1
|
Pouget JG, Giratallah H, Langlois AWR, El-Boraie A, Lerman C, Knight J, Cox LS, Nollen NL, Ahluwalia JS, Benner C, Chenoweth MJ, Tyndale RF. Fine-mapping the CYP2A6 regional association with nicotine metabolism among African American smokers. Mol Psychiatry 2025; 30:943-953. [PMID: 39217253 DOI: 10.1038/s41380-024-02703-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
The nicotine metabolite ratio (NMR; 3'hydroxycotinine/cotinine) is a stable biomarker for CYP2A6 enzyme activity and nicotine clearance, with demonstrated clinical utility in personalizing smoking cessation treatment. Common genetic variation in the CYP2A6 region is strongly associated with NMR in smokers. Here, we investigated this regional association in more detail. We evaluated the association of CYP2A6 single-nucleotide polymorphisms (SNPs) and * alleles with NMR among African American smokers (N = 953) from two clinical trials of smoking cessation. Stepwise conditional analysis and Bayesian fine-mapping were undertaken. Putative causal variants were incorporated into an existing African ancestry-specific genetic risk score (GRS) for NMR, and the performance of the updated GRS was evaluated in both African American (n = 953) and European ancestry smokers (n = 933) from these clinical trials. Five independent associations with NMR in the CYP2A6 region were identified using stepwise conditional analysis, including the deletion variant CYP2A6*4 (beta = -0.90, p = 1.55 × 10-11). Six putative causal variants were identified using Bayesian fine-mapping (posterior probability, PP = 0.67), with the top causal configuration including CYP2A6*4, rs116670633, CYP2A6*9, rs28399451, rs8192720, and rs10853742 (PP = 0.09). Incorporating these putative causal variants into an existing ancestry-specific GRS resulted in comparable prediction of NMR within African American smokers, and improved trans-ancestry portability of the GRS to European smokers. Our findings suggest that both * alleles and SNPs underlie the association of the CYP2A6 region with NMR among African American smokers, identify a shortlist of variants that may causally influence nicotine clearance, and suggest that portability of GRSs across populations can be improved through inclusion of putative causal variants.
Collapse
Affiliation(s)
- Jennie G Pouget
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Haidy Giratallah
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Alec W R Langlois
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Ahmed El-Boraie
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Caryn Lerman
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Jo Knight
- Data Science Institute and Medical School, Lancaster University, Lancaster, UK
| | - Lisa Sanderson Cox
- Department of Population Health, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Nikki L Nollen
- Department of Population Health, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Jasjit S Ahluwalia
- Departments of Behavioral and Social Sciences and Medicine, Brown University, Providence, RI, USA
| | - Christian Benner
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Meghan J Chenoweth
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Rachel F Tyndale
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Langlois AW, Chenoweth MJ, Twesigomwe D, Scantamburlo G, Whirl-Carrillo M, Sangkuhl K, Klein TE, Nofziger C, Tyndale RF, Gaedigk A. PharmVar GeneFocus: CYP2A6. Clin Pharmacol Ther 2024; 116:948-962. [PMID: 39051767 PMCID: PMC11452280 DOI: 10.1002/cpt.3387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
The Pharmacogene Variation Consortium (PharmVar) provides nomenclature for the human CYP2A gene locus containing the highly polymorphic CYP2A6 gene. CYP2A6 plays a role in the metabolism of nicotine and various drugs. Thus, genetic variation can substantially contribute to the function of this enzyme and associated efficacy and safety. This GeneFocus provides an overview of the clinical significance of CYP2A6, including its genetic variation and function. We also highlight and discuss caveats in the identification and characterization of allelic variation of this complex pharmacogene, a prerequisite for accurate genotype determination and prediction of phenotype status.
Collapse
Affiliation(s)
- Alec W.R. Langlois
- Department of Pharmacology & Toxicology, University of Toronto; 1 King’s College Circle, Toronto, ON, M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health 100 Stokes Street, Toronto, ON, M6J 1H4, Canada
| | - Meghan J. Chenoweth
- Department of Pharmacology & Toxicology, University of Toronto; 1 King’s College Circle, Toronto, ON, M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health 100 Stokes Street, Toronto, ON, M6J 1H4, Canada
- Department of Psychiatry, University of Toronto; 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - David Twesigomwe
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | - Katrin Sangkuhl
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | - Teri E. Klein
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
- Departments of Medicine (BMIR) and Genetics, Stanford University, Stanford, California, USA
| | | | - Rachel F. Tyndale
- Department of Pharmacology & Toxicology, University of Toronto; 1 King’s College Circle, Toronto, ON, M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health 100 Stokes Street, Toronto, ON, M6J 1H4, Canada
- Department of Psychiatry, University of Toronto; 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children’s Mercy Research Institute (CMRI), Kansas City, Missouri, USA and School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
3
|
Cooper RK, Mahoney MC, Tiffany ST, Colder CR, Tyndale RF, Hawk LW. Relationships Between the Nicotine Metabolite Ratio and Laboratory Assessments of Smoking Reinforcement and Craving Among Adults in a Smoking Cessation Trial. Nicotine Tob Res 2024; 26:604-611. [PMID: 37996099 PMCID: PMC11033563 DOI: 10.1093/ntr/ntad232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/10/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
INTRODUCTION People who metabolize nicotine more quickly are generally less successful at quitting smoking. However, the mechanisms that link individual differences in the nicotine metabolite ratio (NMR), a phenotypic biomarker of the rate of nicotine clearance, to smoking outcomes are unclear. We tested the hypotheses that higher NMR is associated with greater smoking reinforcement, general craving, and cue-induced cigarette craving in a treatment-seeking sample. METHODS Participants were 252 adults who smoke cigarettes enrolled in a randomized controlled smoking cessation trial (NCT03262662) conducted in Buffalo, New York, USA. Participants completed the Choice Behavior Under Cued Conditions (CBUCC) paradigm, a laboratory choice procedure, ~1 week before the first cessation treatment visit, at which time a saliva sample was collected for NMR assessment. On each CBUCC trial, participants reported cigarette craving during cue presentation (cigarette, water) and spent $0.01-$0.25 for a chance (5%-95%) to sample the cue (one puff, sip), providing measures of smoking reinforcement (spending for cigarettes vs. water), general cigarette craving (averaged across cigarette and water cues), and cue-specific craving (cigarette craving during cigarette vs. water cues). RESULTS As observed in prior work, the NMR was significantly higher among White and female participants. As expected, both spending and cigarette craving were significantly greater on cigarette compared to water trials. However, contrary to our hypotheses, higher NMR was not associated with greater smoking reinforcement, general craving, or cue-specific craving. CONCLUSIONS The present data do not support that smoking reinforcement or craving is related to nicotine metabolism among individuals seeking to quit smoking. IMPLICATIONS Though greater smoking reinforcement, general craving, and cue-specific craving are hypothesized to be linked to faster nicotine metabolism, there was no evidence of such relationships in the present sample of adults seeking to quit smoking. Further research, including replication and consideration of alternate hypotheses, is warranted to elucidate the mechanisms by which the NMR is related to smoking cessation.
Collapse
Affiliation(s)
- Robert K Cooper
- Department of Psychology, University at Buffalo, Buffalo, NY, USA
| | | | | | - Craig R Colder
- Department of Psychology, University at Buffalo, Buffalo, NY, USA
| | - Rachel F Tyndale
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Larry W Hawk
- Department of Psychology, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
4
|
Langlois AWR, Pouget JG, Knight J, Chenoweth MJ, Tyndale RF. Associating CYP2A6 structural variants with ovarian and lung cancer risk in the UK Biobank: replication and extension. Eur J Hum Genet 2024; 32:357-360. [PMID: 38097766 PMCID: PMC10923790 DOI: 10.1038/s41431-023-01518-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/27/2023] [Accepted: 11/28/2023] [Indexed: 03/10/2024] Open
Abstract
CYP2A6 is a polymorphic enzyme that inactivates nicotine; structural variants (SVs) include gene deletions and hybrids with the neighboring pseudogene CYP2A7. Two studies found that CYP2A7 deletions were associated with ovarian cancer risk. Using their methodology, we aimed to characterize CYP2A6 SVs (which may be misidentified by prediction software as CYP2A7 SVs), then assess CYP2A6 SV-associated risk for ovarian cancer, and extend analyses to lung cancer. An updated reference panel was created to impute CYP2A6 SVs from UK Biobank array data. Logistic regression models analyzed the association between CYP2A6 SVs and cancer risk, adjusting for covariates. Software-predicted CYP2A7 deletions were concordant with known CYP2A6 SVs. Deleterious CYP2A6 SVs were not associated with ovarian cancer (OR = 1.06; 95% CI: 0.80-1.37; p = 0.7) but did reduce the risk of lung cancer (OR = 0.44; 95% CI: 0.29-0.64; p < 0.0001), and a lung cancer subtype. Replication of known lung cancer associations indicates the validity of array-based SV analyses.
Collapse
Affiliation(s)
- Alec W R Langlois
- Department of Pharmacology & Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 100 Stokes Street, Toronto, ON, M6J 1H4, Canada
| | - Jennie G Pouget
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 100 Stokes Street, Toronto, ON, M6J 1H4, Canada
- Department of Psychiatry, University of Toronto, 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - Jo Knight
- Data Science Institute and Medical School, Lancaster University, Lancaster, UK
| | - Meghan J Chenoweth
- Department of Pharmacology & Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 100 Stokes Street, Toronto, ON, M6J 1H4, Canada
- Department of Psychiatry, University of Toronto, 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - Rachel F Tyndale
- Department of Pharmacology & Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 100 Stokes Street, Toronto, ON, M6J 1H4, Canada.
- Department of Psychiatry, University of Toronto, 250 College Street, Toronto, ON, M5T 1R8, Canada.
| |
Collapse
|
5
|
Giratallah H, Chenoweth MJ, Pouget JG, El-Boraie A, Alsaafin A, Lerman C, Knight J, Tyndale RF. CYP2A6 associates with respiratory disease risk and younger age of diagnosis: a phenome-wide association Mendelian Randomization study. Hum Mol Genet 2024; 33:198-210. [PMID: 37802914 PMCID: PMC10772040 DOI: 10.1093/hmg/ddad172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023] Open
Abstract
CYP2A6, a genetically variable enzyme, inactivates nicotine, activates carcinogens, and metabolizes many pharmaceuticals. Variation in CYP2A6 influences smoking behaviors and tobacco-related disease risk. This phenome-wide association study examined associations between a reconstructed version of our weighted genetic risk score (wGRS) for CYP2A6 activity with diseases in the UK Biobank (N = 395 887). Causal effects of phenotypic CYP2A6 activity (measured as the nicotine metabolite ratio: 3'-hydroxycotinine/cotinine) on the phenome-wide significant (PWS) signals were then estimated in two-sample Mendelian Randomization using the wGRS as the instrument. Time-to-diagnosis age was compared between faster versus slower CYP2A6 metabolizers for the PWS signals in survival analyses. In the total sample, six PWS signals were identified: two lung cancers and four obstructive respiratory diseases PheCodes, where faster CYP2A6 activity was associated with greater disease risk (Ps < 1 × 10-6). A significant CYP2A6-by-smoking status interaction was found (Psinteraction < 0.05); in current smokers, the same six PWS signals were found as identified in the total group, whereas no PWS signals were found in former or never smokers. In the total sample and current smokers, CYP2A6 activity causal estimates on the six PWS signals were significant in Mendelian Randomization (Ps < 5 × 10-5). Additionally, faster CYP2A6 metabolizer status was associated with younger age of disease diagnosis for the six PWS signals (Ps < 5 × 10-4, in current smokers). These findings support a role for faster CYP2A6 activity as a causal risk factor for lung cancers and obstructive respiratory diseases among current smokers, and a younger onset of these diseases. This research utilized the UK Biobank Resource.
Collapse
Affiliation(s)
- Haidy Giratallah
- Department of Pharmacology and Toxicology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, CAMH, 250 College St, Toronto, ON M5T 1R8, Canada
| | - Meghan J Chenoweth
- Department of Pharmacology and Toxicology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, CAMH, 250 College St, Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Jennie G Pouget
- Campbell Family Mental Health Research Institute, CAMH, 250 College St, Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Ahmed El-Boraie
- Department of Pharmacology and Toxicology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, CAMH, 250 College St, Toronto, ON M5T 1R8, Canada
| | - Alaa Alsaafin
- Department of Pharmacology and Toxicology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, CAMH, 250 College St, Toronto, ON M5T 1R8, Canada
| | - Caryn Lerman
- Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Ave, Los Angeles, CA 90033, United States
| | - Jo Knight
- Department of Psychiatry, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- Data Science Institute, Lancaster University Medical School, Lancaster LA1 4YE, United Kingdom
| | - Rachel F Tyndale
- Department of Pharmacology and Toxicology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, CAMH, 250 College St, Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
6
|
Chen LS, Baker TB, Ramsey A, Amos CI, Bierut LJ. Genomic medicine to reduce tobacco and related disorders: Translation to precision prevention and treatment. ADDICTION NEUROSCIENCE 2023; 7:100083. [PMID: 37602286 PMCID: PMC10434839 DOI: 10.1016/j.addicn.2023.100083] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Genomic medicine can enhance prevention and treatment. First, we propose that advances in genomics have the potential to enhance assessment of disease risk, improve prognostic predictions, and guide treatment development and application. Clinical implementation of polygenic risk scores (PRSs) has emerged as an area of active research. The pathway from genomic discovery to implementation is an iterative process. Second, we provide examples on how genomic medicine has the potential to solve problems in prevention and treatment using two examples: Lung cancer screening and evidence-based tobacco treatment are both under-utilized and great opportunities for genomic interventions. Third, we discuss the translational process for developing genomic interventions from evidence to implementation by presenting a model to evaluate genomic evidence for clinical implementation, mechanisms of genomic interventions, and patient desire for genomic interventions. Fourth, we present potential challenges in genomic interventions including a great need for evidence in all diverse populations, little evidence on treatment algorithms, challenges in accommodating a dynamic evidence base, and implementation challenges in real world clinical settings. Finally, we conclude that research to identify genomic markers that are associated with smoking cessation success and the efficacy of smoking cessation treatments is needed to empower people of all diverse ancestry. Importantly, genomic data can be used to help identify patients with elevated risk for nicotine addiction, difficulty quitting smoking, favorable response to specific pharmacotherapy, and tobacco-related health problems.
Collapse
Affiliation(s)
- Li-Shiun Chen
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital, Washington University School of Medicine, St. Louis, MO, United States
| | - Timothy B. Baker
- Center for Tobacco Research and Intervention, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Alex Ramsey
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital, Washington University School of Medicine, St. Louis, MO, United States
| | - Christopher I. Amos
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
- Department of Medicine, Baylor College of Medicine, Institute for Clinical and Translational Research, Houston, TX, United States
| | - Laura J. Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
7
|
Prom-Wormley EC, Wells JL, Landes L, Edmondson AN, Sankoh M, Jamieson B, Delk KJ, Surya S, Bhati S, Clifford J. A scoping review of smoking cessation pharmacogenetic studies to advance future research across racial, ethnic, and ancestral populations. Front Genet 2023; 14:1103966. [PMID: 37359362 PMCID: PMC10285878 DOI: 10.3389/fgene.2023.1103966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/25/2023] [Indexed: 06/28/2023] Open
Abstract
Abstinence rates among smokers attempting to quit remain low despite the wide availability and accessibility of pharmacological smoking cessation treatments. In addition, the prevalence of cessation attempts and abstinence differs by individual-level social factors such as race and ethnicity. Clinical treatment of nicotine dependence also continues to be challenged by individual-level variability in effectiveness to promote abstinence. The use of tailored smoking cessation strategies that incorporate information on individual-level social and genetic factors hold promise, although additional pharmacogenomic knowledge is still needed. In particular, genetic variants associated with pharmacological responses to smoking cessation treatment have generally been conducted in populations with participants that self-identify as White race or who are determined to be of European genetic ancestry. These results may not adequately capture the variability across all smokers as a result of understudied differences in allele frequencies across genetic ancestry populations. This suggests that much of the current pharmacogenetic study results for smoking cessation may not apply to all populations. Therefore, clinical application of pharmacogenetic results may exacerbate health inequities by racial and ethnic groups. This scoping review examines the extent to which racial, ethnic, and ancestral groups that experience differences in smoking rates and smoking cessation are represented in the existing body of published pharmacogenetic studies of smoking cessation. We will summarize results by race, ethnicity, and ancestry across pharmacological treatments and study designs. We will also explore current opportunities and challenges in conducting pharmacogenomic research on smoking cessation that encourages greater participant diversity, including practical barriers to clinical utilization of pharmacological smoking cessation treatment and clinical implementation of pharmacogenetic knowledge.
Collapse
Affiliation(s)
- Elizabeth C. Prom-Wormley
- Division of Epidemiology, Department of Family Medicine and Population Health, Virginia Commonwealth University, Richmond, VA, United States
| | - Jonathan L. Wells
- Division of Epidemiology, Department of Family Medicine and Population Health, Virginia Commonwealth University, Richmond, VA, United States
| | - Lori Landes
- Department of Family Medicine and Population Health, Virginia Commonwealth University, Richmond, VA, United States
| | - Amy N. Edmondson
- Division of Epidemiology, Department of Family Medicine and Population Health, Virginia Commonwealth University, Richmond, VA, United States
| | - Mariam Sankoh
- Department of Integrative Life Sciences, Virginia Commonwealth University, Richmond, VA, United States
| | - Brendan Jamieson
- Division of Epidemiology, Department of Family Medicine and Population Health, Virginia Commonwealth University, Richmond, VA, United States
| | - Kayla J. Delk
- Division of Epidemiology, Department of Family Medicine and Population Health, Virginia Commonwealth University, Richmond, VA, United States
| | - Sanya Surya
- Division of Epidemiology, Department of Family Medicine and Population Health, Virginia Commonwealth University, Richmond, VA, United States
| | - Shambhavi Bhati
- Division of Epidemiology, Department of Family Medicine and Population Health, Virginia Commonwealth University, Richmond, VA, United States
| | - James Clifford
- Department of Public Health, Brody School of Medicine, East Carolina University, Greenville, United States
| |
Collapse
|
8
|
Chenoweth MJ, Lerman C, Knight J, Tyndale RF. Influence of CYP2A6 Genetic Variation, Nicotine Dependence Severity, and Treatment on Smoking Cessation Success. Nicotine Tob Res 2023; 25:1207-1211. [PMID: 36789481 PMCID: PMC10202625 DOI: 10.1093/ntr/ntac268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/07/2022] [Accepted: 11/21/2022] [Indexed: 02/16/2023]
Abstract
INTRODUCTION Genetic variation in Cytochrome P450 2A6 (CYP2A6), the major nicotine metabolizing enzyme, is associated with nicotine dependence and smoking cessation. Nicotine dependence severity also predicts smoking cessation. Our goals were to determine how CYP2A6 variation and nicotine dependence alter smoking cessation, and whether dependence could refine CYP2A6-based treatment recommendations. AIMS AND METHODS Adult smokers treated for 12 weeks with placebo, nicotine patch, or varenicline (NCT01314001) were grouped as CYP2A6 normal (n = 567) or slow (n = 432) nicotine metabolizers based on a CYP2A6 weighted genetic risk score. Fagerström test for nicotine dependence scores were measured at baseline and biochemically verified smoking cessation was assessed at end of treatment. RESULTS Dependence neither mediated nor moderated an association between CYP2A6 variation and smoking cessation overall, within any treatment arm, or after stratifying by ancestry (n = 591 European, n = 408 African ancestry) or sex (n = 444 women, n = 555 men). In within-treatment analyses, the mediation effect odds ratio (OR) ranged from 0.95 to 1.00 and the bias-corrected 95% confidence interval contained 1. Moderation (i.e. interaction) effect ORs ranged from 0.88 to 1.61 (p = .397-.828). For CYP2A6 normal metabolizers, quit rates on varenicline were similar for those with high (41.1%) and low (43.4%) dependence, while quit rates were lower for those with high versus low dependence on both patch (16.5 vs. 29.7%) and placebo (8.9 vs. 18.5%). CYP2A6 slow metabolizers with high versus low dependence had lower quit rates in all three treatment arms. CONCLUSIONS Although nicotine dependence severity neither mediated nor moderated CYP2A6 associations with smoking cessation, incorporating information on dependence may optimize the choice of smoking cessation treatment aid in CYP2A6 normal and slow metabolizers. IMPLICATIONS Variation in CYP2A6 and nicotine dependence severity alter smoking cessation success. Our findings suggest that while nicotine dependence severity is unlikely to mediate or moderate CYP2A6 associations with cessation, incorporating patient information on both CYP2A6 and nicotine dependence severity may lead to improved smoking cessation strategies.
Collapse
Affiliation(s)
- Meghan J Chenoweth
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Caryn Lerman
- Department of Psychiatry and USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Jo Knight
- Data Science Institute, Lancaster University Medical School, Lancaster, UK
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Rachel F Tyndale
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Langlois AWR, El-Boraie A, Pouget JG, Cox LS, Ahluwalia JS, Fukunaga K, Mushiroda T, Knight J, Chenoweth MJ, Tyndale RF. Genotyping, characterization, and imputation of known and novel CYP2A6 structural variants using SNP array data. J Hum Genet 2023:10.1038/s10038-023-01148-y. [PMID: 37059825 DOI: 10.1038/s10038-023-01148-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/23/2023] [Accepted: 03/30/2023] [Indexed: 04/16/2023]
Abstract
CYP2A6 metabolically inactivates nicotine. Faster CYP2A6 activity is associated with heavier smoking and higher lung cancer risk. The CYP2A6 gene is polymorphic, including functional structural variants (SV) such as gene deletions (CYP2A6*4), duplications (CYP2A6*1 × 2), and hybrids with the CYP2A7 pseudogene (CYP2A6*12, CYP2A6*34). SVs are challenging to genotype due to their complex genetic architecture. Our aims were to develop a reliable protocol for SV genotyping, functionally phenotype known and novel SVs, and investigate the feasibility of CYP2A6 SV imputation from SNP array data in two ancestry populations. European- (EUR; n = 935) and African- (AFR; n = 964) ancestry individuals from smoking cessation trials were genotyped for SNPs using an Illumina array and for CYP2A6 SVs using Taqman copy number (CN) assays. SV-specific PCR amplification and Sanger sequencing was used to characterize a novel SV. Individuals with SVs were phenotyped using the nicotine metabolite ratio, a biomarker of CYP2A6 activity. SV diplotype and SNP array data were integrated and phased to generate ancestry-specific SV reference panels. Leave-one-out cross-validation was used to investigate the feasibility of CYP2A6 SV imputation. A minimal protocol requiring three Taqman CN assays for CYP2A6 SV genotyping was developed and known SV associations with activity were replicated. The first domain swap CYP2A6-CYP2A7 hybrid SV, CYP2A6*53, was identified, sequenced, and associated with lower CYP2A6 activity. In both EURs and AFRs, most SV alleles were identified using imputation (>70% and >60%, respectively); importantly, false positive rates were <1%. These results confirm that CYP2A6 SV imputation can identify most SV alleles, including a novel SV.
Collapse
Affiliation(s)
- Alec W R Langlois
- Department of Pharmacology and Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 100 Stokes Street, Toronto, ON, M6J 1H4, Canada
| | - Ahmed El-Boraie
- Department of Pharmacology and Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 100 Stokes Street, Toronto, ON, M6J 1H4, Canada
| | - Jennie G Pouget
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 100 Stokes Street, Toronto, ON, M6J 1H4, Canada
- Department of Psychiatry, University of Toronto, 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - Lisa Sanderson Cox
- Department of Population Health, University of Kansas School of Medicine, Kansas City, KS, 66160, USA
| | - Jasjit S Ahluwalia
- Departments of Behavioral and Social Sciences and Medicine, Brown University School of Public Health, Providence, RI, 02912, USA
| | - Koya Fukunaga
- Center for Integrative Medical Sciences, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Taisei Mushiroda
- Center for Integrative Medical Sciences, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Jo Knight
- Data Science Institute and Medical School, Lancaster University, Lancaster, UK
| | - Meghan J Chenoweth
- Department of Pharmacology and Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 100 Stokes Street, Toronto, ON, M6J 1H4, Canada
- Department of Psychiatry, University of Toronto, 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - Rachel F Tyndale
- Department of Pharmacology and Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 100 Stokes Street, Toronto, ON, M6J 1H4, Canada.
- Department of Psychiatry, University of Toronto, 250 College Street, Toronto, ON, M5T 1R8, Canada.
| |
Collapse
|
10
|
Siegel SD, Tindle HA, Bergen AW, Tyndale RF, Schnoll R. The Use of Biomarkers to Guide Precision Treatment for Tobacco Use. ADDICTION NEUROSCIENCE 2023; 6. [PMID: 37089247 PMCID: PMC10121195 DOI: 10.1016/j.addicn.2023.100076] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
This review summarizes the evidence to date on the development of biomarkers for personalizing the pharmacological treatment of combustible tobacco use. First, the latest evidence on FDA-approved medications is considered, demonstrating that, while these medications offer real benefits, they do not contribute to smoking cessation in approximately two-thirds of cases. Second, the case for using biomarkers to guide tobacco treatment is made based on the potential to increase medication effectiveness and uptake and reduce side effects. Next, the FDA framework of biomarker development is presented along with the state of science on biomarkers for tobacco treatment, including a review of the nicotine metabolite ratio, electroencephalographic event-related potentials, and other biomarkers utilized for risk feedback. We conclude with a discussion of the challenges and opportunities for the translation of biomarkers to guide tobacco treatment and propose priorities for future research.
Collapse
|
11
|
Bray M, Chang Y, Baker TB, Jorenby D, Carney RM, Fox L, Pham G, Stoneking F, Smock N, Amos CI, Bierut L, Chen LS. The Promise of Polygenic Risk Prediction in Smoking Cessation: Evidence From Two Treatment Trials. Nicotine Tob Res 2022; 24:1573-1580. [PMID: 35170738 PMCID: PMC9575976 DOI: 10.1093/ntr/ntac043] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/14/2021] [Accepted: 02/14/2022] [Indexed: 11/12/2022]
Abstract
INTRODUCTION Tobacco use disorder is a complex behavior with a strong genetic component. Genome-wide association studies (GWAS) on smoking behaviors allow for the creation of polygenic risk scores (PRSs) to approximate genetic vulnerability. However, the utility of smoking-related PRSs in predicting smoking cessation in clinical trials remains unknown. AIMS AND METHODS We evaluated the association between polygenic risk scores and bioverified smoking abstinence in a meta-analysis of two randomized, placebo-controlled smoking cessation trials. PRSs of smoking behaviors were created using the GWAS and Sequencing Consortium of Alcohol and Nicotine use (GSCAN) consortium summary statistics. We evaluated the utility of using individual PRS of specific smoking behavior versus a combined genetic risk that combines PRS of all four smoking behaviors. Study participants came from the Transdisciplinary Tobacco Use Research Centers (TTURCs) Study (1091 smokers of European descent), and the Genetically Informed Smoking Cessation Trial (GISC) Study (501 smokers of European descent). RESULTS PRS of later age of smoking initiation (OR [95% CI]: 1.20, [1.04-1.37], p = .0097) was significantly associated with bioverified smoking abstinence at end of treatment. In addition, the combined PRS of smoking behaviors also significantly predicted bioverified smoking abstinence (OR [95% CI] 0.71 [0.51-0.99], p = .045). CONCLUSIONS PRS of later age at smoking initiation may be useful in predicting smoking cessation at the end of treatment. A combined PRS may be a useful predictor for smoking abstinence by capturing the genetic propensity for multiple smoking behaviors. IMPLICATIONS There is a potential for polygenic risk scores to inform future clinical medicine, and a great need for evidence on whether these scores predict clinically meaningful outcomes. Our meta-analysis provides early evidence for potential utility of using polygenic risk scores to predict smoking cessation amongst smokers undergoing quit attempts, informing further work to optimize the use of polygenic risk scores in clinical care.
Collapse
Affiliation(s)
- Michael Bray
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetic Counseling, Bay Path University, Longmeadow, MA, USA
| | - Yoonhoo Chang
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Timothy B Baker
- Department of Medicine, School of Medicine and Public Health, Center for Tobacco Research and Intervention, University of Wisconsin, Madison, WI, USA
| | - Douglas Jorenby
- Department of Medicine, School of Medicine and Public Health, Center for Tobacco Research and Intervention, University of Wisconsin, Madison, WI, USA
| | - Robert M Carney
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Louis Fox
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Giang Pham
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Faith Stoneking
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Nina Smock
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- The Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Christopher I Amos
- Department of Medicine, Baylor College of Medicine, Institute for Clinical and Translational Research, Houston, TX, USA
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Laura Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- The Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Li-Shiun Chen
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- The Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
12
|
Baurley JW, Bergen AW, Ervin CM, Park SSL, Murphy SE, McMahan CS. Predicting nicotine metabolism across ancestries using genotypes. BMC Genomics 2022; 23:663. [PMID: 36131240 PMCID: PMC9490935 DOI: 10.1186/s12864-022-08884-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND There is a need to match characteristics of tobacco users with cessation treatments and risks of tobacco attributable diseases such as lung cancer. The rate in which the body metabolizes nicotine has proven an important predictor of these outcomes. Nicotine metabolism is primarily catalyzed by the enzyme cytochrone P450 (CYP2A6) and CYP2A6 activity can be measured as the ratio of two nicotine metabolites: trans-3'-hydroxycotinine to cotinine (NMR). Measurements of these metabolites are only possible in current tobacco users and vary by biofluid source, timing of collection, and protocols; unfortunately, this has limited their use in clinical practice. The NMR depends highly on genetic variation near CYP2A6 on chromosome 19 as well as ancestry, environmental, and other genetic factors. Thus, we aimed to develop prediction models of nicotine metabolism using genotypes and basic individual characteristics (age, gender, height, and weight). RESULTS We identified four multiethnic studies with nicotine metabolites and DNA samples. We constructed a 263 marker panel from filtering genome-wide association scans of the NMR in each study. We then applied seven machine learning techniques to train models of nicotine metabolism on the largest and most ancestrally diverse dataset (N=2239). The models were then validated using the other three studies (total N=1415). Using cross-validation, we found the correlations between the observed and predicted NMR ranged from 0.69 to 0.97 depending on the model. When predictions were averaged in an ensemble model, the correlation was 0.81. The ensemble model generalizes well in the validation studies across ancestries, despite differences in the measurements of NMR between studies, with correlations of: 0.52 for African ancestry, 0.61 for Asian ancestry, and 0.46 for European ancestry. The most influential predictors of NMR identified in more than two models were rs56113850, rs11878604, and 21 other genetic variants near CYP2A6 as well as age and ancestry. CONCLUSIONS We have developed an ensemble of seven models for predicting the NMR across ancestries from genotypes and age, gender and BMI. These models were validated using three datasets and associate with nicotine dosages. The knowledge of how an individual metabolizes nicotine could be used to help select the optimal path to reducing or quitting tobacco use, as well as, evaluating risks of tobacco use.
Collapse
Affiliation(s)
| | - Andrew W. Bergen
- BioRealm LLC, 340 S Lemon Ave, Suite 1931, 91789 Walnut, CA USA
- Oregon Research Institute, 3800 Sports Way, 97477 Springfield, OR USA
| | | | | | - Sharon E. Murphy
- University of Minnesota, 2231 6th St SE, 55455 Minneapolis, MN USA
| | | |
Collapse
|
13
|
Langlois AW, El-Boraie A, Fukunaga K, Mushiroda T, Kubo M, Lerman C, Knight J, Scherer SE, Chenoweth MJ, Tyndale RF. Accuracy and applications of sequencing and genotyping approaches for CYP2A6 and homologous genes. Pharmacogenet Genomics 2022; 32:159-172. [PMID: 35190513 PMCID: PMC9081136 DOI: 10.1097/fpc.0000000000000466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES We evaluated multiple genotyping/sequencing approaches in a homologous region of chromosome 19, and investigated associations of two common 3'-UTR CYP2A6 variants with activity in vivo. METHODS Individuals (n = 1704) of European and African ancestry were phenotyped for the nicotine metabolite ratio (NMR), an index of CYP2A6 activity, and genotyped/sequenced using deep amplicon exon sequencing, SNP array, genotype imputation and targeted capture sequencing. Amplicon exon sequencing was the gold standard to which other methods were compared within-individual for CYP2A6, CYP2A7, CYP2A13, and CYP2B6 exons to identify highly discordant positions. Linear regression models evaluated the association of CYP2A6*1B and rs8192733 genotypes (coded additively) with logNMR. RESULTS All approaches were ≤2.6% discordant with the gold standard; discordant calls were concentrated at few positions. Fifteen positions were discordant in >10% of individuals, with 12 appearing in regions of high identity between homologous genes (e.g. CYP2A6 and CYP2A7). For six, allele frequencies in our study and online databases were discrepant, suggesting errors in online sources. In the European-ancestry group (n = 935), CYP2A6*1B and rs8192733 were associated with logNMR (P < 0.001). A combined model found main effects of both variants on increasing logNMR. Similar trends were found in those of African ancestry (n = 506). CONCLUSION Multiple genotyping/sequencing approaches used in this chromosome 19 region contain genotyping/sequencing errors, as do online databases. Gene-specific primers and SNP array probes must consider gene homology; short-read sequencing of related genes in a single reaction should be avoided. Using improved sequencing approaches, we characterized two gain-of-function 3'-UTR variants, including the relatively understudied rs8192733.
Collapse
Affiliation(s)
- Alec W.R. Langlois
- Department of Pharmacology & Toxicology, University of Toronto; 1 King’s College Circle, Toronto, ON, M5S 1A8, Canada. Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health 100 Stokes Street, Toronto, ON, M6J 1H4, Canada
| | - Ahmed El-Boraie
- Department of Pharmacology & Toxicology, University of Toronto; 1 King’s College Circle, Toronto, ON, M5S 1A8, Canada. Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health 100 Stokes Street, Toronto, ON, M6J 1H4, Canada
| | - Koya Fukunaga
- Center for Integrative Medical Sciences, RIKEN; 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Taisei Mushiroda
- Center for Integrative Medical Sciences, RIKEN; 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Michiaki Kubo
- Center for Integrative Medical Sciences, RIKEN; 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Caryn Lerman
- Department of Psychiatry and USC Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Avenue, Cancer Center, Los Angeles, CA, 90089, United States
| | - Jo Knight
- Data Science Institute and Lancaster University Medical School, Lancaster, UK
- Department of Psychiatry, University of Toronto; 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - Steven E. Scherer
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Meghan J. Chenoweth
- Department of Pharmacology & Toxicology, University of Toronto; 1 King’s College Circle, Toronto, ON, M5S 1A8, Canada. Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health 100 Stokes Street, Toronto, ON, M6J 1H4, Canada
| | - Rachel F. Tyndale
- Department of Pharmacology & Toxicology, University of Toronto; 1 King’s College Circle, Toronto, ON, M5S 1A8, Canada. Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health 100 Stokes Street, Toronto, ON, M6J 1H4, Canada
- Department of Psychiatry, University of Toronto; 250 College Street, Toronto, ON, M5T 1R8, Canada
| |
Collapse
|
14
|
James NT, Breeyear JH, Caprioli R, Edwards T, Hachey B, Kannankeril PJ, Keaton JM, Marshall MD, Van Driest SL, Choi L. Population pharmacokinetic analysis of dexmedetomidine in children using real-world data from electronic health records and remnant specimens. Br J Clin Pharmacol 2022; 88:2885-2898. [PMID: 34957589 PMCID: PMC9106818 DOI: 10.1111/bcp.15194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/18/2021] [Accepted: 12/14/2021] [Indexed: 11/30/2022] Open
Abstract
AIMS Our objectives were to perform a population pharmacokinetic analysis of dexmedetomidine in children using remnant specimens and electronic health records (EHRs) and explore the impact of patient's characteristics and pharmacogenetics on dexmedetomidine clearance. METHODS Dexmedetomidine dosing and patient data were gathered from EHRs and combined with opportunistically sampled remnant specimens. Population pharmacokinetic models were developed using nonlinear mixed-effects modelling. Stage 1 developed a model without genotype variables; Stage 2 added pharmacogenetic effects. RESULTS Our final study population included 354 post-cardiac surgery patients aged 0-22 years (median 16 mo). The data were best described with a 2-compartment model with allometric scaling for weight and Hill maturation function for age. Population parameter estimates and 95% confidence intervals were 27.3 L/h (24.0-31.1 L/h) for total clearance, 161 L (139-187 L) for central compartment volume of distribution, 26.0 L/h (22.5-30.0 L/h) for intercompartmental clearance and 7903 L (5617-11 119 L) for peripheral compartment volume of distribution. The estimate for postmenstrual age when 50% of adult clearance is achieved was 42.0 weeks (41.5-42.5 weeks) and the Hill coefficient estimate was 7.04 (6.99-7.08). Genotype was not statistically or clinically significant. CONCLUSION Our study demonstrates the use of real-world EHR data and remnant specimens to perform a population pharmacokinetic analysis and investigate covariate effects in a large paediatric population. Weight and age were important predictors of clearance. We did not find evidence for pharmacogenetic effects of UGT1A4 or UGT2B10 genotype or CYP2A6 risk score.
Collapse
Affiliation(s)
- Nathan T. James
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Joseph H. Breeyear
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Richard Caprioli
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Todd Edwards
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Brian Hachey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Prince J. Kannankeril
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
- Center for Pediatric Precision Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Jacob M. Keaton
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Matthew D. Marshall
- Department of Pharmaceutical Services, Vanderbilt University Medical Center, Nashville, TN
| | - Sara L. Van Driest
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
- Center for Pediatric Precision Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Leena Choi
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
15
|
Johnson D, Wilke MA, Lyle SM, Kowalec K, Jorgensen A, Wright GE, Drögemöller BI. A systematic review and analysis of the use of polygenic scores in pharmacogenomics. Clin Pharmacol Ther 2021; 111:919-930. [PMID: 34953075 DOI: 10.1002/cpt.2520] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/18/2021] [Indexed: 11/09/2022]
Abstract
Polygenic scores (PGS) have emerged as promising tools for complex trait risk prediction. The application of these scores to pharmacogenomics provides new opportunities to improve the prediction of treatment outcomes. To gain insight into this area of research, we conducted a systematic review and accompanying analysis. This review uncovered 51 papers examining the use of PGS for drug-related outcomes, with the majority of these papers focusing on the treatment of psychiatric disorders (n=30). Due to difficulties in collecting large cohorts of uniformly treated patients, the majority of pharmacogenomic PGS were derived from large-scale genome-wide association studies of disease phenotypes that were related to the pharmacogenomic phenotypes under investigation (e.g. schizophrenia-derived PGS for antipsychotic response prediction). Examination of the research participants included in these studies revealed that the majority of cohort participants were of European descent (78.4%). These biases were also reflected in research affiliations, which were heavily weighted towards institutions located in Europe and North America, with no first or last authors originating from institutions in Africa or South Asia. There was also substantial variability in the methods used to develop PGS, with between 3 and 6.6 million variants included in the PGS. Finally, we observed significant inconsistencies in the reporting of PGS analyses and results, particularly in terms of risk model development and application, coupled with a lack of data transparency and availability, with only three pharmacogenomics PGS deposited on the PGS Catalog. These findings highlight current gaps and key areas for future pharmacogenomic PGS research.
Collapse
Affiliation(s)
- Danielle Johnson
- Department of Health Data Science, University of Liverpool, Liverpool, UK
| | - MacKenzie Ap Wilke
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Sarah M Lyle
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Kaarina Kowalec
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Andrea Jorgensen
- Department of Health Data Science, University of Liverpool, Liverpool, UK
| | - Galen Eb Wright
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre and Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Britt I Drögemöller
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,CancerCare Manitoba Research Institute, Winnipeg, MB, Canada.,Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
16
|
Bergen AW, McMahan CS, McGee S, Ervin CM, Tindle HA, Le Marchand L, Murphy SE, Stram DO, Patel YM, Park SL, Baurley JW. Multiethnic Prediction of Nicotine Biomarkers and Association With Nicotine Dependence. Nicotine Tob Res 2021; 23:2162-2169. [PMID: 34313775 PMCID: PMC8757310 DOI: 10.1093/ntr/ntab124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/11/2021] [Indexed: 01/16/2023]
Abstract
INTRODUCTION The nicotine metabolite ratio and nicotine equivalents are measures of metabolism rate and intake. Genome-wide prediction of these nicotine biomarkers in multiethnic samples will enable tobacco-related biomarker, behavioral, and exposure research in studies without measured biomarkers. AIMS AND METHODS We screened genetic variants genome-wide using marginal scans and applied statistical learning algorithms on top-ranked genetic variants, age, ethnicity and sex, and, in additional modeling, cigarettes per day (CPD), (in additional modeling) to build prediction models for the urinary nicotine metabolite ratio (uNMR) and creatinine-standardized total nicotine equivalents (TNE) in 2239 current cigarette smokers in five ethnic groups. We predicted these nicotine biomarkers using model ensembles and evaluated external validity using dependence measures in 1864 treatment-seeking smokers in two ethnic groups. RESULTS The genomic regions with the most selected and included variants for measured biomarkers were chr19q13.2 (uNMR, without and with CPD) and chr15q25.1 and chr10q25.3 (TNE, without and with CPD). We observed ensemble correlations between measured and predicted biomarker values for the uNMR and TNE without (with CPD) of 0.67 (0.68) and 0.65 (0.72) in the training sample. We observed inconsistency in penalized regression models of TNE (with CPD) with fewer variants at chr15q25.1 selected and included. In treatment-seeking smokers, predicted uNMR (without CPD) was significantly associated with CPD and predicted TNE (without CPD) with CPD, time-to-first-cigarette, and Fagerström total score. CONCLUSIONS Nicotine metabolites, genome-wide data, and statistical learning approaches developed novel robust predictive models for urinary nicotine biomarkers in multiple ethnic groups. Predicted biomarker associations helped define genetically influenced components of nicotine dependence. IMPLICATIONS We demonstrate development of robust models and multiethnic prediction of the uNMR and TNE using statistical and machine learning approaches. Variants included in trained models for nicotine biomarkers include top-ranked variants in multiethnic genome-wide studies of smoking behavior, nicotine metabolites, and related disease. Association of the two predicted nicotine biomarkers with Fagerström Test for Nicotine Dependence items supports models of nicotine biomarkers as predictors of physical dependence and nicotine exposure. Predicted nicotine biomarkers may facilitate tobacco-related disease and treatment research in samples with genomic data and limited nicotine metabolite or tobacco exposure data.
Collapse
Affiliation(s)
- Andrew W Bergen
- Oregon Research Institute, Eugene, OR, USA
- BioRealm, LLC, Walnut, CA, USA
| | - Christopher S McMahan
- School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC, USA
| | | | | | - Hilary A Tindle
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Health Administration-Tennessee Valley Healthcare System, Geriatric Research, Education and Clinical Center (GRECC), Nashville, TN, USA
| | - Loïc Le Marchand
- Cancer Epidemiology and University of Hawaii Cancer Center, University of Hawai’i, Honolulu, HI, USA
| | - Sharon E Murphy
- Biochemistry, Molecular Biology, and Biophysics and Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Daniel O Stram
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yesha M Patel
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sungshim L Park
- Cancer Epidemiology and University of Hawaii Cancer Center, University of Hawai’i, Honolulu, HI, USA
| | | |
Collapse
|
17
|
El-Boraie A, Tanner JA, Zhu AZX, Claw KG, Prasad B, Schuetz EG, Thummel KE, Fukunaga K, Mushiroda T, Kubo M, Benowitz NL, Lerman C, Tyndale RF. Functional characterization of novel rare CYP2A6 variants and potential implications for clinical outcomes. Clin Transl Sci 2021; 15:204-220. [PMID: 34476898 PMCID: PMC8742641 DOI: 10.1111/cts.13135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 11/28/2022] Open
Abstract
CYP2A6 activity, phenotyped by the nicotine metabolite ratio (NMR), is a predictor of several smoking behaviors, including cessation and smoking‐related disease risk. The heritability of the NMR is 60–80%, yet weighted genetic risk scores (wGRSs) based on common variants explain only 30–35%. Rare variants (minor allele frequency <1%) are hypothesized to explain some of this missing heritability. We present two targeted sequencing studies where rare protein‐coding variants are functionally characterized in vivo, in silico, and in vitro to examine this hypothesis. In a smoking cessation trial, 1687 individuals were sequenced; characterization measures included the in vivo NMR, in vitro protein expression, and metabolic activity measured from recombinant proteins. In a human liver bank, 312 human liver samples were sequenced; measures included RNA expression, protein expression, and metabolic activity from extracted liver tissue. In total, 38 of 47 rare coding variants identified were novel; characterizations ranged from gain‐of‐function to loss‐of‐function. On a population level, the portion of NMR variation explained by the rare coding variants was small (~1%). However, upon incorporation, the accuracy of the wGRS was improved for individuals with rare protein‐coding variants (i.e., the residuals were reduced), and approximately one‐third of these individuals (12/39) were re‐assigned from normal to slow metabolizer status. Rare coding variants can alter an individual’s CYP2A6 activity; their integration into wGRSs through precise functional characterization is necessary to accurately assess clinical outcomes and achieve precision medicine for all. Investigation into noncoding variants is warranted to further explain the missing heritability in the NMR.
Collapse
Affiliation(s)
- Ahmed El-Boraie
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health and Division of Brain and Therapeutics, Toronto, ON, Canada
| | | | - Andy Z X Zhu
- Department of Quantitative Translational Sciences, Takeda Pharmaceuticals, Cambridge, Massachusetts, USA
| | - Katrina G Claw
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Aurora, Colorado, USA
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | - Erin G Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Kenneth E Thummel
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Koya Fukunaga
- Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
| | | | - Michiaki Kubo
- Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
| | - Neal L Benowitz
- Clinical Pharmacology Research Program, Division of Cardiology, Department of Medicine and Center for Tobacco Control Research and Education, University of California San Francisco, San Francisco, California, USA
| | - Caryn Lerman
- Department of Psychiatry, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Rachel F Tyndale
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health and Division of Brain and Therapeutics, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
18
|
El-Boraie A, Tyndale RF. The Role of Pharmacogenetics in Smoking. Clin Pharmacol Ther 2021; 110:599-606. [PMID: 34165800 DOI: 10.1002/cpt.2345] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/21/2021] [Indexed: 11/09/2022]
Abstract
Smoking continues to be the leading preventable contributor to death worldwide. Twin studies have suggested a significant genetic contribution underlying most smoking behaviors (40-70% heritability estimates). Candidate gene studies of smoking phenotypes have identified several pharmacogenes implicated in nicotine's pharmacokinetics (CYP2A6, CYP2B6, CYP2A13, FMOs, UGTs, and OCT2), and nicotine's pharmacodynamic response in the central nervous system (nicotinic acetylcholine receptors, as well as through the dopaminergic and serotonergic systems). Subsequent genome-wide association studies (GWAS) have confirmed the role of certain pharmacogenes through hypothesis-free approaches. Furthermore, pharmacogenes that alter the efficacy of smoking cessation pharmacotherapies, including nicotine replacement therapies, bupropion, and varenicline, may also impact quitting success. In this brief review we highlight the role of pharmacogenes in smoking behaviors, such as smoking status, consumption, nicotine dependence, spontaneous quitting, and altered abstinence to pharmacotherapies; We provide examples from initial candidate gene associations and subsequent GWAS. The genes CYP2A6 and the CHRNA5-A3-B4 confer the most replicated sources of genetic variation in smoking behaviors, likely due to their importance in nicotine's pharmacology. We will also provide examples of genetic scoring approaches, and the role of rare variants in explaining a portion of the missing heritability in smoking behaviors.
Collapse
Affiliation(s)
- Ahmed El-Boraie
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Rachel F Tyndale
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Liakoni E, Tyndale RF, Jacob P, Dempsey DA, Addo N, Benowitz NL. Effect of race and glucuronidation rates on the relationship between nicotine metabolite ratio and nicotine clearance. Pharmacogenet Genomics 2021; 31:97-107. [PMID: 33675323 PMCID: PMC8184575 DOI: 10.1097/fpc.0000000000000427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To investigate if the nicotine metabolite ratio (NMR, the ratio of nicotine metabolites 3'-hydroxycotinine/cotinine) is a reliable phenotypic biomarker for nicotine clearance across races, and as a function of differences in the rate of nicotine, cotinine and 3'-hydroxycotinine glucuronidation and UGT genotypes. METHODS Participants [Caucasians (Whites), African Americans (Blacks) and Asian-Americans (Asians)] received an oral solution of deuterium-labeled nicotine and its metabolite cotinine. Plasma and saliva concentrations of nicotine and cotinine were used to determine oral clearances. Rates of glucuronidation were assessed from urine glucuronide/parent ratios, and UGT2B10 and UGT2B17 genotypes from DNA. RESULTS Among the 227 participants, 96 (42%) were White, 67 (30%) Asian and 64 (28%) Black. Compared to the other two races, Whites had higher nicotine and cotinine total oral clearance, Blacks had lower nicotine and cotinine glucuronidation rates and Asians had lower 3'-hydroxycotinine glucuronidation rates. A strong positive correlation (correlations coefficients 0.77-0.84; P < 0.001) between NMR and nicotine oral clearance was found for all three races, and NMR remained a strong predictor for the nicotine oral clearance while adjusting for race, sex and age. Neither the metabolite glucuronidation ratios nor the UGT genotypes had significant effects on the ability of NMR to predict nicotine oral clearance. CONCLUSION NMR appears to be a reliable phenotypic biomarker for nicotine clearance across races, glucuronidation phenotypes and genotypes. Racial differences in the relationships between NMR, smoking behaviors and addiction are unlikely to be related to an inadequate estimation of nicotine clearance on the basis of NMR.
Collapse
Affiliation(s)
- Evangelia Liakoni
- Program in Clinical Pharmacology, Division of Cardiology, Department of Medicine, University of California, San Francisco, California, USA
- Clinical Pharmacology and Toxicology, Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Rachel F Tyndale
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Departments of Pharmacology & Toxicology and Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Peyton Jacob
- Program in Clinical Pharmacology, Division of Cardiology, Department of Medicine, University of California, San Francisco, California, USA
- Center for Tobacco Control Research and Education, University of California, San Francisco, California, USA
| | - Delia A Dempsey
- Program in Clinical Pharmacology, Division of Cardiology, Department of Medicine, University of California, San Francisco, California, USA
- Center for Tobacco Control Research and Education, University of California, San Francisco, California, USA
| | - Newton Addo
- Program in Clinical Pharmacology, Division of Cardiology, Department of Medicine, University of California, San Francisco, California, USA
| | - Neal L Benowitz
- Program in Clinical Pharmacology, Division of Cardiology, Department of Medicine, University of California, San Francisco, California, USA
- Center for Tobacco Control Research and Education, University of California, San Francisco, California, USA
| |
Collapse
|
20
|
Buchwald J, Chenoweth MJ, Palviainen T, Zhu G, Benner C, Gordon S, Korhonen T, Ripatti S, Madden PAF, Lehtimäki T, Raitakari OT, Salomaa V, Rose RJ, George TP, Lerman C, Pirinen M, Martin NG, Kaprio J, Loukola A, Tyndale RF. Genome-wide association meta-analysis of nicotine metabolism and cigarette consumption measures in smokers of European descent. Mol Psychiatry 2021; 26:2212-2223. [PMID: 32157176 PMCID: PMC7483250 DOI: 10.1038/s41380-020-0702-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022]
Abstract
Smoking behaviors, including amount smoked, smoking cessation, and tobacco-related diseases, are altered by the rate of nicotine clearance. Nicotine clearance can be estimated using the nicotine metabolite ratio (NMR) (ratio of 3'hydroxycotinine/cotinine), but only in current smokers. Advancing the genomics of this highly heritable biomarker of CYP2A6, the main metabolic enzyme for nicotine, will also enable investigation of never and former smokers. We performed the largest genome-wide association study (GWAS) to date of the NMR in European ancestry current smokers (n = 5185), found 1255 genome-wide significant variants, and replicated the chromosome 19 locus. Fine-mapping of chromosome 19 revealed 13 putatively causal variants, with nine of these being highly putatively causal and mapping to CYP2A6, MAP3K10, ADCK4, and CYP2B6. We also identified a putatively causal variant on chromosome 4 mapping to TMPRSS11E and demonstrated an association between TMPRSS11E variation and a UGT2B17 activity phenotype. Together the 14 putatively causal SNPs explained ~38% of NMR variation, a substantial increase from the ~20 to 30% previously explained. Our additional GWASs of nicotine intake biomarkers showed that cotinine and smoking intensity (cotinine/cigarettes per day (CPD)) shared chromosome 19 and chromosome 4 loci with the NMR, and that cotinine and a more accurate biomarker, cotinine + 3'hydroxycotinine, shared a chromosome 15 locus near CHRNA5 with CPD and Pack-Years (i.e., cumulative exposure). Understanding the genetic factors influencing smoking-related traits facilitates epidemiological studies of smoking and disease, as well as assists in optimizing smoking cessation support, which in turn will reduce the enormous personal and societal costs associated with smoking.
Collapse
Affiliation(s)
- Jadwiga Buchwald
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Meghan J. Chenoweth
- Campbell Family Mental Health Research Institute, CAMH, and Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada
| | - Teemu Palviainen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Gu Zhu
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Christian Benner
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Scott Gordon
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Tellervo Korhonen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland,Department of Public Health, University of Helsinki, Helsinki, Finland,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Pamela A. F. Madden
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, United States
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Finland,Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Olli T. Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland,Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland,Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Veikko Salomaa
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| | - Richard J. Rose
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, United States
| | - Tony P. George
- Division of Addictions, Centre for Addiction and Mental Health, Toronto, Ontario, Canada and Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Caryn Lerman
- USC Norris Comprehensive Cancer Center at Keck School of Medicine, University of Southern California, Los Angeles, United States
| | - Matti Pirinen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland,Department of Public Health, University of Helsinki, Helsinki, Finland,Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | | | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland,Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Anu Loukola
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland,Department of Pathology, Medicum, University of Helsinki, Helsinki, Finland
| | - Rachel F. Tyndale
- Campbell Family Mental Health Research Institute, CAMH, and Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada,Division of Addictions, Centre for Addiction and Mental Health, Toronto, Ontario, Canada and Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto, Toronto, Canada
| |
Collapse
|
21
|
Murphy SE. Biochemistry of nicotine metabolism and its relevance to lung cancer. J Biol Chem 2021; 296:100722. [PMID: 33932402 PMCID: PMC8167289 DOI: 10.1016/j.jbc.2021.100722] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/27/2022] Open
Abstract
Nicotine is the key addictive constituent of tobacco. It is not a carcinogen, but it drives smoking and the continued exposure to the many carcinogens present in tobacco. The investigation into nicotine biotransformation has been ongoing for more than 60 years. The dominant pathway of nicotine metabolism in humans is the formation of cotinine, which occurs in two steps. The first step is cytochrome P450 (P450, CYP) 2A6–catalyzed 5′-oxidation to an iminium ion, and the second step is oxidation of the iminium ion to cotinine. The half-life of nicotine is longer in individuals with low P450 2A6 activity, and smokers with low activity often decrease either the intensity of their smoking or the number of cigarettes they use compared with those with “normal” activity. The effect of P450 2A6 activity on smoking may influence one's tobacco-related disease risk. This review provides an overview of nicotine metabolism and a summary of the use of nicotine metabolite biomarkers to define smoking dose. Some more recent findings, for example, the identification of uridine 5′-diphosphoglucuronosyltransferase 2B10 as the catalyst of nicotine N-glucuronidation, are discussed. We also describe epidemiology studies that establish the contribution of nicotine metabolism and CYP2A6 genotype to lung cancer risk, particularly with respect to specific racial/ethnic groups, such as those with Japanese, African, or European ancestry. We conclude that a model of nicotine metabolism and smoking dose could be combined with other lung cancer risk variables to more accurately identify former smokers at the highest risk of lung cancer and to intervene accordingly.
Collapse
Affiliation(s)
- Sharon E Murphy
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
22
|
Butler K, Chenoweth MJ, El-Boraie A, Giratallah H, Kowalczyk WJ, Heishman SJ, Tyndale RF, Le Foll B. Impact of CYP2A6 Activity on Nicotine Reinforcement and Cue-Reactivity in Daily Smokers. Nicotine Tob Res 2021; 23:1735-1743. [PMID: 33823003 DOI: 10.1093/ntr/ntab064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 04/02/2021] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Variation in CYP2A6, the primary enzyme responsible for nicotine metabolism, is associated with nicotine dependence, cigarette consumption, and abstinence outcomes in smokers. The impact of CYP2A6 activity on nicotine reinforcement and tobacco cue-reactivity, mechanisms that may contribute to these previous associations, has not been fully evaluated. AIMS AND METHODS CYP2A6 activity was indexed using 3 genetic approaches in 104 daily smokers completing forced-choice and cue-induced craving tasks assessing nicotine reinforcement and tobacco cue-reactivity, respectively. First, smokers were stratified by the presence or absence of reduced/loss-of-function CYP2A6 gene variants (normal vs. reduced metabolizers). As nicotine metabolite ratio (NMR) is a reliable biomarker of CYP2A6 activity, our second and third approaches used additional genetic variants identified in genome-wide association studies of NMR to create a weighted genetic risk score (wGRS) to stratify smokers (fast vs. slow metabolizers) and calculate a wGRS-derived NMR. RESULTS Controlling for race and sex, normal metabolizers (vs. reduced) selected a greater proportion of puffs from nicotine-containing cigarettes (vs. denicotinized) on the forced-choice task (p = .031). In confirmatory analyses, wGRS-based stratification (fast vs. slow metabolizers) produced similar findings. Additionally, wGRS-derived NMR, which correlated with actual NMR assessed in a subset of participants (n = 55), was positively associated with the proportion of puffs from nicotine-containing cigarettes controlling for race and sex (p = .015). None of the CYP2A6 indices were associated with tobacco cue-reactivity in minimally deprived smokers. CONCLUSIONS Findings suggest increased nicotine reinforcement is exhibited by smokers with high CYP2A6 activity, which may contribute to heavier smoking and poorer cessation outcomes previously reported in faster metabolizers. IMPLICATIONS CYP2A6 activity is a key determinant of smoking behavior and outcomes. Therefore, these findings support the targeting of CYP2A6 activity, either therapeutically or as a clinically relevant biomarker in a precision medicine approach, for tobacco use disorder treatment.
Collapse
Affiliation(s)
- Kevin Butler
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Meghan J Chenoweth
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Ahmed El-Boraie
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Haidy Giratallah
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - William J Kowalczyk
- National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA.,Department of Psychology, Hartwick College, Oneonta, NY, USA
| | - Stephen J Heishman
- National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | - Rachel F Tyndale
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Acute Care Program, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
23
|
El-Boraie A, Chenoweth MJ, Pouget JG, Benowitz NL, Fukunaga K, Mushiroda T, Kubo M, Nollen NL, Sanderson Cox L, Lerman C, Knight J, Tyndale RF. Transferability of Ancestry-Specific and Cross-Ancestry CYP2A6 Activity Genetic Risk Scores in African and European Populations. Clin Pharmacol Ther 2020; 110:975-985. [PMID: 33300144 DOI: 10.1002/cpt.2135] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022]
Abstract
The Nicotine Metabolite Ratio (NMR; 3-hydroxycotinine/cotinine), a highly heritable index of nicotine metabolic inactivation by the CYP2A6 enzyme, is associated with numerous smoking behaviors and diseases, as well as unique cessation outcomes. However, the NMR cannot be measured in nonsmokers, former smokers, or intermittent smokers, for example, in evaluating tobacco-related disease risk. Traditional pharmacogenetic groupings based on CYP2A6 * alleles capture a modest portion of NMR variation. We previously created a CYP2A6 weighted genetic risk score (wGRS) for European (EUR)-ancestry populations by incorporating independent signals from genome-wide association studies to capture a larger proportion of NMR variation. However, CYP2A6 genetic architecture is unique to ancestral populations. In this study, we developed and replicated an African-ancestry (AFR) wGRS, which captured 30-35% of the variation in NMR. We demonstrated model robustness against known environmental sources of NMR variation. Furthermore, despite the vast diversity within AFR populations, we showed that the AFR wGRS was consistent between different US geographical regions and unaltered by fine AFR population substructure. The AFR and EUR wGRSs can distinguish slow from normal metabolizers in their respective populations, and were able to reflect unique smoking cessation pharmacotherapy outcomes previously observed for the NMR. Additionally, we evaluated the utility of a cross-ancestry wGRS, and the capacity of EUR, AFR, and cross-ancestry wGRSs to predict the NMR within stratified or admixed AFR-EUR populations. Overall, our findings establish the clinical benefit of applying ancestry-specific wGRSs, demonstrating superiority of the AFR wGRS in AFRs.
Collapse
Affiliation(s)
- Ahmed El-Boraie
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health and Division of Brain and Therapeutics, Toronto, Ontario, Canada
| | - Meghan J Chenoweth
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health and Division of Brain and Therapeutics, Toronto, Ontario, Canada
| | - Jennie G Pouget
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health and Division of Brain and Therapeutics, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Neal L Benowitz
- Clinical Pharmacology Research Program, Division of Cardiology, Department of Medicine and Center for Tobacco Control Research and Education, University of California San Francisco, San Francisco, California, USA
| | - Koya Fukunaga
- Center for Integrative Medical Sciences, RIKEN, Kanagawa, Japan
| | | | - Michiaki Kubo
- Center for Integrative Medical Sciences, RIKEN, Kanagawa, Japan
| | - Nicole L Nollen
- Department of Population Health, School of Medicine, University of Kansas, Kansas City, Kansas, USA
| | - Lisa Sanderson Cox
- Department of Population Health, School of Medicine, University of Kansas, Kansas City, Kansas, USA
| | - Caryn Lerman
- Department of Psychiatry and USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Jo Knight
- Data Science Institute and Medical School, Lancaster University, Lancaster, UK
| | - Rachel F Tyndale
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health and Division of Brain and Therapeutics, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Bray MJ, Chen LS, Fox L, Hancock DB, Culverhouse RC, Hartz SM, Johnson EO, Liu M, McKay JD, Saccone NL, Hokanson JE, Vrieze SI, Tyndale RF, Baker TB, Bierut LJ. Dissecting the genetic overlap of smoking behaviors, lung cancer, and chronic obstructive pulmonary disease: A focus on nicotinic receptors and nicotine metabolizing enzyme. Genet Epidemiol 2020; 44:748-758. [PMID: 32803792 PMCID: PMC7793026 DOI: 10.1002/gepi.22331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/14/2020] [Accepted: 06/18/2020] [Indexed: 12/17/2022]
Abstract
Smoking is a major contributor to lung cancer and chronic obstructive pulmonary disease (COPD). Two of the strongest genetic associations of smoking-related phenotypes are the chromosomal regions 15q25.1, encompassing the nicotinic acetylcholine receptor subunit genes CHRNA5-CHRNA3-CHRNB4, and 19q13.2, encompassing the nicotine metabolizing gene CYP2A6. In this study, we examined genetic relations between cigarettes smoked per day, smoking cessation, lung cancer, and COPD. Data consisted of genome-wide association study summary results. Genetic correlations were estimated using linkage disequilibrium score regression software. For each pair of outcomes, z-score-z-score (ZZ) plots were generated. Overall, heavier smoking and decreased smoking cessation showed positive genetic associations with increased lung cancer and COPD risk. The chromosomal region 19q13.2, however, showed a different correlational pattern. For example, the effect allele-C of the sentinel SNP (rs56113850) within CYP2A6 was associated with an increased risk of heavier smoking (z-score = 19.2; p = 1.10 × 10-81 ), lung cancer (z-score = 8.91; p = 5.02 × 10-19 ), and COPD (z-score = 4.04; p = 5.40 × 10-5 ). Surprisingly, this allele-C (rs56113850) was associated with increased smoking cessation (z-score = -8.17; p = 2.52 × 10-26 ). This inverse relationship highlights the need for additional investigation to determine how CYP2A6 variation could increase smoking cessation while also increasing the risk of lung cancer and COPD likely through increased cigarettes smoked per day.
Collapse
Affiliation(s)
- Michael J. Bray
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - Li-Shiun Chen
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
- The Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
| | - Louis Fox
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - Dana B. Hancock
- Center for Omics Discovery and Epidemiology, Behavioral Health Research Division, RTI International, Research Triangle Park, NC
| | - Robert C. Culverhouse
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO
| | - Sarah M. Hartz
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - Eric O. Johnson
- Center for Omics Discovery and Epidemiology, Behavioral Health Research Division, RTI International, Research Triangle Park, NC
- Fellow Program, RTI International, Research Triangle Park, NC
| | - Mengzhen Liu
- Department of Psychology, University of Minnesota, Minnesota, MN
| | - James D. McKay
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Nancy L. Saccone
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO
- Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | - John E. Hokanson
- Department of Epidemiology, University of Colorado, Denver, Aurora, CO
| | - Scott I. Vrieze
- Department of Psychology, University of Minnesota, Minnesota, MN
| | - Rachel F. Tyndale
- Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Timothy B. Baker
- Center for Tobacco Research and Intervention, University of Wisconsin, School of Medicine and Public Health, Madison, WI
| | - Laura J. Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
- The Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|