1
|
Chellian R, Behnood-Rod A, Bruijnzeel AW. Sex differences in nicotine intake and relapse behavior in nicotine-dependent adult wistar rats. Front Pharmacol 2024; 15:1415219. [PMID: 39391691 PMCID: PMC11464435 DOI: 10.3389/fphar.2024.1415219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Tobacco use is highly addictive and the leading cause of premature mortality in the world. Long-access nicotine self-administration procedures in rats closely model human smoking behavior. However, significant gaps remain in our understanding of sex differences in the development of dependence and relapse in adult rats. Methods In the present study, we investigated operant responding for both nicotine and saline and the development of dependence in adult rats of both sexes. The rats had daily access to nicotine or saline for 6 h per day, 7 days per week. Dependence was assessed by evaluating precipitated and spontaneous somatic withdrawal signs, measuring locomotor activity in the small open field test, and assessing anxiety-like behavior in the large open field and elevated plus maze test. The sucrose preference test was used to determine if cessation of nicotine intake leads to anhedonia. It was also investigated if a period of forced abstinence affects nicotine-seeking behavior. Results This study showed that nicotine intake is higher in females than in males when given daily long access to nicotine. Daily nicotine self-administration led to more precipitated and spontaneous somatic withdrawal signs compared to saline self-administration, with no sex differences observed. In addition, cessation of nicotine intake led to a similar increase in activity in both males and females in the small open field test. However, cessation of nicotine intake did not increase anxiety-like behavior or cause anhedonia in either males or females. A time course analysis revealed that the nicotinic acetylcholine receptor antagonist mecamylamine affected nicotine intake differently in males and females, increasing intake in males and decreasing intake in females. Three weeks of forced abstinence led to an increase in nicotine and saline-seeking behavior. The rats exhibited more nicotine than saline seeking, and the females displayed more nicotine seeking than the males. Discussion The present findings demonstrate that females self-administer more nicotine and display more nicotine-seeking behavior than males. Furthermore, there were no sex differences in somatic withdrawal signs or activity during abstinence from nicotine. This work underscores the importance of considering sex differences across various aspects of addiction, including intake and relapse, when developing novel treatments for tobacco use disorder.
Collapse
|
2
|
Callan L, Caroland-Williams A, Lee G, Belflower J, Belflower J, Modi U, Kase C, Patel A, Collins N, Datta A, Qasi S, Gheidi A. After a period of forced abstinence, rats treated with the norepinephrine neurotoxin DSP-4 still exhibit preserved food-seeking behavior and prefrontal cortex fos-expressing neurons. Heliyon 2024; 10:e32146. [PMID: 39027623 PMCID: PMC11255514 DOI: 10.1016/j.heliyon.2024.e32146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/29/2024] [Accepted: 05/29/2024] [Indexed: 07/20/2024] Open
Abstract
Aims Relapse is a common characteristic of compulsive behaviors like addiction, where individuals tend to return to drug use or overeating after a period of abstinence. PFC (prefrontal cortex) neuronal ensembles are required for drug and food-seeking behaviors and are partially regulated by Norepinephrine (NE). However, the contributions of neuromodulators, such as the adrenergic system, in food-seeking behavior are not fully understood. Main methods To investigate this, we trained male and female rats to press a lever in an operant chamber to obtain banana-flavored food pellets for ten days. We then administered DSP-4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride), a neurotoxin that diminishes norepinephrine levels in the brain. The rats were kept in their home cages for ten more days before being returned to the operant chambers to measure food-seeking behavior. Key findings Despite receiving DSP-4, the PFC neuronal ensembles measured by Fos and food-seeking behavior did not differ between groups, but rather sex. Significance Although both NE and Fos expressing neurons are implicated in food-seeking, they do not seem to be involved in a cue-contextual induced re-exposure response.
Collapse
Affiliation(s)
- L.N. Callan
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| | - A.J. Caroland-Williams
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| | - G. Lee
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| | - J.M. Belflower
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| | - J.T. Belflower
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| | - U.A. Modi
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| | - C.V. Kase
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| | - A.D. Patel
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| | - N.A. Collins
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| | - A. Datta
- Lincoln Memorial University DeBusk College of Osteopathic Medicine, Harrogate, TN, USA
| | - S. Qasi
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| | - A. Gheidi
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| |
Collapse
|
3
|
Carreño D, Facundo A, Nguyen MTT, Lotfipour S. Dopamine and Norepinephrine Tissue Levels in the Developing Limbic Brain Are Impacted by the Human CHRNA6 3'-UTR Single-Nucleotide Polymorphism (rs2304297) in Rats. Int J Mol Sci 2024; 25:3676. [PMID: 38612487 PMCID: PMC11011259 DOI: 10.3390/ijms25073676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
We previously demonstrated that a genetic single-nucleotide polymorphism (SNP, rs2304297) in the 3' untranslated region (UTR) of the human CHRNA6 gene has sex- and genotype-dependent effects on nicotine-induced locomotion, anxiety, and nicotine + cue-induced reinstatement in adolescent rats. This study aims to investigate how the CHRNA6 3'-UTR SNP influences dopaminergic and noradrenergic tissue levels in brain reward regions during baseline and after the reinstatement of drug-seeking behavior. Naïve adolescent and adult rats, along with those undergoing nicotine + cue reinstatement and carrying the CHRNA6 3'-UTR SNP, were assessed for dopamine (DA), norepinephrine (NE), and metabolites in reward pathway regions. The results reveal age-, sex-, and genotype-dependent baseline DA, NE, and DA turnover levels. Post-reinstatement, male α6GG rats show suppressed DA levels in the Nucleus Accumbens (NAc) Shell compared to the baseline, while nicotine+ cue-induced reinstatement behavior correlates with neurotransmitter levels in specific brain regions. This study emphasizes the role of CHRNA6 3'-UTR SNP in the developmental maturation of the dopaminergic and noradrenergic system in the adolescent rat brain, with tissue levels acting as predictors of nicotine + cue-induced reinstatement.
Collapse
Affiliation(s)
- Diana Carreño
- Department of Emergency Medicine, University of California, Irvine, CA 92697, USA
| | - Antonella Facundo
- Department of Emergency Medicine, University of California, Irvine, CA 92697, USA
| | - My Trang Thi Nguyen
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| | - Shahrdad Lotfipour
- Department of Emergency Medicine, University of California, Irvine, CA 92697, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92617, USA
| |
Collapse
|
4
|
Liu X, Lu T, Chen X, Huang S, Zheng W, Zhang W, Meng S, Yan W, Shi L, Bao Y, Xue Y, Shi J, Yuan K, Han Y, Lu L. Memory consolidation drives the enhancement of remote cocaine memory via prefrontal circuit. Mol Psychiatry 2024; 29:730-741. [PMID: 38221548 DOI: 10.1038/s41380-023-02364-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 01/16/2024]
Abstract
Remote memory usually decreases over time, whereas remote drug-cue associated memory exhibits enhancement, increasing the risk of relapse during abstinence. Memory system consolidation is a prerequisite for remote memory formation, but neurobiological underpinnings of the role of consolidation in the enhancement of remote drug memory are unclear. Here, we found that remote cocaine-cue associated memory was enhanced in rats that underwent self-administration training, together with a progressive increase in the response of prelimbic cortex (PrL) CaMKII neurons to cues. System consolidation was required for the enhancement of remote cocaine memory through PrL CaMKII neurons during the early period post-training. Furthermore, dendritic spine maturation in the PrL relied on the basolateral amygdala (BLA) input during the early period of consolidation, contributing to remote memory enhancement. These findings indicate that memory consolidation drives the enhancement of remote cocaine memory through a time-dependent increase in activity and maturation of PrL CaMKII neurons receiving a sustained BLA input.
Collapse
Affiliation(s)
- Xiaoxing Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China
| | - Tangsheng Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, 100191, Beijing, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Xuan Chen
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China
- Xinxiang Medical University, Xinxiang, 453003, China
| | - Shihao Huang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, 100191, Beijing, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Wei Zheng
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, 100871, Beijing, China
| | - Wen Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, 100191, Beijing, China
| | - Shiqiu Meng
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, 100191, Beijing, China
| | - Wei Yan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China
| | - Le Shi
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China
| | - Yanping Bao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, 100191, Beijing, China
| | - Yanxue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, 100191, Beijing, China.
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, 100191, Beijing, China
| | - Kai Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, 100191, Beijing, China.
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China.
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, 100191, Beijing, China.
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, 100871, Beijing, China.
- Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder, Chinese Academy of Medical Sciences (No. 2018RU006), Dongcheng, Beijing, China.
| |
Collapse
|
5
|
Domi A, Domi E, Lagstrom O, Gobbo F, Jerlhag E, Adermark L. Abstinence-Induced Nicotine Seeking Relays on a Persistent Hypoglutamatergic State within the Amygdalo-Striatal Neurocircuitry. eNeuro 2023; 10:ENEURO.0468-22.2023. [PMID: 36754627 PMCID: PMC9946069 DOI: 10.1523/eneuro.0468-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/21/2022] [Accepted: 01/06/2023] [Indexed: 02/10/2023] Open
Abstract
Nicotine robustly sustains smoking behavior by acting as a primary reinforcer and by enhancing the incentive salience of the nicotine-associated stimuli. The motivational effects produced by environmental cues associated with nicotine delivery can progressively manifest during abstinence resulting in reinstatement of nicotine seeking. However, how the activity in reward neuronal circuits is transformed during abstinence-induced nicotine seeking is not yet fully understood. In here we used a contingent nicotine and saline control self-administration model to disentangle the contribution of cue-elicited seeking responding for nicotine after drug abstinence in male Wistar rats. Using ex vivo electrophysiological recordings and a network analysis approach, we defined temporal and brain-region specific amygdalo-striatal glutamatergic alterations that occur during nicotine abstinence. The results from this study provide critical evidence indicating a persistent hypoglutamatergic state within the amygdalo-striatal neurocircuitry over protracted nicotine abstinence. During abstinence-induced nicotine seeking, electrophysiological recordings showed progressive neuroadaptations in dorsal and ventral striatum already at 14-d abstinence while neuroadaptations in subregions of the amygdala emerged only after 28-d abstinence. The observed neuroadaptations pointed to a brain network involving the amygdala and the dorsolateral striatum (DLS) to be implied in cue-induced reinstatement of nicotine seeking. Together these data suggest long-lasting neuroadaptations that might reflect neuroplastic changes responsible to abstinence-induced nicotine craving. Neurophysiological transformations were detected within a time window that allows therapeutic intervention advancing clinical development of preventive strategies in nicotine addiction.
Collapse
Affiliation(s)
- Ana Domi
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 90, Sweden
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 45, Sweden
| | - Esi Domi
- School of Pharmacy, Pharmacology Unit, Center for Neuroscience, University of Camerino, Camerino 62032, Italy
| | - Oona Lagstrom
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 90, Sweden
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 45, Sweden
| | - Francesco Gobbo
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
| | - Elisabet Jerlhag
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 90, Sweden
| | - Louise Adermark
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 90, Sweden
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 45, Sweden
| |
Collapse
|
6
|
Abstract
Relapse is a defining feature of smoking and a significant challenge in cessation management. Elucidation of novel factors underlying relapse may inform future treatments. Cotinine, the major metabolite of nicotine, has been shown to support intravenous self-administration in rats, implicating it as one potential factor contributing to nicotine reinforcement. However, it remains unknown whether cotinine would induce relapse-like behaviors. The current study investigated relapse to cotinine seeking in two relapse models, the reinstatement of drug seeking and incubation of drug craving models. In the reinstatement model, rats were trained to self-administer cotinine, underwent extinction of cotinine-associated responses, and were tested for cue-, drug-, or stress-induced reinstatement. Conditioned cues associated with cotinine self-administration, cotinine (1-2 mg/kg), or the pharmacological stressor yohimbine (1.25-2.5 mg/kg) induced reinstatement of cotinine seeking. Female rats displayed more pronounced cue-induced, but not drug- or stress-induced reinstatement than male rats. In the incubation of the craving model, rats were trained to self-administer cotinine and underwent forced withdrawal in home cages. Rats were tested for cue-induced cotinine-seeking on both withdrawal day 1 and withdrawal day 18. Rats exhibited greater cue-induced cotinine-seeking on withdrawal day 18 compared to withdrawal day 1, with no difference between male and female rats. These findings indicate that cotinine induces sex-specific relapse to drug seeking in rats, suggesting that cotinine may contribute to relapse.
Collapse
Affiliation(s)
- Xiaoying Tan
- Department of Anesthesiology & Perioperative Medicine
| | | | - Zheng-Ming Ding
- Department of Anesthesiology & Perioperative Medicine
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
7
|
Tapia MA, Jin XT, Tucker BR, Thomas LN, Walker NB, Kim VJ, Albertson SE, Damuka N, Krizan I, Edassery S, Savas JN, Sai KKS, Jones SR, Drenan RM. Relapse-like behavior and nAChR sensitization following intermittent access nicotine self-administration. Neuropharmacology 2022; 212:109066. [PMID: 35461879 PMCID: PMC9527938 DOI: 10.1016/j.neuropharm.2022.109066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/04/2022] [Accepted: 04/17/2022] [Indexed: 11/28/2022]
Abstract
Many tobacco smokers consume nicotine intermittently, but the underlying mechanisms and neurobiological changes associated with intermittent nicotine intake are unclear. Understanding intermittent nicotine intake is a high priority, as it could promote therapeutic strategies to attenuate tobacco consumption. We examined nicotine intake behavior and neurobiological changes in male rats that were trained to self-administer nicotine during brief (5 min) trials interspersed with longer (15 min) drug-free periods. Rats readily adapted to intermittent access (IntA) SA following acquisition on a continuous access (ContA) schedule. Probabilistic analysis of IntA nicotine SA suggested reduced nicotine loading behavior compared to ContA, and nicotine pharmacokinetic modeling revealed that rats taking nicotine intermittently may have increased intake to maintain blood levels of nicotine that are comparable to ContA SA. After IntA nicotine SA, rats exhibited an increase in unreinforced responses for nicotine-associated cues (incubation of craving) and specific alterations in the striatal proteome after 7 days without nicotine. IntA nicotine SA also induced nAChR functional upregulation in the interpeduncular nucleus (IPN), and it enhanced nicotine binding in the brain as determined via [11C]nicotine positron emission tomography. Reducing the saliency of the cue conditions during the 5 min access periods attenuated nicotine intake, but incubation of craving was preserved. Together, these results indicate that IntA conditions promote nicotine SA and nicotine seeking after a nicotine-free period.
Collapse
Affiliation(s)
- Melissa A. Tapia
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Xiao-Tao Jin
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Brenton R. Tucker
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Leanne N. Thomas
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Noah B. Walker
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Veronica J. Kim
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Steven E. Albertson
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Naresh Damuka
- Department of Radiological Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Ivan Krizan
- Department of Radiological Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Seby Edassery
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jeffrey N. Savas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Sara R. Jones
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Ryan M. Drenan
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA,Corresponding author. (R.M. Drenan)
| |
Collapse
|
8
|
Nall RW, Beloate LN, Meyerink ME, Penaloza T, Doolittle J, Froeliger B, Kalivas PW, Garcia-Keller C. Assessing combined effects of varenicline and N-acetylcysteine on reducing nicotine seeking in rats. Addict Biol 2022; 27:e13151. [PMID: 35229943 PMCID: PMC10777539 DOI: 10.1111/adb.13151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 12/22/2021] [Accepted: 01/14/2022] [Indexed: 11/27/2022]
Abstract
Nicotine addiction is a chronic relapsing brain disorder, and cigarette smoking is the leading cause of preventable death in the United States. Currently, the most effective pharmacotherapy for smoking cessation is Varenicline (VRN), which reduces both positive and negative reinforcement by nicotine. Clinically, VRN attenuates withdrawal symptoms and promotes abstinence, but >50% of smokers relapse within 3 months following a quit attempt. This may indicate that VRN fails to ameliorate components of nicotine-induced neuroplasticity that promote relapse vulnerability. Animal models reveal that glutamate dysregulation in the nucleus accumbens is associated with nicotine relapse. N-acetylcysteine (NAC) normalizes glutamate transmission and prolongs cocaine abstinence. Thus, combining VRN and NAC may promote and maintain, respectively, nicotine abstinence. In rats, we found that VRN effectively reduced nicotine self-administration and seeking in early abstinence, but not seeking later in abstinence. In contrast, NAC reduced seeking only later in abstinence. Because VRN and NAC are sometimes associated with mild adverse effects, we also evaluated a sequential approach combining subthreshold doses of VRN during self-administration and early abstinence with subthreshold doses of NAC during late abstinence. As expected, subthreshold VRN did not reduce nicotine intake. However, subthreshold VRN and NAC reduced seeking in late abstinence, suggesting a combined effect. Overall, our results suggest that combining subthreshold VRN and NAC is a viable and drug-specific approach to promote abstinence and reduce relapse while minimizing adverse effects. Our data also suggest that different components and time points in addiction engage the different neurocircuits targeted by VRN and NAC.
Collapse
Affiliation(s)
- Rusty W. Nall
- Department of Neuroscience, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC 29425
- Department of Psychology, Jacksonville State University, 700 Pelham Rd. N., Jacksonville, AL, 36265
| | - Lauren N. Beloate
- Department of Neuroscience, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC 29425
- Department of Biomedical Engineering, The Pennsylvania State University, 122 Chemical and Biomedical Engineering Building, University Park, PA 16802
| | - Michael E. Meyerink
- Department of Neuroscience, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC 29425
| | - Tiffany Penaloza
- Department of Neuroscience, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC 29425
| | - Jade Doolittle
- Department of Neuroscience, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC 29425
| | - Brett Froeliger
- Department of Neuroscience, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC 29425
- Department of Psychiatry, Department of Psychological Sciences, University of Missouri-Columbia, 1 Hospital Dr, Columbia, MO 65201
| | - Peter W. Kalivas
- Department of Neuroscience, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC 29425
| | - Constanza Garcia-Keller
- Department of Neuroscience, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC 29425
| |
Collapse
|
9
|
Effects of heroin self-administration and forced withdrawal on the expression of genes related to the mTOR network in the basolateral complex of the amygdala of male Lewis rats. Psychopharmacology (Berl) 2022; 239:2559-2571. [PMID: 35467104 PMCID: PMC9293846 DOI: 10.1007/s00213-022-06144-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/11/2022] [Indexed: 10/26/2022]
Abstract
RATIONALE The development of substance use disorders involves long-lasting adaptations in specific brain areas that result in an elevated risk of relapse. Some of these adaptations are regulated by the mTOR network, a signalling system that integrates extracellular and intracellular stimuli and modulates several processes related to plasticity. While the role of the mTOR network in cocaine- and alcohol-related disorders is well established, little is known about its participation in opiate use disorders. OBJECTIVES To use a heroin self-administration and a withdrawal protocol that induce incubation of heroin-seeking in male rats and study the associated effects on the expression of several genes related to the mTOR system and, in the specific case of Rictor, its respective translated protein and phosphorylation. RESULTS We found that heroin self-administration elicited an increase in the expression of the genes Igf1r, Igf2r, Akt2 and Gsk3a in the basolateral complex of the amygdala, which was not as evident at 30 days of withdrawal. We also found an increase in the expression of Rictor (a protein of the mTOR complex 2) after heroin self-administration compared to the saline group, which was occluded at the 30-day withdrawal period. The activation levels of Rictor, measured by the phosphorylation rate, were also reduced after heroin self-administration, an effect that seemed more apparent in the protracted withdrawal group. CONCLUSIONS These results suggest that heroin self-administration under extended access conditions modifies the expression profile of activators and components of the mTOR complexes and show a putative irresponsive mTOR complex 2 after withdrawal from heroin use.
Collapse
|
10
|
Treloar Padovano H, Miranda R. Incubation of alcohol craving as it naturally occurs in a developmentally diverse sample of dependent and nondependent drinkers. Addict Biol 2021; 26:e12934. [PMID: 32666651 DOI: 10.1111/adb.12934] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 06/02/2020] [Accepted: 06/14/2020] [Indexed: 12/21/2022]
Abstract
Longer periods of abstinence are shown to enhance response to alcohol cues among alcohol-dependent animals and humans, a phenomenon described as "incubation of craving." The present work examined the effects of days since last drink on general craving and alcohol-cued craving as it occurs in daily life and explored whether effects were influenced by age and dependence. Three samples were combined to include 266 drinkers ranging in age from 14 to 67 years recruited from the community; about half (59.4%) met criteria for alcohol dependence. Drinkers used handheld electronic devices to rate their subjective alcohol craving (assessed as "urge to drink") and situational context (e.g., presence of visible alcohol cues) at nondrinking times in daily life, with days since last alcohol use culled from timeline follow-back interviews and real-world reports. Drinkers at the lower end of the age range in this sample reported greater intensification of craving with more days of continuous abstinence than drinkers at the upper end of the age range. Age was not related to incubation of cue-elicited craving, in specific, however. For drinkers with dependence, craving when in the presence of visible alcohol cues intensified with more days of continuous abstinence, suggesting craving incubation. This study builds from important foundational work to demonstrate that incubation of cue-elicited craving occurs in dependent drinkers and applies regardless of age. Inasmuch as craving is a motivational drive that maintains alcohol use, understanding factors that influence craving in daily life holds promise for improving clinical care.
Collapse
Affiliation(s)
- Hayley Treloar Padovano
- Department of Psychiatry and Human Behavior, Department of Behavioral and Social Sciences, Center for Alcohol and Addiction Studies Brown University Providence Rhode Island USA
| | - Robert Miranda
- Department of Psychiatry and Human Behavior, Department of Behavioral and Social Sciences, Center for Alcohol and Addiction Studies Brown University Providence Rhode Island USA
| |
Collapse
|
11
|
Butler K, Forget B, Heishman SJ, Le Foll B. Significant association of nicotine reinforcement and cue reactivity: a translational study in humans and rats. Behav Pharmacol 2021; 32:212-219. [PMID: 33660663 PMCID: PMC7965230 DOI: 10.1097/fbp.0000000000000607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Relapse is common amongst smokers attempting to quit and tobacco cue-induced craving is an important relapse mechanism. Preclinical studies commonly use cue-induced reinstatement of nicotine seeking to investigate relapse neurobiology. Previous research suggests dependence severity and nicotine intake history affect smoking resumption and cue-induced reinstatement of nicotine seeking. However, behavioural data may be interpreted in terms of nicotine reinforcement. This translational study investigated if individual differences in objectively assessed nicotine reinforcement strength were associated with cue-reactivity in both rats and human smokers, which to our knowledge has not been investigated before. Rats (n = 16) were trained to self-administer nicotine and were tested on a progressive ratio schedule of nicotine reinforcement, to assess reinforcer strength, and on a test of cue-induced reinstatement of nicotine seeking. Nicotine reinforcement strength was assessed in human smokers (n = 104) using a forced choice task (nicotine containing vs. denicotinised cigarettes) and self-reported cue-induced craving was assessed following exposure to smoking and neutral cues. Responding for nicotine under progressive ratio was strongly positively correlated with cue-induced reinstatement of nicotine seeking in rats. Nicotine choices in human smokers were significantly associated with cue-induced craving controlling for dependence severity, years of smoking, and urge to smoke following neutral cues. Findings suggest nicotine reinforcement strength is associated with both types of cue-induced behaviour, implying some translational commonality between cue-induced craving in human smokers and cue-induced reinstatement of nicotine seeking in rats. Findings are discussed in relation to clinical implications and whether these laboratory tasks assess drug 'wanting'.
Collapse
Affiliation(s)
- Kevin Butler
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, Ontario, Canada
| | - Benoît Forget
- Department of Neuroscience, Pasteur Institute, Paris, France
| | - Stephen J Heishman
- National Institute on Drug Abuse, Intramural Research Program, Baltimore, USA
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, Ontario, Canada
| |
Collapse
|
12
|
Lay BPP, Khoo SYS. Associative processes in addiction relapse models: A review of their Pavlovian and instrumental mechanisms, history, and terminology. NEUROANATOMY AND BEHAVIOUR 2021. [DOI: 10.35430/nab.2021.e18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Animal models of relapse to drug-seeking have borrowed heavily from associative learning approaches. In studies of relapse-like behaviour, animals learn to self-administer drugs then receive a period of extinction during which they learn to inhibit the operant response. Several triggers can produce a recovery of responding which form the basis of a variety of models. These include the passage of time (spontaneous recovery), drug availability (rapid reacquisition), extinction of an alternative response (resurgence), context change (renewal), drug priming, stress, and cues (reinstatement). In most cases, the behavioural processes driving extinction and recovery in operant drug self-administration studies are similar to those in the Pavlovian and behavioural literature, such as context effects. However, reinstatement in addiction studies have several differences with Pavlovian reinstatement, which have emerged over several decades, in experimental procedures, associative mechanisms, and terminology. Interestingly, in cue-induced reinstatement, drug-paired cues that are present during acquisition are omitted during lever extinction. The unextinguished drug-paired cue may limit the model’s translational relevance to cue exposure therapy and renders its underlying associative mechanisms ambiguous. We review major behavioural theories that explain recovery phenomena, with a particular focus on cue-induced reinstatement because it is a widely used model in addiction. We argue that cue-induced reinstatement may be explained by a combination of behavioural processes, including reacquisition of conditioned reinforcement and Pavlovian to Instrumental Transfer. While there are important differences between addiction studies and the behavioural literature in terminology and procedures, it is clear that understanding associative learning processes is essential for studying relapse.
Collapse
Affiliation(s)
- Belinda Po Pyn Lay
- Center for Studies in Behavioral Neurobiology/Groupe de Recherche en Neurobiologie Comportementale, Department of Psychology, Concordia University, Montreal, Canada
| | - Shaun Yon-Seng Khoo
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
13
|
Braunscheidel KM, Wayman WN, Okas MP, Woodward JJ. Self-Administration of Toluene Vapor in Rats. Front Neurosci 2020; 14:880. [PMID: 32973434 PMCID: PMC7461949 DOI: 10.3389/fnins.2020.00880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/28/2020] [Indexed: 02/05/2023] Open
Abstract
Inhalants, including volatile organic solvents such as toluene, continue to be one of the most prevalent, and often first substances abused by adolescents. Like other drugs of abuse, toluene affects the function of neurons within key brain reward circuits including the prefrontal cortex, ventral tegmental area, and nucleus accumbens. However, preclinical models used to study these toluene-induced adaptations generally employ passive exposure paradigms that do not mirror voluntary patterns of solvent exposure observed in humans. To address this shortcoming, we developed an inhalation chamber containing active and inactive nose pokes, cue lights, flow-through vaporizers, and software-controlled valves to test the hypothesis that rats will voluntarily self-administer toluene vapor. Following habituation and self-administration (SA) training rats achieve vapor concentrations associated with rewarding effects of toluene, and maintain responding for toluene vapor, but not for air. During extinction trials, rats showed an initial burst of drug-seeking behavior similar to that of other addictive drugs and then reduced responding to Air SA levels. Responding on the active nose poke recovered during cue-induced reinstatement but not following a single passive exposure to toluene vapor. The results from these studies establish a viable toluene SA protocol that will be useful in assessing toluene-induced changes in addiction neurocircuitry.
Collapse
Affiliation(s)
| | | | | | - John J. Woodward
- Department of Neuroscience, The Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
14
|
Popova L, Owusu D, Nyman AL, Weaver SR, Yang B, Huang J, Ashley DL. Effects of Framing Nicotine Reduction in Cigarettes on Anticipated Tobacco Product Use Intentions and Risk Perceptions Among US Adult Smokers. Nicotine Tob Res 2020; 21:S108-S116. [PMID: 31867652 PMCID: PMC6939750 DOI: 10.1093/ntr/ntz146] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/16/2019] [Indexed: 12/29/2022]
Abstract
Introduction In 2017, the US Food and Drug Administration (FDA) proposed lowering the amount of nicotine in combusted cigarettes to minimally addictive levels. If used, to encourage cessation and maximize the benefits of this action, the FDA needs to determine the most effective way to communicate to the public the practical impact of this nicotine tobacco product standard. Methods Data were collected in 2018 from a nationally representative, online probability sample of 1198 adult smokers (aged ≥18 years old) in the United States. Smokers were randomly assigned one of five versions of the question regarding what they would most likely do if nicotine in cigarettes was reduced (nicotine levels were reduced by 95%; the government reduced nicotine levels by 95%; cigarettes were no longer addictive; cigarettes no longer relieved cravings; cigarettes were changed so that you would be able to quit more easily). Effects of framing on anticipated tobacco use intentions and perceived risk of very low nicotine cigarettes (VLNCs) were evaluated with multinomial logistic regressions. Results Framing the nicotine tobacco product standard as cigarettes no longer relieved cravings resulted in the highest proportion of smokers reporting they intend to quit in response to this standard (43.9%), lowest proportions reporting anticipated intentions to continue using combusted tobacco products (45.3%), and lowest proportion believing that VLNCs are less harmful than regular cigarettes (26%). Conclusions Different frames of nicotine reduction in cigarettes differentially affected smokers’ anticipated tobacco use intentions and perceived risk of VLNCs. Presenting reduction as making cigarettes unable to relieve cravings might be particularly effective at motivating cessation.
Collapse
Affiliation(s)
- Lucy Popova
- School of Public Health, Georgia State University, Atlanta, GA
| | - Daniel Owusu
- School of Public Health, Georgia State University, Atlanta, GA
| | - Amy L Nyman
- School of Public Health, Georgia State University, Atlanta, GA
| | - Scott R Weaver
- School of Public Health, Georgia State University, Atlanta, GA
| | - Bo Yang
- Department of Communication, University of Arizona, Tucson, AZ
| | - Jidong Huang
- School of Public Health, Georgia State University, Atlanta, GA
| | - David L Ashley
- School of Public Health, Georgia State University, Atlanta, GA
| |
Collapse
|
15
|
Struik RF, De Vries TJ, Peters J. Detrimental Effects of a Retrieval-Extinction Procedure on Nicotine Seeking, but Not Cocaine Seeking. Front Behav Neurosci 2019; 13:243. [PMID: 31680898 PMCID: PMC6803535 DOI: 10.3389/fnbeh.2019.00243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/27/2019] [Indexed: 01/03/2023] Open
Abstract
Retrieval-extinction memory reactivation procedures have been used to prevent the return of learned fear and drug seeking in preclinical models. These procedures first reactivate the original memory with a brief cue exposure (i.e., retrieval) session, and then disrupt memory reconsolidation by conducting extinction training within the reconsolidation window. The original memory is thought to be updated with the new information conveyed by extinction learning, resulting in a persistent therapeutic effect beyond that observed with extinction training alone (i.e., no retrieval). Here, we attempted to replicate the therapeutic effects on cocaine seeking reported by Xue et al. (2012), and extend these findings to nicotine seeking. Rats self-administered either cocaine or nicotine with contingent cues for weeks, and were then divided into two groups. The retrieval group underwent a 10-min retrieval session wherein drug cues were available, but drug was not. Ten minutes later, they were allowed to continue cue extinction training for an additional 60 min. The no retrieval group underwent a contiguous 70-min cue extinction session. These procedures continued for weeks, followed by a test for spontaneous recovery of drug seeking. No group differences were observed on any measure of cocaine seeking, although both groups exhibited extinction and spontaneous recovery. By contrast, for nicotine seeking, the retrieval group exhibited resistance to extinction, an effect that persisted on the spontaneous recovery test. These findings underscore the importance of drug type in the outcome of retrieval-extinction procedures and moreover indicate that retrieval-extinction procedures can be detrimental to nicotine seeking.
Collapse
Affiliation(s)
- Roeland F Struik
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, Netherlands
| | - Taco J De Vries
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, Netherlands
| | - Jamie Peters
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, Netherlands.,Department of Anesthesiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
16
|
Cross AJ, Anthenelli R, Li X. Metabotropic Glutamate Receptors 2 and 3 as Targets for Treating Nicotine Addiction. Biol Psychiatry 2018; 83:947-954. [PMID: 29301614 PMCID: PMC5953779 DOI: 10.1016/j.biopsych.2017.11.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 11/02/2017] [Accepted: 11/14/2017] [Indexed: 12/27/2022]
Abstract
Tobacco smoking, driven by the addictive properties of nicotine, continues to be a worldwide health problem. Based on the well-established role of glutamatergic neurotransmission in drug addiction, novel medication development strategies seek to halt nicotine consumption and prevent relapse to tobacco smoking by modulating glutamate transmission. The presynaptic inhibitory metabotropic glutamate receptors 2 and 3 (mGluR2/3) are key autoreceptors on glutamatergic terminals that maintain glutamate homeostasis. Accumulating evidence suggests the critical role of mGluR2/3 in different aspects of nicotine addiction, including acquisition and maintenance of nicotine taking, nicotine withdrawal, and persistent nicotine seeking even after prolonged abstinence. The involvement of mGluR2/3 in other neuropsychiatric conditions, such as anxiety, depression, schizophrenia, Alzheimer's disease, Parkinson's disease, and pain, provides convincing evidence suggesting that mGluR2/3 may provide an effective therapeutic approach for comorbidity of smoking and these conditions. This focused review article highlights that mGluR2/3 provide a promising target in the search for smoking cessation medication with novel mechanisms of actions that differ from those of currently U.S. Food and Drug Administration-approved pharmacotherapies.
Collapse
Affiliation(s)
- Alan J Cross
- AstraZeneca Neuroscience Innovative Medicines, Cambridge, Massachusetts
| | - Robert Anthenelli
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, California
| | - Xia Li
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, California.
| |
Collapse
|
17
|
Szumlinski KK, Shin CB. Kinase interest you in treating incubated cocaine-craving? A hypothetical model for treatment intervention during protracted withdrawal from cocaine. GENES BRAIN AND BEHAVIOR 2017; 17:e12440. [PMID: 29152855 DOI: 10.1111/gbb.12440] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/06/2017] [Accepted: 11/08/2017] [Indexed: 12/22/2022]
Abstract
A diagnostic criterion for drug addiction, persistent drug-craving continues to be the most treatment-resistant aspect of addiction that maintains the chronic, relapsing, nature of this disease. Despite the high prevalence of psychomotor stimulant addiction, there currently exists no FDA-approved medication for craving reduction. In good part, this reflects our lack of understanding of the neurobiological underpinnings of drug-craving. In humans, cue-elicited drug-craving is associated with the hyperexcitability of prefrontal cortical regions. Rodent models of cocaine addiction indicate that a history of excessive cocaine-taking impacts excitatory glutamate signaling within the prefrontal cortex to drive drug-seeking behavior during protracted withdrawal. This review summarizes evidence that the capacity of cocaine-associated cues to augment craving in highly drug-experienced rats relates to a withdrawal-dependent incubation of glutamate release within prelimbic cortex. We discuss how stimulation of mGlu1/5 receptors increases the activational state of both canonical and noncanonical intracellular signaling pathways and present a theoretical molecular model in which the activation of several kinase effectors, including protein kinase C, extracellular signal-regulated kinase and phosphoinositide 3-kinase (PI3K) might lead to receptor desensitization to account for persistent cocaine-craving during protracted withdrawal. Finally, this review discusses the potential for existing, FDA-approved, pharmacotherapeutic agents that target kinase function as a novel approach to craving intervention in cocaine addiction.
Collapse
Affiliation(s)
- K K Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California.,Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California
| | - C B Shin
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California
| |
Collapse
|