1
|
Occhipinti C, La Russa R, Iacoponi N, Lazzari J, Costantino A, Di Fazio N, Del Duca F, Maiese A, Fineschi V. miRNAs and Substances Abuse: Clinical and Forensic Pathological Implications: A Systematic Review. Int J Mol Sci 2023; 24:17122. [PMID: 38069445 PMCID: PMC10707252 DOI: 10.3390/ijms242317122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Substance addiction is a chronic and relapsing brain disorder characterized by compulsive seeking and continued substance use, despite adverse consequences. The high prevalence and social burden of addiction are indisputable; however, the available intervention is insufficient. The modulation of gene expression and aberrant adaptation of neural networks are attributed to the changes in brain functions under repeated exposure to addictive substances. Considerable studies have demonstrated that miRNAs are strong modulators of post-transcriptional gene expression in substance addiction. The emerging role of microRNA (miRNA) provides new insights into many biological and pathological processes in the central nervous system: their variable expression in different regions of the brain and tissues may play a key role in regulating the pathophysiological events of addiction. This work provides an overview of the current literature on miRNAs involved in addiction, evaluating their impaired expression and regulatory role in neuroadaptation and synaptic plasticity. Clinical implications of such modulatory capacities will be estimated. Specifically, it will evaluate the potential diagnostic role of miRNAs in the various stages of drug and substance addiction. Future perspectives about miRNAs as potential novel therapeutic targets for substance addiction and abuse will also be provided.
Collapse
Affiliation(s)
- Carla Occhipinti
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (C.O.); (N.I.); (J.L.); (A.C.)
| | - Raffaele La Russa
- Department of Clinical Medicine, Public Health, Life Sciences, and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Naomi Iacoponi
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (C.O.); (N.I.); (J.L.); (A.C.)
| | - Julia Lazzari
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (C.O.); (N.I.); (J.L.); (A.C.)
| | - Andrea Costantino
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (C.O.); (N.I.); (J.L.); (A.C.)
| | - Nicola Di Fazio
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy; (N.D.F.); (F.D.D.); (V.F.)
| | - Fabio Del Duca
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy; (N.D.F.); (F.D.D.); (V.F.)
| | - Aniello Maiese
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (C.O.); (N.I.); (J.L.); (A.C.)
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy; (N.D.F.); (F.D.D.); (V.F.)
| |
Collapse
|
2
|
Dai J, Xie R, Sun ZN, Kou XL, Zhang JQ, Qi C, Liu R, Gao X, Wang J, Gao J. Protein phosphatase 2A deficiency in hippocampal CA1 inhibits priming effect of morphine on conditioned place preference in mice. Cereb Cortex 2023:6982733. [PMID: 36627245 DOI: 10.1093/cercor/bhac527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023] Open
Abstract
Studies have shown that protein phosphorylation plays an important role in morphine abuse. However, the neurobiological mechanism of protein phosphatase 2A (PP2A) underlying the morphine-priming process is still unclear. Here we constructed T29-2-Cre; PP2Afl/fl conditional knockout mice (KO) and investigated the role of hippocampal PP2A in morphine priming. We observed that the deficit of PP2A inhibited the priming behavior of morphine and blocked the priming-induced long-term potentiation (LTP) in the hippocampus of KO mice. Moreover, the expression levels of Rack1 and the membrane GluN2B were significantly reduced in the nucleus accumbens of KO mice compared with those in the control mice, which may be attributed to the decreased HDAC4 in the hippocampus of KO mice. Consistent with it, the similar inhibited priming effects were also observed in the wild-type mice treated with sodium butyrate (NaB)-a nonspecific inhibitor of histone deacetylases-3 h after morphine administration. Taken together, our results suggest that hippocampal PP2A may be involved in morphine priming through the PP2A/HDAC4/Rack1 pathway.
Collapse
Affiliation(s)
- Jing Dai
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Longmian Road 101, Jiangning District, Nanjing 211166, China
| | - Ran Xie
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Longmian Road 101, Jiangning District, Nanjing 211166, China
| | - Zhou-Na Sun
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Longmian Road 101, Jiangning District, Nanjing 211166, China
| | - Xiao-Lin Kou
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Longmian Road 101, Jiangning District, Nanjing 211166, China
| | - Jia-Qi Zhang
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Longmian Road 101, Jiangning District, Nanjing 211166, China
| | - Cui Qi
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Longmian Road 101, Jiangning District, Nanjing 211166, China
| | - Rui Liu
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Longmian Road 101, Jiangning District, Nanjing 211166, China
| | - Xiang Gao
- SKL of Pharmaceutical Biotechnology and Model Animal Research Center, Collaborative Innovation Center for Genetics and Development, Nanjing Biomedical Research Institute, Nanjing University, Xianlin Avenue 163, Qixia District, Nanjing 210061, China
| | - Jing Wang
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Longmian Road 101, Jiangning District, Nanjing 211166, China
| | - Jun Gao
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Longmian Road 101, Jiangning District, Nanjing 211166, China.,Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital to Nanjing Medical University, Shichang West Road 1399, Wujiang District, Suzhou 215228, China
| |
Collapse
|
3
|
Zhang KK, Chen LJ, Li JH, Liu JL, Wang LB, Xu LL, Yang JZ, Li XW, Xie XL, Wang Q. Methamphetamine Disturbs Gut Homeostasis and Reshapes Serum Metabolome, Inducing Neurotoxicity and Abnormal Behaviors in Mice. Front Microbiol 2022; 13:755189. [PMID: 35509309 PMCID: PMC9058162 DOI: 10.3389/fmicb.2022.755189] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 03/25/2022] [Indexed: 01/01/2023] Open
Abstract
As an illicit psychostimulant, repeated methamphetamine (MA) exposure results in addiction and causes severe neurotoxicity. Studies have revealed complex interactions among gut homeostasis, metabolism, and the central nervous system (CNS). To investigate the disturbance of gut homeostasis and metabolism in MA-induced neurotoxicity, 2 mg/kg MA or equal volume saline was intraperitoneally (i.p.) injected into C57BL/6 mice. Behavioral tests and western blotting were used to evaluate neurotoxicity. To determine alterations of colonic dysbiosis, 16s rRNA gene sequencing was performed to analyze the status of gut microbiota, while RNA-sequencing (RNA-seq) and Western Blot analysis were performed to detect colonic damage. Serum metabolome was profiled by LC–MS analysis. We found that MA induced locomotor sensitization, depression-, and anxiety-like behaviors in mice, along with dysfunction of the dopaminergic system and stimulation of autophagy as well as apoptosis in the striatum. Notably, MA significantly decreased microbial diversity and altered the component of microbiota. Moreover, findings from RNA-seq implied stimulation of the inflammation-related pathway after MA treatment. Western blotting confirmed that MA mediated colonic inflammation by activating the TLR4-MyD88-NF-κB pathway and impaired colonic barrier. In addition, serum metabolome was reshaped after MA treatment. Specifically, bacteroides-derived sphingolipids and serotonin were obviously altered, which were closely correlated with locomotor sensitization, depression-, and anxiety-like behaviors. These findings suggest that MA disrupts gut homeostasis by altering its microbiome and arousing inflammation, and reshapes serum metabolome, which provide new insights into understanding the interactions between gut homeostasis and MA-induced neurotoxicity.
Collapse
Affiliation(s)
- Kai-Kai Zhang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Li-Jian Chen
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jia-Hao Li
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jia-Li Liu
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Li-Bin Wang
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ling-Ling Xu
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jian-Zheng Yang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xiu-Wen Li
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xiao-Li Xie
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
- *Correspondence: Xiao-Li Xie,
| | - Qi Wang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
- Qi Wang, ;
| |
Collapse
|
4
|
Deng B, Zhang Z, Zhou H, Zhang X, Niu S, Yan X, Yan J. MicroRNAs in Methamphetamine-Induced Neurotoxicity and Addiction. Front Pharmacol 2022; 13:875666. [PMID: 35496314 PMCID: PMC9046672 DOI: 10.3389/fphar.2022.875666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/31/2022] [Indexed: 12/21/2022] Open
Abstract
Methamphetamine (METH) abuse remains a significant public health concern globally owing to its strong addictive properties. Prolonged abuse of the drug causes irreversible damage to the central nervous system. To date, no efficient pharmacological interventions are available, primarily due to the unclear mechanisms underlying METH action in the brain. Recently, microRNAs (miRNAs) have been identified to play critical roles in various cellular processes. The expression levels of some miRNAs are altered after METH administration, which may influence the transcription of target genes to regulate METH toxicity or addiction. This review summarizes the miRNAs in the context of METH use, discussing their role in the reward effect and neurotoxic sequelae. Better understanding of the molecular mechanisms involved in METH would be helpful for the development of new therapeutic strategies in reducing the harm of the drug.
Collapse
Affiliation(s)
- Bi Deng
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhirui Zhang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - Huixuan Zhou
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Xinran Zhang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - Shuliang Niu
- School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| | - Xisheng Yan
- Department of Cardiovascular Medicine, Wuhan Third Hospital and Tongren Hospital of Wuhan University, Wuhan, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
- School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
- *Correspondence: Jie Yan,
| |
Collapse
|
5
|
Xiao J, Ma Y, Wang X, Wang C, Li M, Liu H, Han W, Wang H, Zhang W, Wei H, Zhao L, Zhang T, Lin H, Guan F. The Vulnerability to Methamphetamine Dependence and Genetics: A Case-Control Study Focusing on Genetic Polymorphisms at Chromosomal Region 5q31.3. Front Psychiatry 2022; 13:870322. [PMID: 35669261 PMCID: PMC9163382 DOI: 10.3389/fpsyt.2022.870322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/20/2022] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVES Methamphetamine (METH) is a central nervous psychostimulant and one of the most frequently used illicit drugs. Numerous genetic loci that influence complex traits, including alcohol abuse, have been discovered; however, genetic analyses for METH dependence remain limited. An increased histone deacetylase 3 (HDAC3) expression has been detected in Fos-positive neurons in the dorsomedial striatum following withdrawal after METH self-administration. Herein, we aimed to systematically investigate the contribution of HDAC3 to the vulnerability to METH dependence in a Han Chinese population. METHODS In total, we recruited 1,221 patients with METH dependence and 2,328 age- and gender-matched controls. For genotyping, we selected 14 single nucleotide polymorphisms (SNPs) located within ± 3 kb regions of HDAC3. The associations between genotyped genetic polymorphisms and the vulnerability to METH dependence were examined by single marker- and haplotype-based methods using PLINK. The effects of expression quantitative trait loci (eQTLs) on targeted gene expressions were investigated using the Genotype-Tissue Expression (GTEx) database. RESULTS The SNP rs14251 was identified as a significant association signal (χ2 = 9.84, P = 0.0017). An increased risk of METH dependence was associated with the A allele (minor allele) of rs14251 [odds ratio (95% CI) = 1.25 (1.09-1.43)]. The results of in silico analyses suggested that SNP rs14251 could be a potential eQTL signal for FCHSD1, PCDHGB6, and RELL2, but not for HDAC3, in various human tissues. CONCLUSION We demonstrated that genetic polymorphism rs14251 located at 5q31.3 was significantly associated with the vulnerability to METH dependence in Han Chinese population.
Collapse
Affiliation(s)
- Jing Xiao
- Department of Forensic Medicine, School of Medicine & Forensics, Xi'an Jiaotong University, Xi'an, China
| | - Yitian Ma
- Department of Forensic Medicine, School of Medicine & Forensics, Xi'an Jiaotong University, Xi'an, China
| | - Xiaochen Wang
- Department of Forensic Medicine, School of Medicine & Forensics, Xi'an Jiaotong University, Xi'an, China
| | - Changqing Wang
- Department of Health Science, Chang'an Drug Rehabilitation Center, Xi'an, China
| | - Miao Li
- Department of Ultrasound, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Haobiao Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University, Xi'an, China
| | - Wei Han
- Department of Forensic Medicine, School of Medicine & Forensics, Xi'an Jiaotong University, Xi'an, China
| | - Huiying Wang
- Department of Forensic Medicine, School of Medicine & Forensics, Xi'an Jiaotong University, Xi'an, China
| | - Wenpei Zhang
- Department of Forensic Medicine, School of Medicine & Forensics, Xi'an Jiaotong University, Xi'an, China
| | - Hang Wei
- Department of Forensic Medicine, School of Medicine & Forensics, Xi'an Jiaotong University, Xi'an, China
| | - Longrui Zhao
- Department of Forensic Medicine, School of Medicine & Forensics, Xi'an Jiaotong University, Xi'an, China
| | - Tianxiao Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University, Xi'an, China
| | - Huali Lin
- Department of Psychiatry, Xi'an Mental Health Center, Xi'an, China
| | - Fanglin Guan
- Department of Forensic Medicine, School of Medicine & Forensics, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
6
|
Liu D, Liang M, Zhu L, Zhou TT, Wang Y, Wang R, Wu FF, Goh ELK, Chen T. Potential Ago2/miR-3068-5p Cascades in the Nucleus Accumbens Contribute to Methamphetamine-Induced Locomotor Sensitization of Mice. Front Pharmacol 2021; 12:708034. [PMID: 34483916 PMCID: PMC8414410 DOI: 10.3389/fphar.2021.708034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/12/2021] [Indexed: 01/24/2023] Open
Abstract
Dysregulation of microRNA (miRNA) biogenesis is involved in drug addiction. Argonaute2 (Ago2), a specific splicing protein involved in the generation of miRNA, was found to be dysregulated in the nucleus accumbens (NAc) of methamphetamine (METH)-sensitized mice in our previous study. Here, we determined whether Ago2 in the NAc regulates METH sensitization in mice and identified Ago2-dependent miRNAs involved in this process. We found a gradual reduction in Ago2 expression in the NAc following repeated METH use. METH-induced hyperlocomotor activity in mice was strengthened by knocking down NAc neuronal levels of Ago2 but reduced by overexpressing Ago2 in NAc neurons. Surprisingly, miR-3068-5p was upregulated following overexpression of Ago2 and downregulated by silencing Ago2 in the NAc. Knocking down miR-3068-5p, serving as an Ago2-dependent miRNA, strengthened the METH sensitization responses in mice. These findings demonstrated that dysregulated Ago2 in neurons in the NAc is capable of regulating METH sensitization and suggested a potential role of Ago2-dependent miR-3068-5p in METH sensitization.
Collapse
Affiliation(s)
- Dan Liu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China.,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, China.,Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Min Liang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China.,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Li Zhu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China.,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Ting-Ting Zhou
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China.,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Yu Wang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China.,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Rui Wang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China.,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Fei-Fei Wu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China.,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Eyleen L K Goh
- Department of Research, National Neuroscience Institute, Singapore, Singapore.,Neuroscience and Mental Health Faculty, Lee Kong China School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Teng Chen
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China.,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
7
|
Sandau US, Duggan E, Shi X, Smith SJ, Huckans M, Schutzer WE, Loftis JM, Janowsky A, Nolan JP, Saugstad JA. Methamphetamine use alters human plasma extracellular vesicles and their microRNA cargo: An exploratory study. J Extracell Vesicles 2020; 10:e12028. [PMID: 33613872 PMCID: PMC7890470 DOI: 10.1002/jev2.12028] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 09/18/2020] [Accepted: 10/19/2020] [Indexed: 01/27/2023] Open
Abstract
Methamphetamine (MA) is the largest drug threat across the globe, with health effects including neurotoxicity and cardiovascular disease. Recent studies have begun to link microRNAs (miRNAs) to the processes related to MA use and addiction. Our studies are the first to analyse plasma EVs and their miRNA cargo in humans actively using MA (MA-ACT) and control participants (CTL). In this cohort we also assessed the effects of tobacco use on plasma EVs. We used vesicle flow cytometry to show that the MA-ACT group had an increased abundance of EV tetraspanin markers (CD9, CD63, CD81), but not pro-coagulant, platelet-, and red blood cell-derived EVs. We also found that of the 169 plasma EV miRNAs, eight were of interest in MA-ACT based on multiple statistical criteria. In smokers, we identified 15 miRNAs of interest, two that overlapped with the eight MA-ACT miRNAs. Three of the MA-ACT miRNAs significantly correlated with clinical features of MA use and target prediction with these miRNAs identified pathways implicated in MA use, including cardiovascular disease and neuroinflammation. Together our findings indicate that MA use regulates EVs and their miRNA cargo, and support that further studies are warranted to investigate their mechanistic role in addiction, recovery, and recidivism.
Collapse
Affiliation(s)
- Ursula S. Sandau
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | | | - Xiao Shi
- VA Portland Health Care SystemPortlandOregonUSA
- Department of PsychiatryOregon Health & Science UniversityPortlandOregonUSA
- Methamphetamine Research CenterOregon Health & Science UniversityPortlandOregonUSA
- Department of Behavioral NeuroscienceOregon Health & Science UniversityPortlandOregonUSA
| | - Sierra J. Smith
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Marilyn Huckans
- VA Portland Health Care SystemPortlandOregonUSA
- Department of PsychiatryOregon Health & Science UniversityPortlandOregonUSA
- Methamphetamine Research CenterOregon Health & Science UniversityPortlandOregonUSA
- Clinical Psychology ProgramOregon Health & Science UniversityPortlandOregonUSA
| | - William E. Schutzer
- VA Portland Health Care SystemPortlandOregonUSA
- Department of PsychiatryOregon Health & Science UniversityPortlandOregonUSA
- Methamphetamine Research CenterOregon Health & Science UniversityPortlandOregonUSA
- Department of Behavioral NeuroscienceOregon Health & Science UniversityPortlandOregonUSA
| | - Jennifer M. Loftis
- VA Portland Health Care SystemPortlandOregonUSA
- Department of PsychiatryOregon Health & Science UniversityPortlandOregonUSA
- Methamphetamine Research CenterOregon Health & Science UniversityPortlandOregonUSA
- Clinical Psychology ProgramOregon Health & Science UniversityPortlandOregonUSA
| | - Aaron Janowsky
- VA Portland Health Care SystemPortlandOregonUSA
- Department of PsychiatryOregon Health & Science UniversityPortlandOregonUSA
- Methamphetamine Research CenterOregon Health & Science UniversityPortlandOregonUSA
- Department of Behavioral NeuroscienceOregon Health & Science UniversityPortlandOregonUSA
| | | | - Julie A. Saugstad
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| |
Collapse
|
8
|
Tong H, Wei Z, Yin J, Zhang B, Zhang T, Deng C, Huang Y, Zhang N. Genetic susceptibility of common polymorphisms in NIN and SIGLEC5 to chronic periodontitis. Sci Rep 2019; 9:2088. [PMID: 30765789 PMCID: PMC6376118 DOI: 10.1038/s41598-019-38632-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/04/2019] [Indexed: 12/13/2022] Open
Abstract
Chronic periodontitis (CP) is a common oral disease characterized by the slow progression of alveolar attachment loss and bone destruction. Genetic components have been reported to play an important role in the onset and development of CP. In the present study, we aimed to replicate the association signals of NIN and SIGLEC5 identified in previous genome-wide association studies (GWASs) of samples from Chinese Han individuals. Association signals between clinical severity indicators of CP and relevant single nucleotide polymorphisms (SNPs) were also examined. A total of 3,160 study subjects, including 1,076 CP patients and 2,084 healthy controls, were recruited. A total of 32 SNPs, including 22 from NIN and 10 from SIGLEC5, were selected for genotyping. SNPs rs12883458 (OR = 1.45, P = 1.22 × 10-5, NIN) and rs4284742 (OR = 0.75, P = 1.69 × 10-5, SIGLEC5) were significantly associated with CP disease status. rs4284742 was significantly associated with all 3 clinical severity indicators, including bleeding on probing (BOP), probing depth (PD) and clinical attachment loss (CAL). According to evidence from bioinformatics analyses, both significant SNPs, rs12883458 and rs4284742, are likely surrogates of underlying variants with true effects. In summary, our findings provide direct evidence for the association of NIN and SIGLEC5 with CP susceptibility.
Collapse
Affiliation(s)
- Hua Tong
- Department of Stomatology, the First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
- Department of Anesthesiology, the First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Zhuliang Wei
- Department of Stomatology, Jinan Stomatological Hospital, Jinan, China
| | - Jing Yin
- Department of Stomatology, Jinan Stomatological Hospital, Jinan, China
| | - Bo Zhang
- Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Tianxiao Zhang
- Department of Epidemiology and Biostatistics, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Chunni Deng
- Department of Stomatology, the First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yali Huang
- Department of Stomatology, the First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Nan Zhang
- Department of Stomatology, the First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
9
|
Prasad A, Kulkarni R, Shrivastava A, Jiang S, Lawson K, Groopman JE. Methamphetamine functions as a novel CD4 + T-cell activator via the sigma-1 receptor to enhance HIV-1 infection. Sci Rep 2019; 9:958. [PMID: 30700725 PMCID: PMC6353873 DOI: 10.1038/s41598-018-35757-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/05/2018] [Indexed: 11/09/2022] Open
Abstract
Methamphetamine (Meth) exacerbates HIV-1 pathobiology by increasing virus transmission and replication and accelerating clinical progression to AIDS. Meth has been shown to alter the expression of HIV-1 co-receptors and impair intrinsic resistance mechanisms of immune cells. However, the exact molecular mechanisms involved in augmenting HIV-1 replication in T-cells are still not yet clear. Here, we demonstrate that pretreatment with Meth of CD4+ T-cells enhanced HIV-1 replication. We observed upregulation of CD4+ T-cell activation markers and enhanced expression of miR-34c-5p and miR-155 in these cells. Further, we noted activation of the sigma-1 receptor and enhanced intracellular Ca2+ concentration and cAMP release in CD4+ T-cells upon Meth treatment, which resulted in increased phosphorylation and nuclear translocation of transcription factors NFκB, CREB, and NFAT1. Increased gene expression of IL-4 and IL-10 was also observed in Meth treated CD4+ T-cells. Moreover, proteasomal degradation of Ago1 occurred upon Meth treatment, further substantiating the drug as an activator of T-cells. Taken together, these findings show a previously unreported mechanism whereby Meth functions as a novel T-cell activator via the sigma-1 signaling pathway, enhancing replication of HIV-1 with expression of miR-34c-5p, and transcriptional activation of NFκB, CREB and NFAT1.
Collapse
Affiliation(s)
- Anil Prasad
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Rutuja Kulkarni
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Ashutosh Shrivastava
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
- Molecular Biology Unit, Center for Advance Research, King George's Medical University, Lucknow, India
| | - Shuxian Jiang
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Kaycie Lawson
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Jerome E Groopman
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|