1
|
Izumi S, Kawasaki I, Waki F, Nishikawa K, Nishitani N, Deyama S, Kaneda K. Chronic nicotine enhances object recognition memory via inducing long-term potentiation in the medial prefrontal cortex in mice. Neuropharmacology 2025; 273:110435. [PMID: 40154943 DOI: 10.1016/j.neuropharm.2025.110435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Chronic nicotine administration enhances cognitive functions, including learning and memory, and ameliorates cognitive impairments observed in psychological and neurodegenerative disorders. However, the detailed mechanisms underlying these effects are not fully understood. In this study, we used a novel object recognition (NOR) test and in vitro slice electrophysiology in mice to investigate the involvement of the medial prefrontal cortex (mPFC), a brain region connected to the hippocampus, and the synaptic plasticity within this region in chronic nicotine-induced object recognition memory enhancement. The NOR test revealed that chronic nicotine administration for five consecutive days significantly enhanced object recognition memory in male and female mice. This effect was blocked by intra-mPFC infusion of mecamylamine (Mec), a non-selective nicotinic acetylcholine receptor (nAChR) antagonist. In parallel with these findings, whole-cell recordings demonstrated that chronic nicotine administration significantly increased the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/N-methyl-d-aspartate (NMDA) ratio in mPFC layer V pyramidal neurons in male but not female mice. This plastic change was suppressed by systemic injection of Mec or methyllycaconitine, an α7 nAChR antagonist. Furthermore, optogenetic erasure of long-term potentiation (LTP) through chromophore-assisted light inactivation of cofilin, a protein essential for stabilizing spine expansion, suppressed chronic nicotine-induced enhancement of recognition memory. These findings suggest that chronic nicotine administration induces LTP in mPFC pyramidal neurons, likely enhancing object recognition memory.
Collapse
Affiliation(s)
- Shoma Izumi
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Ibuki Kawasaki
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Fuka Waki
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Keisuke Nishikawa
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Naoya Nishitani
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
2
|
Saito A, Esaki H, Murata H, Ni X, Nishitani N, Deyama S, Kaneda K. Dopamine D 1 receptors in the medial prefrontal cortex and basolateral amygdala cooperatively contribute to social defeat stress-induced augmentation of cocaine reward in mice. Neuropharmacology 2025; 276:110524. [PMID: 40398733 DOI: 10.1016/j.neuropharm.2025.110524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 05/01/2025] [Accepted: 05/16/2025] [Indexed: 05/23/2025]
Abstract
Stress potentiates the rewarding effects of cocaine; however, its underlying mechanism remains unclear. Here, we investigated the role of dopaminergic transmission in the medial prefrontal cortex (mPFC) and basolateral amygdala (BLA), key brain regions implicated in addiction and stress responses, using the cocaine conditioned place preference (CPP) paradigm combined with acute social defeat (SD) stress in male mice. SD stress exposed immediately before the posttest augmented cocaine CPP, which was significantly reduced by systemic injection of SCH23390, a dopamine D1 receptor antagonist. Fiber photometry recordings using a GRABDA sensor revealed SD stress-induced elevations in extracellular dopamine levels in both the mPFC and BLA. Accordingly, bilateral intra-mPFC or bilateral intra-BLA injections of SCH23390 suppressed the stress-induced augmentation of cocaine CPP. Additionally, functional disconnection, achieved via unilateral intra-mPFC SCH23390 injection combined with contralateral intra-BLA SCH23390 injection, suppressed stress-induced CPP augmentation. Moreover, unilateral intra-mPFC SCH23390 injection combined with contralateral intra-BLA injection of NBQX, an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist, inhibited the augmented CPP. Furthermore, selective chemogenetic silencing of glutamatergic projections from the mPFC to the BLA suppressed augmented cocaine CPP. These findings suggest that bilateral and simultaneous D1 receptor-mediated dopaminergic inputs to the mPFC and BLA, as well as the subsequent facilitation of glutamatergic transmission from the mPFC to the BLA, play a crucial role in the SD stress-induced potentiation of the rewarding effects of cocaine.
Collapse
Affiliation(s)
- Atsushi Saito
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Hirohito Esaki
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Haruka Murata
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Xiyan Ni
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Naoya Nishitani
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
3
|
Esaki H, Imai K, Nishikawa K, Nishitani N, Deyama S, Kaneda K. Nicotine enhances object recognition memory through activation of the medial prefrontal cortex to the perirhinal cortex pathway. Neurochem Int 2025; 185:105963. [PMID: 40073977 DOI: 10.1016/j.neuint.2025.105963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/20/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
Nicotine enhances recognition memory across species; however, the underlying neuronal mechanisms remain incompletely understood. Our previous study using a novel object recognition (NOR) test and electrophysiological recordings of mouse brain slices demonstrated that nicotine enhanced object recognition memory by stimulating nicotinic acetylcholine receptors in the medial prefrontal cortex (mPFC). To elucidate this further, we conducted the NOR test combined with pharmacology, chemogenetics, optogenetics, and ex vivo electrophysiology in male C57BL/6J mice. Chemogenetic inhibition of mPFC excitatory neurons suppressed nicotine-induced enhancement of object recognition memory, whereas their activation alone was sufficient to enhance memory. Anatomical studies indicate that the mPFC sends projections to the perirhinal cortex (PRH), a brain region involved in object recognition memory. Therefore, we focused on mPFC-PRH projections. Whole-cell patch-clamp recordings with optogenetic stimulation revealed that PRH pyramidal neurons received monosynaptic and glutamatergic inputs from the mPFC. Chemogenetic suppression of mPFC neurons projecting to the PRH blocked the nicotine-induced enhancement of object recognition memory, whereas activation of these neurons alone was sufficient to enhance memory. To achieve precise temporal control, optogenetic inhibition of the mPFC-PRH pathway during the training session blocked the effects of nicotine, and its activation alone enhanced memory. Furthermore, unilateral intra-mPFC nicotine infusion enhanced object recognition memory, and this effect was suppressed by ipsilateral intra-PRH infusion of an α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor antagonist. These findings indicate that nicotine enhances object recognition memory by activating glutamatergic projections from the mPFC to PRH.
Collapse
Affiliation(s)
- Hirohito Esaki
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Kanta Imai
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Keisuke Nishikawa
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Naoya Nishitani
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
4
|
Chen Z, Tang S, Xiao X, Hong Y, Fu B, Li X, Shao Y, Chen L, Yuan D, Long Y, Wang H, Hong H. Adiponectin receptor 1-mediated basolateral amygdala-prelimbic cortex circuit regulates methamphetamine-associated memory. Cell Rep 2024; 43:115074. [PMID: 39661515 DOI: 10.1016/j.celrep.2024.115074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/14/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024] Open
Abstract
The association between drug-induced rewards and environmental cues represents a promising strategy to address addiction. However, the neural networks and molecular mechanisms orchestrating methamphetamine (MA)-associated memories remain incompletely characterized. In this study, we demonstrated that AdipoRon (AR), a specific adiponectin receptor (AdipoR) agonist, inhibits the formation of MA-induced conditioned place preference (CPP) in MA-conditioned mice, accompanied by suppression of basolateral amygdala (BLA) CaMKIIα neuron activity. Furthermore, we identified an association between the excitatory circuit from the BLA to the prelimbic cortex (PrL) and the integration of MA-induced rewards with environmental cues. We also determined that the phosphorylated AMPK (p-AMPK)/Cav1.3 signaling pathway mediates the modulatory effects of AdipoR1 in PrL-projecting BLA CaMKIIα neurons on the formation of MA reward memories, a process influenced by physical exercise. These findings highlight the critical function of AdipoR1 in the BLACaMKIIα→PrLCaMKIIα circuit in regulating MA-related memory formation, suggesting a potential target for managing MA use disorders.
Collapse
Affiliation(s)
- Zhigang Chen
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Susu Tang
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangyi Xiao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yizhou Hong
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Boli Fu
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xuyi Li
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yuwei Shao
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Liang Chen
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Danhua Yuan
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yan Long
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Hao Wang
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine/Nanhu Brain-computer Interface Institute, Hangzhou 310013, China.
| | - Hao Hong
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
5
|
Briânis RC, Iglesias LP, Bedeschi LG, Moreira FA. Effects of cannabidiol on reward contextual memories induced by cocaine in male and female mice. Acta Neuropsychiatr 2024; 36:299-306. [PMID: 37968964 DOI: 10.1017/neu.2023.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
OBJECTIVE Preclinical studies suggest that cannabidiol (CBD), a non-intoxicating phytocannabinoid, may reduce addiction-related behaviours for various drug classes in rodents, including ethanol, opiates, and psychostimulants. CBD modulates contextual memories and responses to reward stimuli. Nonetheless, research on the impact of CBD on cocaine addiction-like behaviors is limited and requires further clarification. This study tested the hypothesis that CBD administration inhibits the acquisition and retrieval of cocaine-induced conditioned place preference (CPP) in adult male and female C57BL6/J mice. We also ought to characterise a 5-day CPP protocol in these animals. METHODS Male and female C57BL/6J mice were administered CBD (3, 10, and 30 mg/kg) 30 minutes before cocaine (15 mg/kg) acquisition of expression of CPP. RESULTS Cocaine induces a CPP in both female and male mice in the 5-day CPP protocol. CBD failed to prevent the acquisition or retrieval of place preference induced by cocaine. CBD did not decrease the time spent on the side paired with cocaine at any of the doses tested in male and female mice, in either acquisition or expression of contextual memory. CONCLUSION This study found no support for the hypothesis that CBD decreases reward memory involved in the formation of cocaine addiction. Further research is necessary to investigate the involvement of CBD in other behavioural responses to cocaine and other psychostimulant drugs. This study, however, characterised a 5-day CPP protocol for both female and male C57BL/6J mice.
Collapse
Affiliation(s)
- Rayssa C Briânis
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lia P Iglesias
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lucas G Bedeschi
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fabrício A Moreira
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
6
|
Esaki H, Izumi S, Nishikawa K, Nagayasu K, Kaneko S, Nishitani N, Deyama S, Kaneda K. Role of medial prefrontal cortex voltage-dependent potassium 4.3 channels in nicotine-induced enhancement of object recognition memory in male mice. Eur J Pharmacol 2024; 978:176790. [PMID: 38942263 DOI: 10.1016/j.ejphar.2024.176790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024]
Abstract
Nicotine has been shown to enhance object recognition memory in the novel object recognition (NOR) test by activating excitatory neurons in the medial prefrontal cortex (mPFC). However, the exact neuronal mechanisms underlying the nicotine-induced activation of mPFC neurons and the resultant memory enhancement remain poorly understood. To address this issue, we performed brain-slice electrophysiology and the NOR test in male C57BL/6J mice. Whole-cell patch-clamp recordings from layer V pyramidal neurons in the mPFC revealed that nicotine augments the summation of evoked excitatory postsynaptic potentials (eEPSPs) and that this effect was suppressed by N-[3,5-Bis(trifluoromethyl)phenyl]-N'-[2,4-dibromo-6-(2H-tetrazol-5-yl)phenyl]urea (NS5806), a voltage-dependent potassium (Kv) 4.3 channel activator. In line with these findings, intra-mPFC infusion of NS5806 suppressed systemically administered nicotine-induced memory enhancement in the NOR test. Additionally, miRNA-mediated knockdown of Kv4.3 channels in mPFC pyramidal neurons enhanced object recognition memory. Furthermore, inhibition of A-type Kv channels by intra-mPFC infusion of 4-aminopyridine was found to enhance object recognition memory, while this effect was abrogated by prior intra-mPFC NS5806 infusion. These results suggest that nicotine augments the summation of eEPSPs via the inhibition of Kv4.3 channels in mPFC layer V pyramidal neurons, resulting in the enhancement of object recognition memory.
Collapse
Affiliation(s)
- Hirohito Esaki
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Shoma Izumi
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Keisuke Nishikawa
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Kazuki Nagayasu
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Naoya Nishitani
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
7
|
Saito A, Murata H, Niitani K, Nagasaki J, Otoda A, Chujo Y, Yanagida J, Nishitani N, Deyama S, Kaneda K. Social defeat stress enhances the rewarding effects of cocaine through α 1A adrenoceptors in the medial prefrontal cortex of mice. Neuropharmacology 2024; 242:109757. [PMID: 37839511 DOI: 10.1016/j.neuropharm.2023.109757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/07/2023] [Accepted: 10/07/2023] [Indexed: 10/17/2023]
Abstract
Various stressors potentiate the rewarding effects of cocaine and contribute to cocaine cravings. However, it remains unclear whether psychosocial stress enhances the rewarding effects of cocaine. Accordingly, this study employed a cocaine-conditioned place preference (CPP) paradigm combined with social defeat (SD) exposure to investigate the effects of acute SD stress on cocaine reward in male mice. We found that SD stress immediately before the posttest significantly increased cocaine CPP, and systemic blockade of α1 adrenoceptors, but not β adrenoceptors, suppressed this increase. Fiber photometry recordings with GRABNE1m sensors revealed increased noradrenaline (NA) levels in the medial prefrontal cortex (mPFC) in test mice in response to attacks by aggressor mice during SD. Moreover, the SD stress-induced enhancement of CPP was effectively suppressed by intra-mPFC infusion of an α1 adrenoceptor antagonist. In vitro whole-cell recordings demonstrated that silodosin, an α1A, but not α1B or α1D, adrenoceptor antagonist, inhibited NA-induced depolarizing currents and facilitation of excitatory synaptic transmissions. Consistently, intra-mPFC silodosin infusion significantly suppressed the SD stress-induced CPP enhancement. Conversely, intra-mPFC infusion of α1A adrenoceptor agonist augmented cocaine CPP in the absence of stress exposure. Additionally, intranasal silodosin administration attenuated the SD stress-induced enhancement of CPP, and chemogenetic inhibition of mPFC excitatory neurons also suppressed the SD stress-induced CPP enhancement. Together, these findings suggest that NA stimulation of α1A adrenoceptors and the subsequent activation of mPFC pyramidal cells may contribute to SD stress-induced amplification of the rewarding effects of cocaine, and intranasal silodosin administration may hold therapeutic potential for mitigating stress-associated cocaine craving.
Collapse
Affiliation(s)
- Atsushi Saito
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Haruka Murata
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Kazuhei Niitani
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Junpei Nagasaki
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Atsuki Otoda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Yusuke Chujo
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Junko Yanagida
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Naoya Nishitani
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
8
|
Ohno-Shosaku T, Yoneda M, Maejima T, Wang M, Kikuchi Y, Onodera K, Kanazawa Y, Takayama C, Mieda M. Action Sequence Learning Is Impaired in Genetically Modified Mice with the Suppressed GABAergic Transmission from the Thalamic Reticular Nucleus to the Thalamus. Neuroscience 2023; 532:87-102. [PMID: 37778689 DOI: 10.1016/j.neuroscience.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
The thalamic reticular nucleus (TRN) is a thin sheet of GABAergic neurons surrounding the thalamus, and it regulates the activity of thalamic relay neurons. The TRN has been reported to be involved in sensory gating, attentional regulation, and some other functions. However, little is known about the contribution of the TRN to sequence learning. In the present study, we examined whether the TRN is involved in reward-based learning of action sequence with no eliciting stimuli (operant conditioning), by analyzing the performance of male and female Avp-Vgat-/- mice (Vgatflox/flox mice crossed to an Avp-Cre driver line) on tasks conducted in an operant box having three levers. Our histological and electrophysiological data demonstrated that in adult Avp-Vgat-/- mice, vesicular GABA transporter (VGAT) was absent in most TRN neurons and the GABAergic transmission from the TRN to the thalamus was largely suppressed. The performance on a task in which mice needed to press an active lever for food reward showed that simple operant learning of lever pressing and learning of win-stay and lose-shift strategies are not affected in Avp-Vgat-/- mice. In contrast, the performance on a task in which mice needed to press three levers in a correct order for food reward showed that learning of the order of lever pressing (action sequence learning) was impaired in Avp-Vgat-/- mice. These results suggest that the TRN plays an important role in action sequence learning.
Collapse
Affiliation(s)
- Takako Ohno-Shosaku
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-0942, Japan; Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8640, Japan; Faculty of Health and Medical Sciences, Hokuriku University, Kanazawa 920-1180, Japan.
| | - Mitsugu Yoneda
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-0942, Japan
| | - Takashi Maejima
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8640, Japan
| | - Mohan Wang
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8640, Japan
| | - Yui Kikuchi
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-0942, Japan
| | - Kaito Onodera
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8640, Japan
| | - Yuji Kanazawa
- Faculty of Health and Medical Sciences, Hokuriku University, Kanazawa 920-1180, Japan
| | - Chitoshi Takayama
- Department of Molecular Anatomy, School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa 903-0215, Japan
| | - Michihiro Mieda
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8640, Japan
| |
Collapse
|
9
|
Giacometti LL, Side CM, Chandran K, Stine S, Buck LA, Wenzel-Rideout RM, Barker JM. Effects of adolescent ethanol exposure on adult nondrug reward seeking behavior in male and female mice. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:1736-1747. [PMID: 37438117 DOI: 10.1111/acer.15151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND Adolescent alcohol use is associated with an increased likelihood of developing an alcohol use disorder in adulthood, potentially due to the effects of alcohol exposure on reward-seeking behavior. However, it remains unclear whether adolescent drinking is sufficient to alter nondrug reward seeking in adulthood. As adolescence is a period of both brain and sexual maturation, which occur in a sex-dependent manner, males and females may be differentially sensitive to the consequences of adolescent alcohol exposure. The present study investigated whether adolescent ethanol exposure affected food reward taking and seeking in male and female adult mice. METHODS Male and female C57BL/6J mice underwent intermittent ethanol exposure (AIE) via vapor inhalation during early adolescence (28-42 days of age). At 10 weeks of age, the mice were trained in a conditioned place preference paradigm (CPP) for a food reward. We measured food consumption, CPP, and cFos expression in multiple brain regions following CPP testing. Data were analyzed using repeated measures analysis of variance with exposure (air vs. AIE), sex, and time as factors. RESULTS AIE exposure increased food consumption during CPP training in adult male mice, but reduced pellet consumption in adult female mice. AIE exposure impaired CPP expression only in female mice. Despite these behavioral differences, exposure to the reward-paired chamber did not induce differential cFos expression following CPP testing in the prelimbic and infralimbic cortices or the nucleus accumbens core and shell. CONCLUSION These findings indicate that adolescent ethanol exposure disrupted nondrug reward taking and seeking in adulthood in female mice and altered consumption in adult male mice.
Collapse
Affiliation(s)
- Laura L Giacometti
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Christine M Side
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Kelsey Chandran
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Sam Stine
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Lauren A Buck
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Rebecca M Wenzel-Rideout
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Jacqueline M Barker
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Pastor V, Dalto JF, Medina JH. α7 nicotinic acetylcholine receptors in the medial prefrontal cortex control rewarding but not aversive memory expression in a dopamine-sensitive manner. Pharmacol Biochem Behav 2023; 227-228:173594. [PMID: 37385456 DOI: 10.1016/j.pbb.2023.173594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Emotional learning involves the association between sensory cues and rewarding or aversive stimuli, and this stored information can be recalled during memory retrieval. In this process, the medial prefrontal cortex (mPFC) plays an essential role. We have previously shown that the antagonism of α7 nicotinic acetylcholine receptors (nAChRs) by methyllycaconitine (MLA) in the mPFC blocked cue-induced cocaine memory retrieval. However, little is known about the involvement of prefrontal α7 nAChRs in the retrieval of aversive memories. Here, by using pharmacology and different behavioral tasks, we found that MLA did not affect aversive memory retrieval, indicating a differential effect of cholinergic prefrontal control of appetitive and aversive memories. Despite being shown that acetylcholine modulates dopamine release in the mPFC, it remains unknown if those modulatory systems act together to control reward-based behavior. We examined that question and found that dopamine type 1 receptor (D1R) activation prevented MLA-induced blockade of cocaine CPP retrieval. Our results suggest that α7 nAChRs and D1R signaling interact in the mPFC to modulate cocaine-associated memory retrieval.
Collapse
Affiliation(s)
- Verónica Pastor
- CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis" (IBCN), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Ciencias Fisiológicas, Buenos Aires, Argentina.
| | - Juliana F Dalto
- CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis" (IBCN), Buenos Aires, Argentina
| | - Jorge H Medina
- CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis" (IBCN), Buenos Aires, Argentina; Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina
| |
Collapse
|
11
|
Niitani K, Ito S, Wada S, Izumi S, Nishitani N, Deyama S, Kaneda K. Noradrenergic stimulation of α 1 adrenoceptors in the medial prefrontal cortex mediates acute stress-induced facilitation of seizures in mice. Sci Rep 2023; 13:8089. [PMID: 37208473 DOI: 10.1038/s41598-023-35242-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/15/2023] [Indexed: 05/21/2023] Open
Abstract
Stress is one of the critical facilitators for seizure induction in patients with epilepsy. However, the neural mechanisms underlying this facilitation remain poorly understood. Here, we investigated whether noradrenaline (NA) transmission enhanced by stress exposure facilitates the induction of medial prefrontal cortex (mPFC)-originated seizures. In mPFC slices, whole-cell current-clamp recordings revealed that bath application of picrotoxin induced sporadic epileptiform activities (EAs), which consisted of depolarization with bursts of action potentials in layer 5 pyramidal cells. Addition of NA dramatically shortened the latency and increased the number of EAs. Simultaneous whole-cell and field potential recordings revealed that the EAs are synchronous in the mPFC local circuit. Terazosin, but not atipamezole or timolol, inhibited EA facilitation, indicating the involvement of α1 adrenoceptors. Intra-mPFC picrotoxin infusion induced seizures in mice in vivo. Addition of NA substantially shortened the seizure latency, while co-infusion of terazosin into the mPFC inhibited the effect of NA. Finally, acute restraint stress shortened the latency of intra-mPFC picrotoxin infusion-induced seizures, whereas prior infusion of terazosin reversed this stress-induced shortening of seizure latency. Our findings suggest that stress facilitates the induction of mPFC-originated seizures via NA stimulation of α1 adrenoceptors.
Collapse
Affiliation(s)
- Kazuhei Niitani
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Shiho Ito
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Shintaro Wada
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Shoma Izumi
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Naoya Nishitani
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
12
|
Dorsal raphe serotonergic neurons preferentially reactivate dorsal dentate gyrus cell ensembles associated with positive experience. Cell Rep 2023; 42:112149. [PMID: 36821440 DOI: 10.1016/j.celrep.2023.112149] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/24/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
Major depressive disorder (MDD) is among the most common mental illnesses. Serotonergic (5-HT) neurons are central to the pathophysiology and treatment of MDD. Repeatedly recalling positive episodes is effective for MDD. Stimulating 5-HT neurons of the dorsal raphe nucleus (DRN) or neuronal ensembles in the dorsal dentate gyrus (dDG) associated with positive memories reverses the stress-induced behavioral abnormalities. Despite this phenotypic similarity, their causal relationship is unclear. This study revealed that the DRN 5-HT neurons activate dDG neurons; surprisingly, this activation was specifically observed in positive memory ensembles rather than neutral or negative ensembles. Furthermore, we revealed that dopaminergic signaling induced by activation of DRN 5-HT neurons projecting to the ventral tegmental area mediates an increase in active coping behavior and positive dDG ensemble reactivation. Our study identifies a role of DRN 5-HT neurons as specific reactivators of positive memories and provides insights into how serotonin elicits antidepressive effects.
Collapse
|
13
|
Median raphe serotonergic neurons projecting to the interpeduncular nucleus control preference and aversion. Nat Commun 2022; 13:7708. [PMID: 36550097 PMCID: PMC9780347 DOI: 10.1038/s41467-022-35346-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Appropriate processing of reward and aversive information is essential for survival. Although a critical role of serotonergic neurons in the dorsal raphe nucleus (DRN) in reward processing has been shown, the lack of rewarding effects with selective serotonin reuptake inhibitors (SSRIs) implies the presence of a discrete serotonergic system playing an opposite role to the DRN in the processing of reward and aversive stimuli. Here, we demonstrated that serotonergic neurons in the median raphe nucleus (MRN) of mice process reward and aversive information in opposite directions to DRN serotonergic neurons. We further identified MRN serotonergic neurons, including those projecting to the interpeduncular nucleus (5-HTMRN→IPN), as a key mediator of reward and aversive stimuli. Moreover, 5-HT receptors, including 5-HT2A receptors in the interpeduncular nucleus, are involved in the aversive properties of MRN serotonergic neural activity. Our findings revealed an essential function of MRN serotonergic neurons, including 5-HTMRN→IPN, in the processing of reward and aversive stimuli.
Collapse
|
14
|
Abdul M, Yan HQ, Zhao WN, Lyu XB, Xu Z, Yu XL, Gao YH, Cao JL. VTA-NAc glutaminergic projection involves in the regulation of pain and pain-related anxiety. Front Mol Neurosci 2022; 15:1083671. [PMID: 36590915 PMCID: PMC9798784 DOI: 10.3389/fnmol.2022.1083671] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Background Besides the established role of dopamine neurons and projections in nociceptive stimuli, the involvement of ventral tegmental area (VTA) glutamatergic projections to nucleus accumbens (NAc) in pain remains unknown. In the present study, we aimed to examine the role of VTA glutamatergic projections to NAc in painful stimuli and its related behavioral changes. Methods Unilateral chronic constrictive injury (CCI) of sciatic nerve or intraplantar hind paw injections (i.pl.) of complete Freund's adjuvant (CFA) were used to develop pathological pain models in wild-type and VGluT2-Cre mice. The involvement of VTA glutamatergic neurons with projections to NAc in CCI-induced pain model was noted by c-Fos labeling and firing rate recordings. Pain response and pain-related behavior changes to the artificial manipulation of the VTA glutamatergic projections to NAc were observed by Hargreaves tests, von Frey tests, open field tests, elevated maze tests, and sucrose preference tests. Results Glutamatergic neurons in VTA had efferent inputs to shell area of the NAc. The CCI pain model significantly increased neuronal activity and firing rate in VTA glutamate neurons with projections to NAc. The photoinhibition of these glutamatergic projections relieved CCI-induced neuropathic pain and CFA-induced acute and chronic inflammatory pain. Moreover, pathological neuropathic pain-induced anxiety and less sucrose preference were also relieved by inhibiting the VTA glutamatergic projections to NAc. Conclusion Together, glutamatergic inputs from VTA to NAc contribute to chronic neuropathic and inflammatory pain and pain-related anxiety and depressive behaviors, providing a mechanism for developing novel therapeutic methods.
Collapse
Affiliation(s)
- Mannan Abdul
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China,NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China,Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hao-Qi Yan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Wei-Nan Zhao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Xiao-Bin Lyu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Zheng Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Xiao-Lu Yu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Yi-Hong Gao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China,NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China,Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China,*Correspondence: Jun-Li Cao,
| |
Collapse
|
15
|
Nagayasu K, Andoh C, Shirakawa H, Kaneko S. Diff-ATAC-STARR-Seq: A Method for Genome-Wide Functional Screening of Enhancer Activity in Vivo. Biol Pharm Bull 2022; 45:1590-1595. [PMID: 36184520 DOI: 10.1248/bpb.b22-00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transcriptional regulatory elements, including promoters and enhancers, play a key role in the cell-type specific regulation of the transcriptome. Application of rapidly evolving genetic tools, such as optogenetic/chemogenetic actuators and fluorescent reporters to elucidate the function of cell subtypes in vivo necessitates cell-type specific promoters or enhancers. In this context, methods for genome-wide functional screening of cis-regulatory elements, including enhancers, are of utmost importance. In this study, we describe a novel method for genome-wide functional screening of enhancer activity in vivo with minimal handling. Application of the method to cells from different brain structures and subsequent differential analysis allow identification of active enhancers in the target tissue or brain structures. To demonstrate proof of concept, we applied this method to samples from the dorsal raphe nucleus (DRN) and the medial prefrontal cortex of the mouse brain and successfully identified six enhancers with highly biased activity towards the dorsal raphe nucleus. Considering that these two structures consist of largely similar cell types whereas serotonin and dopamine neurons exist only in the DRN, our results confirm the validity of this method in identifying cell-type specific and brain-structure specific enhancers. Overall, this method will be helpful in identifying cis-regulatory elements suitable for cell-type specific manipulations.
Collapse
Affiliation(s)
- Kazuki Nagayasu
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Chihiro Andoh
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Hisashi Shirakawa
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| |
Collapse
|
16
|
Magdy S, Gamal M, Samir NF, Rashed L, Emad Aboulhoda B, Mohammed HS, Sharawy N. IκB kinase inhibition remodeled connexins, pannexin-1, and excitatory amino-acid transporters expressions to promote neuroprotection of galantamine and morphine. J Cell Physiol 2021; 236:7516-7532. [PMID: 33855721 DOI: 10.1002/jcp.30387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 03/21/2021] [Accepted: 03/26/2021] [Indexed: 11/10/2022]
Abstract
Inflammatory pathway and disruption in glutamate homeostasis join at the level of the glia, resulting in various neurological disorders. In vitro studies have provided evidence that membrane proteins connexions (Cxs) are involved in glutamate release, meanwhile, excitatory amino-acid transporters (EAATs) are crucial for glutamate reuptake (clearance). Moreover, pannexin-1 (Panx-1) activation is more detrimental to neurons. Their expression patterns during inflammation and the impacts of IκB kinase (IKK) inhibition, morphine, and galantamine on the inflammatory-associated glutamate imbalance remain elusive. To investigate this, rats were injected with saline or lipopolysaccharide. Thereafter, vehicles, morphine, galantamine, and BAY-117082 were administered in different groups of animals. Subsequently, electroencephalography, enzyme-linked immunosorbent assay, western blot, and histopathological examinations were carried out and various indicators of inflammation and glutamate level were determined. Parallel analysis of Cxs, Panx-1, and EAAts in the brain was performed. Our findings strengthen the concept that unregulated expressions of Cxs, Panx-1, and EAATs contribute to glutamate accumulation and neuronal cell loss. Nuclear factor-kB (NF-κB) pathway can significantly contribute to glutamate homeostasis via modulating Cxs, Panx-1, and EAATs expressions. BAY-117082, via inhibition of IkK, promoted the anti-inflammatory effects of morphine as well as galantamine. We concluded that NF-κB is an important component of reshaping the expressions of Cxs, panx-1, and EAATs and the development of glutamate-induced neuronal degeneration.
Collapse
Affiliation(s)
- Shimaa Magdy
- Department of Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Maha Gamal
- Department of Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nancy F Samir
- Department of Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Laila Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Haitham S Mohammed
- Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt
| | - Nivin Sharawy
- Department of Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
17
|
Kawahara Y, Ohnishi YN, Ohnishi YH, Kawahara H, Nishi A. Distinct Role of Dopamine in the PFC and NAc During Exposure to Cocaine-Associated Cues. Int J Neuropsychopharmacol 2021; 24:988-1001. [PMID: 34626116 PMCID: PMC8653875 DOI: 10.1093/ijnp/pyab067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Dopamine neurotransmission plays a critical role in reward in drug abuse and drug addiction. However, the role of dopamine in the recognition of drug-associated environmental stimuli, retrieval of drug-associated memory, and drug-seeking behaviors is not fully understood. METHODS Roles of dopamine neurotransmission in the prefrontal cortex (PFC) and nucleus accumbens (NAc) in the cocaine-conditioned place preference (CPP) paradigm were evaluated using in vivo microdialysis. RESULTS In mice that had acquired cocaine CPP, dopamine levels in the PFC, but not in the NAc, increased in response to cocaine-associated cues when mice were placed in the cocaine chamber of an apparatus with 2 separated chambers. The induction of the dopamine response and the development of cocaine CPP were mediated through activation of glutamate NMDA (N-methyl-D-aspartate)/AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor signaling in the PFC during conditioning. Activation of dopamine D1 or D2 receptor signaling in the PFC was required for cocaine-induced locomotion, but not for the induction of the dopamine response or the development of cocaine CPP. Interestingly, dopamine levels in the NAc increased in response to cocaine-associated cues when mice were placed at the center of an apparatus with 2 connected chambers, which requires motivated exploration associated with cocaine reward. CONCLUSIONS Dopamine neurotransmission in the PFC is activated by the exposure to the cocaine-associated cues, whereas dopamine neurotransmission in the NAc is activated in a process of motivated exploration of cues associated with cocaine reward. Furthermore, the glutamate signaling cascade in the PFC is suggested to be a potential therapeutic target to prevent the progression of drug addiction.
Collapse
Affiliation(s)
- Yukie Kawahara
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Japan,Department of Dental Anesthesiology, Tsurumi University School of Dental Medicine, Yokohama, Japan,Correspondence: Yukie Kawahara, DDS, PhD, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan ()
| | - Yoshinori N Ohnishi
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Japan
| | - Yoko H Ohnishi
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Japan
| | - Hiroshi Kawahara
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Japan
| | - Akinori Nishi
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
18
|
Wickens MM, Kirkland JM, Knouse MC, McGrath AG, Briand LA. Sex-specific role for prefrontal cortical protein interacting with C kinase 1 in cue-induced cocaine seeking. Addict Biol 2021; 26:e13051. [PMID: 34110073 DOI: 10.1111/adb.13051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/16/2021] [Accepted: 04/27/2021] [Indexed: 12/22/2022]
Abstract
Disruption of prefrontal glutamate receptor interacting protein (GRIP), which anchors GluA2-containing AMPA receptors (AMPARs) into the synaptic membrane, potentiates cue-induced cocaine seeking in both males and females. Protein interacting with C kinase 1 (PICK1) plays an opposing role to that of GRIP, removing AMPARs from the synapse. Consistent with our hypothesis that disruption of PICK1 in the mPFC would lead to a decrease in addiction-like behaviour, we found that conditional deletion of PICK1 in the mPFC attenuates cue-induced cocaine seeking in male mice. However, prefrontal PICK1 deletion had the opposite effect in females, leading to an increase in cue-induced reinstatement of cocaine seeking. We did not see any effects of PICK1 knockdown on sucrose taking or seeking, suggesting the sex-specific effects do not generalise to natural reinforcers. These findings suggest the role of PICK1 in the prefrontal cortex of females may not be consistent with its accepted role in males. To determine whether these sex differences were influenced by gonadal hormones, we gonadectomised a cohort of males and found that removal of circulating androgens eliminated the effect of prefrontal PICK1 knockdown. As there was no effect of gonadectomy on its own on any of the behavioural measures collected, our results suggest that androgens may be involved in compensatory downstream effects of PICK1 knockdown. Taken together, these results highlight the need for consideration of sex as a biological variable when examining mechanisms underlying all behaviours, as convergent sex differences can reveal different mechanisms where behavioural sex differences do not exist.
Collapse
Affiliation(s)
- Megan M. Wickens
- Department of Psychology Temple University Philadelphia Pennsylvania USA
| | - Julia M. Kirkland
- Department of Psychology Temple University Philadelphia Pennsylvania USA
| | - Melissa C. Knouse
- Department of Psychology Temple University Philadelphia Pennsylvania USA
| | - Anna G. McGrath
- Department of Psychology Temple University Philadelphia Pennsylvania USA
| | - Lisa A. Briand
- Department of Psychology Temple University Philadelphia Pennsylvania USA
- Neuroscience Program Temple University Philadelphia Pennsylvania USA
| |
Collapse
|
19
|
Impact of Acute and Persistent Excitation of Prelimbic Pyramidal Neurons on Motor Activity and Trace Fear Learning. J Neurosci 2021; 41:960-971. [PMID: 33402420 DOI: 10.1523/jneurosci.2606-20.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 11/21/2022] Open
Abstract
Drug-induced neuroadaptations in the mPFC have been implicated in addictive behaviors. Repeated cocaine exposure has been shown to increase pyramidal neuron excitability in the prelimbic (PL) region of the mouse mPFC, an adaptation attributable to a suppression of G protein-gated inwardly rectifying K+ (GIRK) channel activity. After establishing that this neuroadaptation is not seen in adjacent GABA neurons, we used viral GIRK channel ablation and complementary chemogenetic approaches to selectively enhance PL pyramidal neuron excitability in adult mice, to evaluate the impact of this form of plasticity on PL-dependent behaviors. GIRK channel ablation decreased somatodendritic GABAB receptor-dependent signaling and rheobase in PL pyramidal neurons. This manipulation also enhanced the motor-stimulatory effect of cocaine but did not impact baseline activity or trace fear learning. In contrast, selective chemogenetic excitation of PL pyramidal neurons, or chemogenetic inhibition of PL GABA neurons, increased baseline and cocaine-induced activity and disrupted trace fear learning. These effects were mirrored in male mice by selective excitation of PL pyramidal neurons projecting to the VTA, but not NAc or BLA. Collectively, these data show that manipulations enhancing the excitability of PL pyramidal neurons, and specifically those projecting to the VTA, recapitulate behavioral hallmarks of repeated cocaine exposure in mice.SIGNIFICANCE STATEMENT Prolonged exposure to drugs of abuse triggers neuroadaptations that promote core features of addiction. Understanding these neuroadaptations and their implications may suggest interventions capable of preventing or treating addiction. While previous work showed that repeated cocaine exposure increased the excitability of pyramidal neurons in the prelimbic cortex (PL), the behavioral implications of this neuroadaptation remained unclear. Here, we used neuron-specific manipulations to evaluate the impact of increased PL pyramidal neuron excitability on PL-dependent behaviors. Acute or persistent excitation of PL pyramidal neurons potentiated cocaine-induced motor activity and disrupted trace fear conditioning, effects replicated by selective excitation of the PL projection to the VTA. Our work suggests that hyperexcitability of this projection drives key behavioral hallmarks of addiction.
Collapse
|
20
|
Chu J, Deyama S, Li X, Motono M, Otoda A, Saito A, Esaki H, Nishitani N, Kaneda K. Role of 5-HT 1A receptor-mediated serotonergic transmission in the medial prefrontal cortex in acute restraint stress-induced augmentation of rewarding memory of cocaine in mice. Neurosci Lett 2020; 743:135555. [PMID: 33352288 DOI: 10.1016/j.neulet.2020.135555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/28/2020] [Accepted: 12/02/2020] [Indexed: 11/27/2022]
Abstract
Stress enhances cocaine craving. We recently reported that acute restraint stress increases cocaine conditioned place preference (CPP) in mice; however, the underlying mechanisms remain unclear. This study aimed to examine the role of serotonergic transmission in the medial prefrontal cortex (mPFC) in cocaine CPP enhancement by acute restraint stress, which increases extracellular serotonin (5-HT) levels in the mPFC. Intra-mPFC infusion of the selective serotonin reuptake inhibitor (S)-citalopram prior to the test session significantly increased the cocaine CPP score under non-stressed conditions. This is indicative of the substantial role of increased mPFC 5-HT levels in cocaine CPP enhancement. Moreover, intra-mPFC and systemic administration of the 5-HT1A receptor antagonist WAY100635 immediately before restraint stress exposure significantly attenuated stress-induced cocaine CPP enhancement. Our findings suggest that enhanced serotonergic transmission via 5-HT1A receptors in the mPFC is involved in acute stress-induced augmentation of rewarding memory of cocaine; moreover, the 5-HT1A receptor could be a therapeutic target for stress-induced cocaine craving.
Collapse
Affiliation(s)
- Jinling Chu
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Xueting Li
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Mei Motono
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Atsuki Otoda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Atsushi Saito
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Hirohito Esaki
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Naoya Nishitani
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
21
|
Zhou Y, Yan E, Cheng D, Zhu H, Liu Z, Chen X, Ma L, Liu X. The Projection From Ventral CA1, Not Prefrontal Cortex, to Nucleus Accumbens Core Mediates Recent Memory Retrieval of Cocaine-Conditioned Place Preference. Front Behav Neurosci 2020; 14:558074. [PMID: 33304246 PMCID: PMC7701212 DOI: 10.3389/fnbeh.2020.558074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/15/2020] [Indexed: 01/15/2023] Open
Abstract
Drug-paired cues inducing memory retrieval by expressing drug-seeking behaviors present a major challenge to drug abstinence. How neural circuits coordinate for drug memory retrieval remains unclear. Here, we report that exposure of the training chamber where cocaine-conditioned place preference (CPP) was performed increased neuronal activity in the core of nucleus accumbens (AcbC), ventral CA1 (vCA1), and medial prefrontal cortex (mPFC), as shown by elevated pERK and c-Fos levels. Chemogenetic inhibition of neuronal activity in the vCA1 and AcbC, but not mPFC, reduced the time spent in the cocaine-paired compartment, suggesting that the vCA1 and AcbC are required for the retrieval of cocaine-CPP memory and are key nodes recruited for cocaine memory storage. Furthermore, chemogenetic inhibition of the AcbC-projecting vCA1 neurons, but not the AcbC-projecting mPFC neurons, decreased the expression of cocaine-CPP. Optogenetic inhibition of the vCA1–AcbC projection, but not the mPFC–AcbC projection, also reduced the preference for the cocaine-paired compartment. Taken together, the cue-induced natural recall of cocaine memory depends on vCA1–AcbC circuits. The connectivity from the vCA1 to the AcbC may store the information of the cue–cocaine reward association critically required for memory retrieval. These data thus provide insights into the neural circuit basis of retrieval of drug-related memory.
Collapse
Affiliation(s)
- Yiming Zhou
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and the Institutes of Brain Science, Fudan University, Shanghai, China
| | - Enhui Yan
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and the Institutes of Brain Science, Fudan University, Shanghai, China
| | - Deqin Cheng
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and the Institutes of Brain Science, Fudan University, Shanghai, China
| | - Huiwen Zhu
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and the Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhiyuan Liu
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and the Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xi Chen
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and the Institutes of Brain Science, Fudan University, Shanghai, China
| | - Lan Ma
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and the Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xing Liu
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and the Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Bender BN, Torregrossa MM. Molecular and circuit mechanisms regulating cocaine memory. Cell Mol Life Sci 2020; 77:3745-3768. [PMID: 32172301 PMCID: PMC7492456 DOI: 10.1007/s00018-020-03498-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/04/2020] [Accepted: 03/02/2020] [Indexed: 01/27/2023]
Abstract
Risk of relapse is a major challenge in the treatment of substance use disorders. Several types of learning and memory mechanisms are involved in substance use and have implications for relapse. Associative memories form between the effects of drugs and the surrounding environmental stimuli, and exposure to these stimuli during abstinence causes stress and triggers drug craving, which can lead to relapse. Understanding the neural underpinnings of how these associations are formed and maintained will inform future advances in treatment practices. A large body of research has expanded our knowledge of how associative memories are acquired and consolidated, how they are updated through reactivation and reconsolidation, and how competing extinction memories are formed. This review will focus on the vast literature examining the mechanisms of cocaine Pavlovian associative memories with an emphasis on the molecular memory mechanisms and circuits involved in the consolidation, reconsolidation, and extinction of these memories. Additional research elucidating the specific signaling pathways, mechanisms of synaptic plasticity, and epigenetic regulation of gene expression in the circuits involved in associative learning will reveal more distinctions between consolidation, reconsolidation, and extinction learning that can be applied to the treatment of substance use disorders.
Collapse
Affiliation(s)
- Brooke N Bender
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, USA
- Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Mary M Torregrossa
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
- Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
23
|
Saika F, Matsuzaki S, Kobayashi D, Ideguchi Y, Nakamura TY, Kishioka S, Kiguchi N. Chemogenetic Regulation of CX3CR1-Expressing Microglia Using Gi-DREADD Exerts Sex-Dependent Anti-Allodynic Effects in Mouse Models of Neuropathic Pain. Front Pharmacol 2020; 11:925. [PMID: 32636748 PMCID: PMC7318895 DOI: 10.3389/fphar.2020.00925] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/08/2020] [Indexed: 12/25/2022] Open
Abstract
Despite growing evidence suggesting that spinal microglia play an important role in the molecular mechanism underlying experimental neuropathic pain (NP) in male rodents, evidence regarding the sex-dependent role of these microglia in NP is insufficient. In this study, we evaluated the effects of microglial regulation on NP using Gi-designer receptors exclusively activated by designer drugs (Gi-DREADD) driven by the microglia-specific Cx3cr1 promoter. For the Cre-dependent expression of human Gi-coupled M4 muscarinic receptors (hM4Di) in CX3C chemokine receptor 1-expressing (CX3CR1+) cells, R26-LSL-hM4Di-DREADD mice were crossed with CX3CR1-Cre mice. Mouse models of NP were generated by partial sciatic nerve ligation (PSL) and treatment with anti-cancer agent paclitaxel (PTX) or oxaliplatin (OXA), and mechanical allodynia was evaluated using the von Frey test. Immunohistochemistry revealed that hM4Di was specifically expressed on Iba1+ microglia, but not on astrocytes or neurons in the spinal dorsal horn of CX3CR1-hM4Di mice. PSL-induced mechanical allodynia was significantly attenuated by systemic (intraperitoneal, i.p.) administration of 10 mg/kg of clozapine N-oxide (CNO), a hM4Di-selective ligand, in male CX3CR1-hM4Di mice. The mechanical threshold in naive CX3CR1-hM4Di mice was not altered by i.p. administration of CNO. Consistently, local (intrathecal, i.t.) administration of CNO (20 nmol) significantly relieved PSL-induced mechanical allodynia in male CX3CR1-hM4Di mice. However, neither i.p. nor i.t. administration of CNO affected PSL-induced mechanical allodynia in female CX3CR1-hM4Di mice. Both i.p. and i.t. administration of CNO relieved PTX-induced mechanical allodynia in male CX3CR1-hM4Di mice, and a limited effect of i.p. CNO was observed in female CX3CR1-hM4Di mice. Unlike PTX-induced allodynia, OXA-induced mechanical allodynia was slightly improved, but not significantly relieved, by i.p. administration of CNO in both male and female CX3CR1-hM4Di mice. These results suggest that spinal microglia can be regulated by Gi-DREADD and support the notion that CX3CR1+ spinal microglia play sex-dependent roles in nerve injury-induced NP; however, their roles may vary among different models of NP.
Collapse
Affiliation(s)
- Fumihiro Saika
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
| | - Shinsuke Matsuzaki
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
| | - Daichi Kobayashi
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan.,Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yuya Ideguchi
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
| | - Tomoe Y Nakamura
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
| | - Shiroh Kishioka
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan.,Faculty of Wakayama Health Care Sciences, Takarazuka University of Medical and Health Care, Wakayama, Japan
| | - Norikazu Kiguchi
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
24
|
Acute restraint stress augments the rewarding memory of cocaine through activation of α1 adrenoceptors in the medial prefrontal cortex of mice. Neuropharmacology 2020; 166:107968. [DOI: 10.1016/j.neuropharm.2020.107968] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/11/2020] [Accepted: 01/15/2020] [Indexed: 01/17/2023]
|
25
|
The Role of Dorsal Raphe Serotonin Neurons in the Balance between Reward and Aversion. Int J Mol Sci 2020; 21:ijms21062160. [PMID: 32245184 PMCID: PMC7139834 DOI: 10.3390/ijms21062160] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Reward processing is fundamental for animals to survive and reproduce. Many studies have shown the importance of dorsal raphe nucleus (DRN) serotonin (5-HT) neurons in this process, but the strongly correlative link between the activity of DRN 5-HT neurons and rewarding/aversive potency is under debate. Our primary objective was to reveal this link using two different strategies to transduce DRN 5-HT neurons. METHODS For transduction of 5-HT neurons in wildtype mice, adeno-associated virus (AAV) bearing the mouse tryptophan hydroxylase 2 (TPH2) gene promoter was used. For transduction in Tph2-tTA transgenic mice, AAVs bearing the tTA-dependent TetO enhancer were used. To manipulate the activity of 5-HT neurons, optogenetic actuators (CheRiff, eArchT) were expressed by AAVs. For measurement of rewarding/aversive potency, we performed a nose-poke self-stimulation test and conditioned place preference (CPP) test. RESULTS We found that stimulation of DRN 5-HT neurons and their projections to the ventral tegmental area (VTA) increased the number of nose-pokes in self-stimulation test and CPP scores in both targeting methods. Concomitantly, CPP scores were decreased by inhibition of DRN 5-HT neurons and their projections to VTA. CONCLUSION Our findings indicate that the activity of DRN 5-HT neurons projecting to the VTA is a key modulator of balance between reward and aversion.
Collapse
|
26
|
Cantacorps L, Montagud-Romero S, Luján MÁ, Valverde O. Prenatal and postnatal alcohol exposure increases vulnerability to cocaine addiction in adult mice. Br J Pharmacol 2020; 177:1090-1105. [PMID: 31705540 DOI: 10.1111/bph.14901] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/13/2019] [Accepted: 10/03/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Alcohol exposure in utero may lead to a wide range of long-lasting morphological and behavioural deficiencies known as fetal alcohol spectrum disorders (FASD), associated with a higher risk of later developing neuropsychiatric disorders. However, little is known about the long-term consequences of cocaine use and abuse in individuals with FASD. This study aimed to investigate the effects of maternal binge alcohol drinking during prenatal and postnatal periods on cocaine reward-related behaviours in adult offspring. EXPERIMENTAL APPROACH Pregnant C57BL/6 female mice were exposed to an experimental protocol of binge alcohol consumption (drinking-in-the-dark test) from gestation to weaning. Male offspring were subsequently left undisturbed until reaching adulthood and were tested for cocaine-induced motivational responses (conditioned place preference, behavioural sensitization and operant self-administration). Protein expression of dopamine- and glutamate-related molecules was assessed following cocaine-induced reinstatement. KEY RESULTS The results show that prenatal and postnatal alcohol exposure enhanced the preference for the cocaine-paired chamber in the conditioned place preference test. Furthermore, early alcohol-exposed mice displayed attenuated cocaine-induced behavioural sensitization but also higher cocaine self-administration. Furthermore, alterations in glutamatergic excitability (GluA1/GluA2 ratio) and ΔFosB expression were found in the prefrontal cortex and the striatum of alcohol-exposed mice after cocaine-primed reinstatement. CONCLUSION AND IMPLICATIONS Our findings demonstrate that maternal binge-like alcohol consumption during gestation and lactation alters sensitivity to the reinforcing effects of cocaine in adult offspring mice. Together, such data suggest that prenatal and postnatal alcohol exposure may underlie an enhanced susceptibility of alcohol-exposed offspring to develop drug addiction later in adulthood.
Collapse
Affiliation(s)
- Lídia Cantacorps
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Sandra Montagud-Romero
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Miguel Ángel Luján
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.,Neuroscience Research Programme, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| |
Collapse
|
27
|
MacDonald AJ, Holmes FE, Beall C, Pickering AE, Ellacott KLJ. Regulation of food intake by astrocytes in the brainstem dorsal vagal complex. Glia 2019; 68:1241-1254. [PMID: 31880353 PMCID: PMC7187409 DOI: 10.1002/glia.23774] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023]
Abstract
A role for glial cells in brain circuits controlling feeding has begun to be identified with hypothalamic astrocyte signaling implicated in regulating energy homeostasis. The nucleus of the solitary tract (NTS), within the brainstem dorsal vagal complex (DVC), integrates vagal afferent information from the viscera and plays a role in regulating food intake. We hypothesized that astrocytes in this nucleus respond to, and influence, food intake. Mice fed high‐fat chow for 12 hr during the dark phase showed NTS astrocyte activation, reflected in an increase in the number (65%) and morphological complexity of glial‐fibrillary acidic protein (GFAP)‐immunoreactive cells adjacent to the area postrema (AP), compared to control chow fed mice. To measure the impact of astrocyte activation on food intake, we delivered designer receptors exclusively activated by designer drugs (DREADDs) to DVC astrocytes (encompassing NTS, AP, and dorsal motor nucleus of the vagus) using an adeno‐associated viral (AAV) vector (AAV‐GFAP‐hM3Dq_mCherry). Chemogenetic activation with clozapine‐N‐oxide (0.3 mg/kg) produced in greater morphological complexity in astrocytes and reduced dark‐phase feeding by 84% at 4 hr postinjection compared with vehicle treatment. hM3Dq‐activation of DVC astrocytes also reduced refeeding after an overnight fast (71% lower, 4 hr postinjection) when compared to AAV‐GFAP‐mCherry expressing control mice. DREADD‐mediated astrocyte activation did not impact locomotion. hM3Dq activation of DVC astrocytes induced c‐FOS in neighboring neuronal feeding circuits (including in the parabrachial nucleus). This indicates that NTS astrocytes respond to acute nutritional excess, are involved in the integration of peripheral satiety signals, and can reduce food intake when activated.
Collapse
Affiliation(s)
- Alastair J MacDonald
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, UK.,School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, UK
| | - Fiona E Holmes
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, UK
| | - Craig Beall
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Anthony E Pickering
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, UK.,Anaesthesia, Pain and Critical Care Sciences, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kate L J Ellacott
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, UK
| |
Collapse
|
28
|
Sun XY, Zheng T, Yang X, Liu L, Gao SS, Xu HB, Song YT, Tong K, Yang L, Gao Y, Wu T, Hao JR, Lu C, Ma T, Gao C. HDAC2 hyperexpression alters hippocampal neuronal transcription and microglial activity in neuroinflammation-induced cognitive dysfunction. J Neuroinflammation 2019; 16:249. [PMID: 31796106 PMCID: PMC6889553 DOI: 10.1186/s12974-019-1640-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/12/2019] [Indexed: 02/08/2023] Open
Abstract
Background Inflammation can induce cognitive dysfunction in patients who undergo surgery. Previous studies have demonstrated that both acute peripheral inflammation and anaesthetic insults, especially isoflurane (ISO), are risk factors for memory impairment. Few studies are currently investigating the role of ISO under acute peri-inflammatory conditions, and it is difficult to predict whether ISO can aggravate inflammation-induced cognitive deficits. HDACs, which are essential for learning, participate in the deacetylation of lysine residues and the regulation of gene transcription. However, the cell-specific mechanism of HDACs in inflammation-induced cognitive impairment remains unknown. Methods Three-month-old C57BL/6 mice were treated with single versus combined exposure to LPS injected intraperitoneally (i.p.) to simulate acute abdominal inflammation and isoflurane to investigate the role of anaesthesia and acute peripheral inflammation in cognitive impairment. Behavioural tests, Western blotting, ELISA, immunofluorescence, qRT-PCR, and ChIP assays were performed to detect memory, the expressions of inflammatory cytokines, HDAC2, BDNF, c-Fos, acetyl-H3, microglial activity, Bdnf mRNA, c-fos mRNA, and Bdnf and c-fos transcription in the hippocampus. Results LPS, but not isoflurane, induced neuroinflammation-induced memory impairment and reduced histone acetylation by upregulating histone deacetylase 2 (HDAC2) in dorsal hippocampal CaMKII+ neurons. The hyperexpression of HDAC2 in neurons was mediated by the activation of microglia. The decreased level of histone acetylation suppressed the transcription of Bdnf and c-fos and the expressions of BDNF and c-Fos, which subsequently impaired memory. The adeno-associated virus ShHdac2, which suppresses Hdac2 after injection into the dorsal hippocampus, reversed microglial activation, hippocampal glutamatergic BDNF and c-Fos expressions, and memory deficits. Conclusions Reversing HDAC2 in hippocampal CaMKII+ neurons exert a neuroprotective effect against neuroinflammation-induced memory deficits.
Collapse
Affiliation(s)
- Xiao-Yu Sun
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Teng Zheng
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.,Department of Anesthesiology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Xiu Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Le Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Shen-Shen Gao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Han-Bing Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yu-Tong Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Kun Tong
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Li Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Ya Gao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Tong Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Jing-Ru Hao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Chen Lu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Tao Ma
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Can Gao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China. .,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
29
|
Sasase H, Izumi S, Deyama S, Hinoi E, Kaneda K. Acute Cocaine Reduces Excitatory Synaptic Transmission in Pyramidal Neurons of the Mouse Medial Prefrontal Cortex. Biol Pharm Bull 2019; 42:1433-1436. [PMID: 31366880 DOI: 10.1248/bpb.b19-00318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The medial prefrontal cortex (mPFC) plays critical roles in the development of cocaine addiction. Numerous studies have reported about the effects of cocaine on neuronal and synaptic activities in the nucleus accumbens and ventral tegmental area, which are brain regions associated with cocaine addiction; however, a limited number of studies have reported the effect of cocaine on mPFC neuronal activity. In this study, using whole-cell patch-clamp recordings in brain slices, we present that under the condition where synaptic transmission is enhanced by increasing extracellular K+ concentration, cocaine significantly reduced the frequency but not amplitude of spontaneous excitatory postsynaptic currents. These findings suggest that cocaine exposure could be a trigger to induce hypofrontality, which is related to the compulsive craving for cocaine use.
Collapse
Affiliation(s)
- Hitoki Sasase
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Shoma Izumi
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Eiichi Hinoi
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| |
Collapse
|