1
|
Biondi BE, Mohanty S, Wyk BV, Montgomery RR, Shaw AC, Springer SA. Design and implementation of a prospective cohort study of persons living with and without HIV infection who are initiating medication treatment for opioid use disorder. Contemp Clin Trials Commun 2021; 21:100704. [PMID: 33490708 PMCID: PMC7807244 DOI: 10.1016/j.conctc.2021.100704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/15/2020] [Accepted: 01/01/2021] [Indexed: 02/02/2023] Open
Abstract
Background Opioid use disorder (OUD) negatively impacts the HIV continuum of care for persons living with HIV. Medication treatment for OUD (MOUD) may have differential biological effects in individuals with HIV and OUD. To address the question of modulation of immune responses by MOUDs, we describe state of the art systems biology approaches to carry out the first prospective, longitudinal study of persons with and without HIV infection with OUD initiating MOUD. Methods A prospective cohort study of persons with DSM-5 diagnosed OUD who are living with and without HIV infection and initiating treatment with methadone or buprenorphine is underway to assess biological effects of these medications on immunobiological outcomes. Results We describe the recruitment, laboratory, and statistical methods of this study as well as the protocol details. Of those screened for enrollment into the study, 468 (36%) were eligible and 135 were enrolled thus far. Retention through month 6 has been high at 80%. Conclusions This study will use state of the art systems biology approaches to carry out the first prospective, longitudinal studies of persons living with and without HIV with DSM-5 OUD initiating treatment with MOUD.
Collapse
Affiliation(s)
- Breanne E Biondi
- Department of Internal Medicine, Section of Infectious Diseases, AIDS Program, Yale School of Medicine, New Haven, CT, USA
| | - Subhasis Mohanty
- Department of Internal Medicine, Section of Infectious Diseases, AIDS Program, Yale School of Medicine, New Haven, CT, USA
| | - Brent Vander Wyk
- Department of Internal Medicine, Section of Geriatrics, Yale School of Medicine, New Haven, CT, USA
| | - Ruth R Montgomery
- Department of Internal Medicine, Section of Rheumatology, Yale School of Medicine, New Haven, CT, USA
| | - Albert C Shaw
- Department of Internal Medicine, Section of Infectious Diseases, AIDS Program, Yale School of Medicine, New Haven, CT, USA
| | - Sandra A Springer
- Department of Internal Medicine, Section of Infectious Diseases, AIDS Program, Yale School of Medicine, New Haven, CT, USA.,Center for Interdisciplinary Research on AIDS, Yale University School of Public Health, New Haven, CT, USA
| |
Collapse
|
2
|
Abstract
This paper is the fortieth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2017 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
3
|
White KM, Ayllon J, Mena I, Potenski A, Krammer F, García-Sastre A. Influenza B virus reverse genetic backbones with improved growth properties in the EB66® cell line as basis for vaccine seed virus generation. Vaccine 2018; 36:1146-1153. [PMID: 29395518 DOI: 10.1016/j.vaccine.2018.01.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/12/2018] [Accepted: 01/18/2018] [Indexed: 02/07/2023]
Abstract
Vaccination remains the best available prophylaxis to prevent influenza virus infections, yet current inadequacies in influenza virus vaccine manufacturing often lead to vaccine shortages at times when the vaccine is most needed, as it was the case during the last influenza virus pandemic. Novel influenza virus vaccine production systems will be crucial to improve public health and safety. Here we report the optimization of influenza B virus growth in the proprietary EB66® cell line, currently in use for human vaccine production. To this end, we collected, curated and sequenced 71 influenza B viruses selected for high diversity in date of isolation and lineage. This viral collection was tested for ability to enter and replicate within EB66® cells in a single cycle assay and appears to readily infect these cells. When the collection was tested for viral progeny production in a multi-cycle assay, we found a large variation from strain to strain. The strains with the top growth characteristics from the B/Victoria and B/Yamagata lineages were selected for vaccine backbone generation using a reverse genetics system. We then showed that these backbones maintain their desirable growth within EB66® cells when the HA and NA from poorly growing strains were substituted for the parental segments, indicating that the selected backbones are viable options for vaccine production in EB66®. Finally, we show that compounds previously reported to enhance influenza virus growth in cell culture also increase virus production in the EB66® cell line.
Collapse
Affiliation(s)
- Kris M White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY, USA.
| | - Juan Ayllon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Anna Potenski
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, NY, USA
| |
Collapse
|
4
|
Tahamtan A, Tavakoli-Yaraki M, Mokhtari-Azad T, Teymoori-Rad M, Bont L, Shokri F, Salimi V. Opioids and Viral Infections: A Double-Edged Sword. Front Microbiol 2016; 7:970. [PMID: 27446011 PMCID: PMC4916179 DOI: 10.3389/fmicb.2016.00970] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 06/06/2016] [Indexed: 12/30/2022] Open
Abstract
Opioids and their receptors have received remarkable attention because they have the ability to alter immune function, which affects disease progression. In vitro and in vivo findings as well as observations in humans indicate that opioids and their receptors positively or negatively affect viral replication and virus-mediated pathology. The present study reviews recent insights in the role of opioids and their receptors in viral infections and discusses possible therapeutic opportunities. This review supports the emerging concept that opioids and their receptors have both favorable and unfavorable effects on viral disease, depending on the type of virus. Targeting of the opioid system is a potential option for developing effective therapies; however caution is required in relation to the beneficial functions of opioid systems.
Collapse
Affiliation(s)
- Alireza Tahamtan
- Department of Virology, School of Public Health, Tehran University of Medical Sciences Tehran, Iran
| | - Masoumeh Tavakoli-Yaraki
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences Tehran, Iran
| | - Talat Mokhtari-Azad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences Tehran, Iran
| | - Majid Teymoori-Rad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences Tehran, Iran
| | - Louis Bont
- Department of Pediatrics, Wilhelmina Children's Hospital, University Medical Centre Utrecht Utrecht, Netherlands
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences Tehran, Iran
| | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences Tehran, Iran
| |
Collapse
|
5
|
Bhowmick R, Gappa-Fahlenkamp H. Cells and Culture Systems Used to Model the Small Airway Epithelium. Lung 2016; 194:419-28. [PMID: 27071933 DOI: 10.1007/s00408-016-9875-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/01/2016] [Indexed: 01/28/2023]
Abstract
The pulmonary epithelium is divided into upper, lower, and alveolar (or small) airway epithelia and acts as the mechanical and immunological barrier between the external environment and the underlying submucosa. Of these, the small airway epithelium is the principal area of gas exchange and has high immunological activity, making it a major area of cell biology, immunology, and pharmaceutical research. As animal models do not faithfully represent the human pulmonary system and ex vivo human lung samples have reliability and availability issues, cell lines, and primary cells are widely used as small airway epithelial models. In vitro, these cells are mostly cultured as monolayers (2-dimensional cultures), either media submerged or at air-liquid interface. However, these 2-dimensional cultures lack a three dimension-a scaffolding extracellular matrix, which establishes the intercellular network in the in vivo airway epithelium. Therefore, 3-dimensional cell culture is currently a major area of development, where cells are cultured in a matrix or are cultured in a manner that they develop ECM-like scaffolds between them, thus mimicking the in vivo phenotype more faithfully. This review focuses on the commonly used small airway epithelial cells, their 2-dimensional and 3-dimensional culture techniques, and their comparative phenotype when cultured under these systems.
Collapse
Affiliation(s)
- Rudra Bhowmick
- Department of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK, 74078, USA
| | - Heather Gappa-Fahlenkamp
- Department of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK, 74078, USA.
| |
Collapse
|