, phenotype and recruitment may become notably altered after chronic alcohol-related neurodegeneration. Here, we evaluated the pharmacological effects of fatty-acid amide-hydrolase (FAAH) inhibitor URB597 (0.3 mg/kg), oleoylethanolamide (OEA, 10 mg/kg), arachidonoylethanolamide (AEA, 10 mg/kg), the CB1 receptor agonist ACEA (3 mg/kg) and the CB2 receptor agonist JWH133 (0.2 mg/kg) administered for 5 days in a rat model of subchronic (2 weeks) ethanol diet (11% v/v) exposure. URB597 turned to be the most effective treatment. URB597 increased microglial (IBA-1+) cell population, and changed morphometric features (cell area and perimeter, roughness, fractal dimension, lacunarity) associated with activated microglia in the hippocampus of ethanol-exposed rats. Regarding innate immune activity, URB597 specifically increased mRNA levels of toll-like receptor 4 (TLR4), glial fibrillary acidic protein (Gfap) and the chemokine stromal cell-derived factor 1 (SDF-1α/CXCL12), and elevated the cell population expressing the chemokine receptors CX3CR1, CCR2 and CCR4 in the ethanol-exposed rat hippocampus. Contrary to ethanol effect, URB597 reduced mRNA levels of Iba-1, Tnfα, IL-6 and the monocyte chemoattractant protein-1 (MCP-1/CCL2), as well as cell population expressing iNOS. URB597 effects on hippocampal immune system were accompanied by changes in short and long-term visual recognition memory. These results suggest that FAAH inhibition may modulates hippocampal microglial recruitment and activation that can be associated with improved hippocampal-dependent memory despite ethanol exposure.
Collapse
|
49
|
Coccurello R, Maccarrone M. Hedonic Eating and the "Delicious Circle": From Lipid-Derived Mediators to Brain Dopamine and Back. Front Neurosci 2018; 12:271. [PMID: 29740277 PMCID: PMC5928395 DOI: 10.3389/fnins.2018.00271] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/09/2018] [Indexed: 01/09/2023] Open
Abstract
Palatable food can be seductive and hedonic eating can become irresistible beyond hunger and negative consequences. This is witnessed by the subtle equilibrium between eating to provide energy intake for homeostatic functions, and reward-induced overeating. In recent years, considerable efforts have been devoted to study neural circuits, and to identify potential factors responsible for the derangement of homeostatic eating toward hedonic eating and addiction-like feeding behavior. Here, we examined recent literature on “old” and “new” players accountable for reward-induced overeating and possible liability to eating addiction. Thus, the role of midbrain dopamine is positioned at the intersection between selected hormonal signals involved in food reward information processing (namely, leptin, ghrelin, and insulin), and lipid-derived neural mediators such as endocannabinoids. The impact of high fat palatable food and dietary lipids on endocannabinoid formation is reviewed in its pathogenetic potential for the derangement of feeding homeostasis. Next, endocannabinoid signaling that regulates synaptic plasticity is discussed as a key mechanism acting both at hypothalamic and mesolimbic circuits, and affecting both dopamine function and interplay between leptin and ghrelin signaling. Outside the canonical hypothalamic feeding circuits involved in energy homeostasis and the notion of “feeding center,” we focused on lateral hypothalamus as neural substrate able to confront food-associated homeostatic information with food salience, motivation to eat, reward-seeking, and development of compulsive eating. Thus, the lateral hypothalamus-ventral tegmental area-nucleus accumbens neural circuitry is reexamined in order to interrogate the functional interplay between ghrelin, dopamine, orexin, and endocannabinoid signaling. We suggested a pivotal role for endocannabinoids in food reward processing within the lateral hypothalamus, and for orexin neurons to integrate endocrine signals with food reinforcement and hedonic eating. In addition, the role played by different stressors in the reinstatement of preference for palatable food and food-seeking behavior is also considered in the light of endocannabinoid production, activation of orexin receptors and disinhibition of dopamine neurons. Finally, type-1 cannabinoid receptor-dependent inhibition of GABA-ergic release and relapse to reward-associated stimuli is linked to ghrelin and orexin signaling in the lateral hypothalamus-ventral tegmental area-nucleus accumbens network to highlight its pathological potential for food addiction-like behavior.
Collapse
Affiliation(s)
- Roberto Coccurello
- Department of Biomedical Sciences, Institute of Cell Biology and Neurobiology, National Research Council, Rome, Italy.,Laboratory of Neurochemistry of Lipids, European Center for Brain Research (CERC), IRRCS Santa Lucia Foundation, Rome, Italy
| | - Mauro Maccarrone
- Laboratory of Neurochemistry of Lipids, European Center for Brain Research (CERC), IRRCS Santa Lucia Foundation, Rome, Italy.,Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| |
Collapse
|
50
|
Zambrana-Infantes E, Rosell del Valle C, Ladrón de Guevara-Miranda D, Galeano P, Castilla-Ortega E, Rodríguez De Fonseca F, Blanco E, Santín LJ. Palmitoylethanolamide attenuates cocaine-induced behavioral sensitization and conditioned place preference in mice. Pharmacol Biochem Behav 2018; 166:1-12. [DOI: 10.1016/j.pbb.2018.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/18/2017] [Accepted: 01/08/2018] [Indexed: 11/16/2022]
|