1
|
Ramadan B, Van Waes V. Evaluating the efficacy of transcranial direct current stimulation (tDCS) in managing neuropathic pain-induced emotional consequences: Insights from animal models. Neurophysiol Clin 2025; 55:103055. [PMID: 39884008 DOI: 10.1016/j.neucli.2025.103055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 02/01/2025] Open
Abstract
Neuropathic pain is a global health concern due to its severity and its detrimental impact on patients' quality of life. It is primarily characterized by sensory alterations, most commonly hyperalgesia and allodynia. As the disease progresses, patients with neuropathic pain develop co-occurring emotional disorders, such as anxiety and depression, which further complicate therapeutic management. While pharmacotherapy remains the first-line treatment, limitations in its efficacy and the prevalence of side effects often leave patients with insufficient pain relief. Transcranial direct current stimulation (tDCS), a non-invasive brain stimulation technique, has recently emerged as a promising alternative for chronic pain management. This review provides an overview of preclinical studies examining the effects of tDCS in rodent models of neuropathic pain. It specifically highlights the potential of tDCS to modulate the emotional-affective component of pain, with a focus on identifying optimal cortical targets for stimulation to enhance the translational application of tDCS in managing pain-related emotional disorders.
Collapse
Affiliation(s)
- Bahrie Ramadan
- Université Marie et Louis Pasteur, INSERM, UMR 1322 LINC, F-25000 Besançon, France.
| | - Vincent Van Waes
- Université Marie et Louis Pasteur, INSERM, UMR 1322 LINC, F-25000 Besançon, France.
| |
Collapse
|
2
|
Mojiri Z, Rouhani E, Akhavan A, Jokar Z, Alaei H. Non-invasive temporal interference brain stimulation reduces preference on morphine-induced conditioned place preference in rats. Sci Rep 2024; 14:21040. [PMID: 39251806 PMCID: PMC11385117 DOI: 10.1038/s41598-024-71841-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 08/31/2024] [Indexed: 09/11/2024] Open
Abstract
Long-term use of opioid drugs such as morphine can induce addiction in the central nervous system through dysregulation of the reward system of the brain. Deep brain stimulation (DBS) is a non-pharmacological technique capable of attenuating behavioral responses associated with opioid drug consumption and possesses the capability to selectively activate and target localized brain regions with a high spatial resolution. However, long-term implantation of electrodes in brain tissue may limit the effectiveness of DBS due to changes in impedance, position, and shape of the tip of the stimulation electrode and the risk of infection of nerve tissue around the implanted electrode. The main objective of the current study is to evaluate the effect of temporal interference (TI) brain stimulation on addictive behaviors of morphine-induced conditioned place preference (CPP) in rats. TI stimulation is a non-invasive technique used transcranially to modulate neural activity within targeted brain regions. It involves applying two high-frequency currents with slightly different frequencies, resulting in interference and targeted stimulation of different brain areas with the desired spatial resolution. The results indicated that TI stimulation with the amplitude ofI 1 = I 2 = 0.5 mA, carrier frequency of 2 kHz, frequency difference of 25 Hz, ON-OFF stimulation frequency of 0.25 Hz, and total duration of 10 min in three consecutive days resulted in a significant reduction of morphine preference in the morphine-stimulation group in comparison with the morphine group (p < 0.001). These findings highlight the potential of TI stimulation as a modulatory intervention in mitigating the addictive properties of morphine and provide valuable insights into the therapeutic implications of this stimulation paradigm for treatment of opioid drugs in human subjects.
Collapse
Affiliation(s)
- Zohre Mojiri
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Ehsan Rouhani
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Amir Akhavan
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Zahra Jokar
- Department of Physiology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hojjatallah Alaei
- Department of Physiology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
3
|
Dumontoy S, Ramadan B, Risold PY, Pedron S, Houdayer C, Etiévant A, Cabeza L, Haffen E, Peterschmitt Y, Van Waes V. Repeated Anodal Transcranial Direct Current Stimulation (RA-tDCS) over the Left Frontal Lobe Increases Bilateral Hippocampal Cell Proliferation in Young Adult but Not Middle-Aged Female Mice. Int J Mol Sci 2023; 24:ijms24108750. [PMID: 37240095 DOI: 10.3390/ijms24108750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/28/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Repeated anodal transcranial direct current stimulation (RA-tDCS) is a neuromodulatory technique consisting of stimulating the cerebral cortex with a weak electric anodal current in a non-invasive manner. RA-tDCS over the dorsolateral prefrontal cortex has antidepressant-like properties and improves memory both in humans and laboratory animals. However, the mechanisms of action of RA-tDCS remain poorly understood. Since adult hippocampal neurogenesis is thought to be involved in the pathophysiology of depression and memory functioning, the purpose of this work was to evaluate the impact of RA-tDCS on hippocampal neurogenesis levels in mice. RA-tDCS was applied for 20 min per day for five consecutive days over the left frontal cortex of young adult (2-month-old, high basal level of neurogenesis) and middle-aged (10-month-old, low basal level of neurogenesis) female mice. Mice received three intraperitoneal injections of bromodeoxyuridine (BrdU) on the final day of RA-tDCS. The brains were collected either 1 day or 3 weeks after the BrdU injections to quantify cell proliferation and cell survival, respectively. RA-tDCS increased hippocampal cell proliferation in young adult female mice, preferentially (but not exclusively) in the dorsal part of the dentate gyrus. However, the number of cells that survived after 3 weeks was the same in both the Sham and the tDCS groups. This was due to a lower survival rate in the tDCS group, which suppressed the beneficial effects of tDCS on cell proliferation. No modulation of cell proliferation or survival was observed in middle-aged animals. Our RA-tDCS protocol may, therefore, influence the behavior of naïve female mice, as we previously described, but its effect on the hippocampus is only transient in young adult animals. Future studies using animal models for depression in male and female mice should provide further insights into RA-tDCS detailed age- and sex-dependent effects on hippocampal neurogenesis.
Collapse
Affiliation(s)
- Stéphanie Dumontoy
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université de Franche-Comté, F-25000 Besançon, France
| | - Bahrie Ramadan
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université de Franche-Comté, F-25000 Besançon, France
| | - Pierre-Yves Risold
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université de Franche-Comté, F-25000 Besançon, France
| | | | - Christophe Houdayer
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université de Franche-Comté, F-25000 Besançon, France
| | - Adeline Etiévant
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université de Franche-Comté, F-25000 Besançon, France
| | - Lidia Cabeza
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université de Franche-Comté, F-25000 Besançon, France
| | - Emmanuel Haffen
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université de Franche-Comté, F-25000 Besançon, France
| | - Yvan Peterschmitt
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université de Franche-Comté, F-25000 Besançon, France
| | - Vincent Van Waes
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université de Franche-Comté, F-25000 Besançon, France
| |
Collapse
|
4
|
Transcranial direct current stimulation (tDCS) reduces motivation to drink ethanol and reacquisition of ethanol self-administration in female mice. Sci Rep 2022; 12:198. [PMID: 34997004 PMCID: PMC8741977 DOI: 10.1038/s41598-021-03940-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 11/24/2021] [Indexed: 12/02/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is an emerging noninvasive brain neuromodulation technique aimed at relieving symptoms associated with psychiatric disorders, including addiction. The goal of the present study was to better identify which phase of alcohol-related behavior (hedonic effect, behavioral sensitization, self-administration, or motivation to obtain the drug) might be modulated by repeated anodal tDCS over the frontal cortex (0.2 mA, 20 min, twice a day for 5 consecutive days), using female mice as a model. Our data showed that tDCS did not modulate the hedonic effects of ethanol as assessed by a conditioned place preference test (CPP) or the expression of ethanol-induced behavioral sensitization. Interestingly, tDCS robustly reduced reacquisition of ethanol consumption (50% decrease) following extinction of self-administration in an operant paradigm. Furthermore, tDCS significantly decreased motivation to drink ethanol on a progressive ratio schedule (30% decrease). Taken together, our results show a dissociation between the effects of tDCS on “liking” (hedonic aspect; no effect in the CPP) and “wanting” (motivation; decreased consumption on a progressive ratio schedule). Our tDCS procedure in rodents will allow us to better understand its mechanisms of action in order to accelerate its use as a complementary and innovative tool to help alcohol-dependent patients maintain abstinence or reduce ethanol intake.
Collapse
|
5
|
Van Schuerbeek A, Vanderhasselt MA, Baeken C, Pierre A, Smolders I, Van Waes V, De Bundel D. Effects of repeated anodal transcranial direct current stimulation on auditory fear extinction in C57BL/6J mice. Brain Stimul 2021; 14:250-260. [PMID: 33454396 DOI: 10.1016/j.brs.2021.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Trauma-based psychotherapy is a first line treatment for post-traumatic stress disorder (PTSD) but not all patients achieve long-term remission. Transcranial direct current stimulation (tDCS) received considerable attention as a neuromodulation method that may improve trauma-based psychotherapy. OBJECTIVE We explored the effects of repeated anodal tDCS over the prefrontal cortex (PFC) on fear extinction in mice as a preclinical model for trauma-based psychotherapy. METHODS We performed auditory fear conditioning with moderate or high shock intensity on C57BL6/J mice. Next, mice received anodal tDCS (0.2 mA, 20 min) or sham stimulation over the PFC twice daily for five consecutive days. Extinction training was performed by repeatedly exposing mice to the auditory cue the day after the last stimulation session. Early and late retention of extinction were evaluated one day and three weeks after extinction training respectively. RESULTS We observed no significant effect of tDCS on the acquisition or retention of fear extinction in mice subjected to fear conditioning with moderate intensity. However, when the intensity of fear conditioning was high, tDCS significantly lowered freezing during the acquisition of extinction, regardless of the extinction protocol. Moreover, when tDCS was combined with a strong extinction protocol, we also observed a significant improvement of early extinction recall. Finally, we found that tDCS reduced generalized fear induced by contextual cues when the intensity of conditioning is high and extinction training limited. CONCLUSIONS Our data provide a rationale to further explore anodal tDCS over the PFC as potential support for trauma-based psychotherapy for PTSD.
Collapse
Affiliation(s)
- Andries Van Schuerbeek
- Department of Pharmaceutical Sciences, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Marie-Anne Vanderhasselt
- Department of Experimental Clinical and Health Psychology, Universiteit Gent - C, Heymanslaan 10, 9000, Gent, Belgium.
| | - Chris Baeken
- Department of Psychiatry and Medical Psychology, Ghent Experimental Psychiatry (GHEP) Lab, Universiteit Gent - C, Heymanslaan 10, 9000, Gent, Belgium; Department of Psychiatry, UZBrussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Anouk Pierre
- Department of Pharmaceutical Sciences, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Ilse Smolders
- Department of Pharmaceutical Sciences, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Vincent Van Waes
- Laboratory of Clinical and Integrative Neuroscience, EA481, Université Bourgogne Franche-Comté, 19 rue Ambroise Paré, 25030, Besancon, Cedex, France.
| | - Dimitri De Bundel
- Department of Pharmaceutical Sciences, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| |
Collapse
|
6
|
Abbasi S, Nasehi M, Ebrahimi-Ghiri M, Zarrindast MR. Anodal tDCS applied to the left frontal cortex abrogates scopolamine-induced fear memory deficit via the dopaminergic system. Acta Neurobiol Exp (Wars) 2021. [DOI: 10.21307/ane-2021-016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Rosário BDA, de Nazaré MDFS, Estadella D, Ribeiro DA, Viana MDB. Behavioral and neurobiological alterations induced by chronic use of crack cocaine. Rev Neurosci 2020; 31:59-75. [PMID: 31129656 DOI: 10.1515/revneuro-2018-0118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/25/2019] [Indexed: 01/01/2023]
Abstract
Crack cocaine is the crystal form of cocaine and can be smoked, and rapidly absorbed, and, in part for this reason, is potently addictive. It is hypothesized that crack cocaine is able to induce important changes in different tissues and organs, and thus dramatically alter behavior. Nevertheless, which alterations in the central nervous system are related to its frequent use is still a matter of discussion. The present study is a literature review of articles published between the years 2008 and 2018 on the theme 'crack cocaine and brain' available in PUBMED, MEDLINE, EMBASE, and Google scholar databases. The results show that the use of crack cocaine induces important behavioral, neuroanatomical, and biochemical alterations. The main behavioral sequelae include cognitive and emotional changes, such as increased anxiety and depressive symptoms, attention and memory deficits, and hyperactivity. Among the neurobiological alterations are reductions in the activity of the prefrontal, anterior cingulate cortex, and nucleus accumbens. Molecular changes include decreases in neurotrophic factors and increases in oxidative stress and inflammatory cytokines, which may be responsible for the morphological alterations observed. It is also hypothesized that these neurobiological changes might explain the emotional and cognitive dysfunctions experienced by crack cocaine addicts.
Collapse
Affiliation(s)
- Bárbara Dos Anjos Rosário
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, 11015-20 Santos SP, Brazil
| | | | - Débora Estadella
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, 11015-20 Santos SP, Brazil
| | - Daniel Araki Ribeiro
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, 11015-20 Santos SP, Brazil
| | - Milena de Barros Viana
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, 11015-20 Santos SP, Brazil, e-mail:
| |
Collapse
|
8
|
Pedron S, Dumontoy S, Dimauro J, Haffen E, Andrieu P, Van Waes V. Open-tES: An open-source stimulator for transcranial electrical stimulation designed for rodent research. PLoS One 2020; 15:e0236061. [PMID: 32663223 PMCID: PMC7360043 DOI: 10.1371/journal.pone.0236061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022] Open
Abstract
Non-invasive neuromodulatory techniques, including transcranial direct current stimulation (tDCS), have been shown to modulate neuronal function and are used both in cognitive neuroscience and to treat neuropsychiatric conditions. In this context, animal models provide a powerful tool to identify the neurobiological mechanisms of action of tDCS. However, finding a current generator that is easily usable and which allows a wide range of stimulation parameters can be difficult and/or expensive. Here, we introduce the Open-tES device, a project under a Creative Commons License (CC BY, SA 4.0) shared on the collaborative platform Git-Hub. This current generator allows tDCS (and other kinds of stimulations) to be realized, is suitable for rodents, is easy to use, and is low-cost. Characterization has been performed to measure the precision and accuracy of the current delivered. We also aimed to compare its effects with a commercial stimulator used in clinical trials (DC-Stimulator Plus, NeuroConn, Germany). To achieve this, a behavioral study was conducted to evaluate its efficacy for decreasing depression related-behavior in mice. The stimulator precision and accuracy were better than 250 nA and 25 nA, respectively. The behavioral evaluation performed in mice in the present study did not reveal any significant differences between the commercial stimulator used in clinical trials and the Open-tES device. Accuracy and precision of the stimulator ensure high repeatability of the stimulations. This current generator constitutes a reliable and inexpensive tool that is useful for preclinical studies in the field of non-invasive electrical brain stimulation.
Collapse
Affiliation(s)
- Solène Pedron
- Laboratory of Integrative and Clinical Neuroscience EA481, Université Bourgogne Franche-Comté, Besançon, France
| | - Stéphanie Dumontoy
- Laboratory of Integrative and Clinical Neuroscience EA481, Université Bourgogne Franche-Comté, Besançon, France
| | - Julien Dimauro
- Laboratory of Integrative and Clinical Neuroscience EA481, Université Bourgogne Franche-Comté, Besançon, France
| | - Emmanuel Haffen
- Laboratory of Integrative and Clinical Neuroscience EA481, Université Bourgogne Franche-Comté, Besançon, France
| | - Patrice Andrieu
- Laboratory of Integrative and Clinical Neuroscience EA481, Université Bourgogne Franche-Comté, Besançon, France
| | - Vincent Van Waes
- Laboratory of Integrative and Clinical Neuroscience EA481, Université Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
9
|
Memory and Cognition-Related Neuroplasticity Enhancement by Transcranial Direct Current Stimulation in Rodents: A Systematic Review. Neural Plast 2020; 2020:4795267. [PMID: 32211039 PMCID: PMC7061127 DOI: 10.1155/2020/4795267] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/27/2020] [Accepted: 02/06/2020] [Indexed: 12/19/2022] Open
Abstract
Brain stimulation techniques, including transcranial direct current stimulation (tDCS), were identified as promising therapeutic tools to modulate synaptic plasticity abnormalities and minimize memory and learning deficits in many neuropsychiatric diseases. Here, we revised the effect of tDCS on the modulation of neuroplasticity and cognition in several animal disease models of brain diseases affecting plasticity and cognition. Studies included in this review were searched following the terms (“transcranial direct current stimulation”) AND (mice OR mouse OR animal) and according to the PRISMA statement requirements. Overall, the studies collected suggest that tDCS was able to modulate brain plasticity due to synaptic modifications within the stimulated area. Changes in plasticity-related mechanisms were achieved through induction of long-term potentiation (LTP) and upregulation of neuroplasticity-related proteins, such as c-fos, brain-derived neurotrophic factor (BDNF), or N-methyl-D-aspartate receptors (NMDARs). Taken into account all revised studies, tDCS is a safe, easy, and noninvasive brain stimulation technique, therapeutically reliable, and with promising potential to promote cognitive enhancement and neuroplasticity. Since the use of tDCS has increased as a novel therapeutic approach in humans, animal studies are important to better understand its mechanisms as well as to help improve the stimulation protocols and their potential role in different neuropathologies.
Collapse
|
10
|
de Oliveira C, de Freitas JS, Macedo IC, Scarabelot VL, Ströher R, Santos DS, Souza A, Fregni F, Caumo W, Torres ILS. Transcranial direct current stimulation (tDCS) modulates biometric and inflammatory parameters and anxiety-like behavior in obese rats. Neuropeptides 2019; 73:1-10. [PMID: 30446297 DOI: 10.1016/j.npep.2018.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 07/14/2018] [Accepted: 09/19/2018] [Indexed: 12/16/2022]
Abstract
Obesity is a multifactorial disease associated with metabolic dysfunction and the prevention and treatment of obesity are often unsatisfactory. Transcranial direct-current stimulation (tDCS) is a non-invasive brain stimulation technique that has proven promising in the treatment of eating disorders such as obesity. We investigate the effects of tDCS on locomotor and exploratory activities, anxiety-like and feeding behavior, and levels of brain-derived neurotrophic factor (BDNF), IL (interleukin)-10, IL-1β, and tumor necrosis factor-alpha (TNF-α) in the cerebral cortex of obese rats. A total of 40 adult male Wistar rats were used in our study. Animals were divided into groups of three or four animals per cage and allocated to four treatment groups: standard diet plus sham tDCS treatment (SDS), standard diet plus tDCS treatment (SDT), hypercaloric diet plus sham tDCS treatment (HDS), hypercaloric diet plus tDCS treatment (HDT). After 40 days on a hypercaloric diet and/or standard diet were to assessed the locomotor and exploratory activity and anxiety-like behavior to by the open field (OF) and elevated plus maze (EPM) tests respectively before and after exposure to tDCS treatment. The experimental groups were submitted to active or sham treatment tDCS during eight days. Palatable food consumption test (PFT) was performed 24 h after the last tDCS session under fasting and feeding conditions. Obese animals submitted to tDCS treatment showed a reduction in the Lee index, visceral adipose tissue weight, and food craving. In addition, bicephalic tDCS decreased the cerebral cortex levels of IL-1β and TNF-α in these animals. Exposure to a hypercaloric diet produced an anxiolytic effect, which was reversed by bicephalic tDCS treatment. These results suggest that, in accordance with studies in humans, bicephalic tDCS could modulate biometric and inflammatory parameters, as well as anxiety-like and feeding behavior, of rats subjected to the consumption of a hypercaloric diet.
Collapse
Affiliation(s)
- Carla de Oliveira
- Laboratory of Pain Pharmacology and Neuromodulation: Pre clinical studies, Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-003, Brazil; Post-Graduate Program in Medicine: Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Joice Soares de Freitas
- Post-Graduate Program in Biological Sciences, Pharmacology and Therapeutics, Institute of Basic Health Sciences, Universidade Federal Rio Grande do Sul, Porto Alegre, Brazil; Laboratory of Pain Pharmacology and Neuromodulation: Pre clinical studies, Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-003, Brazil
| | - Isabel Cristina Macedo
- Laboratory of Pain Pharmacology and Neuromodulation: Pre clinical studies, Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-003, Brazil
| | - Vanessa Leal Scarabelot
- Laboratory of Pain Pharmacology and Neuromodulation: Pre clinical studies, Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-003, Brazil
| | - Roberta Ströher
- Post-Graduate Program in Biological Sciences, Pharmacology and Therapeutics, Institute of Basic Health Sciences, Universidade Federal Rio Grande do Sul, Porto Alegre, Brazil; Laboratory of Pain Pharmacology and Neuromodulation: Pre clinical studies, Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-003, Brazil
| | - Daniela Silva Santos
- Laboratory of Pain Pharmacology and Neuromodulation: Pre clinical studies, Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-003, Brazil; Post-Graduate Program in Medicine: Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Andressa Souza
- Laboratory of Pain Pharmacology and Neuromodulation: Pre clinical studies, Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-003, Brazil
| | - Felipe Fregni
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Wolnei Caumo
- Post-Graduate Program in Medicine: Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Iraci L S Torres
- Post-Graduate Program in Biological Sciences, Pharmacology and Therapeutics, Institute of Basic Health Sciences, Universidade Federal Rio Grande do Sul, Porto Alegre, Brazil; Laboratory of Pain Pharmacology and Neuromodulation: Pre clinical studies, Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-003, Brazil; Post-Graduate Program in Medicine: Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
11
|
Sánchez-León CA, Ammann C, Medina JF, Márquez-Ruiz J. Using animal models to improve the design and application of transcranial electrical stimulation in humans. Curr Behav Neurosci Rep 2018; 5:125-135. [PMID: 30013890 DOI: 10.1007/s40473-018-0149-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Purpose of Review Transcranial electrical stimulation (tES) is a non-invasive stimulation technique used for modulating brain function in humans. To help tES reach its full therapeutic potential, it is necessary to address a number of critical gaps in our knowledge. Here, we review studies that have taken advantage of animal models to provide invaluable insight about the basic science behind tES. Recent Findings Animal studies are playing a key role in elucidating the mechanisms implicated in tES, defining safety limits, validating computational models, inspiring new stimulation protocols, enhancing brain function and exploring new therapeutic applications. Summary Animal models provide a wealth of information that can facilitate the successful utilization of tES for clinical interventions in human subjects. To this end, tES experiments in animals should be carefully designed to maximize opportunities for applying discoveries to the treatment of human disease.
Collapse
Affiliation(s)
| | - Claudia Ammann
- CINAC, University Hospital HM Puerta del Sur, CEU - San Pablo University, 28938-Móstoles, Madrid, Spain
| | - Javier F Medina
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Javier Márquez-Ruiz
- Division of Neurosciences, Pablo de Olavide University, 41013-Seville, Spain
| |
Collapse
|
12
|
Peanlikhit T, Van Waes V, Pedron S, Risold PY, Haffen E, Etiévant A, Monnin J. The antidepressant-like effect of tDCS in mice: A behavioral and neurobiological characterization. Brain Stimul 2017; 10:748-756. [PMID: 28416160 DOI: 10.1016/j.brs.2017.03.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/09/2017] [Accepted: 03/25/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is a non-invasive method increasingly popular for the treatment of several brain disorders, such as major depression. Despite great enthusiasm and promising results, some studies report discrepant findings and no consensus exists for the clinical use of tDCS. OBJECTIVE The present study aims to (i) determine the most effective stimulation parameters to optimize antidepressant-like effect of tDCS in the forced-swim test in mice and (ii) identify brain regions recruited by tDCS and possibly involved in its behavioral effect using Fos immunohistochemistry. RESULTS We reported that tDCS induced long-lasting antidepressant-like effect, which varied as a function of stimulation settings including number, duration, intensity and polarity of stimulation. Interestingly, the present study also demonstrated that tDCS reduced depressive-like behaviors induced by chronic corticosterone exposure. Furthermore, behavioral outcomes induced by a single stimulation were associated with neuronal activation in the prefrontal cortex, dorsal hippocampus, ventral tegmental area and nucleus accumbens, whereas no overexpression of c-fos was associated with 10 stimulations. CONCLUSION The strongest behavioral response was observed with an anodal stimulation of 200 μA during 20min. The repetition of this stimulation was necessary to induce long-lasting behavioral effects that are probably associated with plastic changes in the neuronal response.
Collapse
Affiliation(s)
- Tanat Peanlikhit
- Laboratoire de Neurosciences intégratives et cliniques, EA 481, Université Bourgogne Franche-Comté, 25000 Besançon, France.
| | - Vincent Van Waes
- Laboratoire de Neurosciences intégratives et cliniques, EA 481, Université Bourgogne Franche-Comté, 25000 Besançon, France.
| | - Solène Pedron
- Laboratoire de Neurosciences intégratives et cliniques, EA 481, Université Bourgogne Franche-Comté, 25000 Besançon, France.
| | - Pierre-Yves Risold
- Laboratoire de Neurosciences intégratives et cliniques, EA 481, Université Bourgogne Franche-Comté, 25000 Besançon, France.
| | - Emmanuel Haffen
- Laboratoire de Neurosciences intégratives et cliniques, EA 481, Université Bourgogne Franche-Comté, 25000 Besançon, France; Service de Psychiatrie, CHRU Besançon, 25000 Besançon, France; Centre d'Investigation Clinique CIC1431, Inserm, CHRU Besançon, France.
| | - Adeline Etiévant
- Laboratoire de Neurosciences intégratives et cliniques, EA 481, Université Bourgogne Franche-Comté, 25000 Besançon, France; Service de Psychiatrie, CHRU Besançon, 25000 Besançon, France.
| | - Julie Monnin
- Laboratoire de Neurosciences intégratives et cliniques, EA 481, Université Bourgogne Franche-Comté, 25000 Besançon, France; Service de Psychiatrie, CHRU Besançon, 25000 Besançon, France; Centre d'Investigation Clinique CIC1431, Inserm, CHRU Besançon, France.
| |
Collapse
|