1
|
Arbuckle K, Sharma R, Drake FE, Usiyevich A, Usman S, Matikainen‐Ankney BA. Isocaloric high-fat diet decreases motivation in the absence of obesity. Obesity (Silver Spring) 2025; 33:243-249. [PMID: 39838525 PMCID: PMC11774000 DOI: 10.1002/oby.24227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/11/2024] [Accepted: 12/01/2024] [Indexed: 01/23/2025]
Abstract
OBJECTIVE Obesogenic diets induce persistent changes in physical activity and motivation. It remains unclear whether these behavioral changes are driven by weight gain or exposure to obesogenic diets themselves. We investigated how exposure to a high-fat diet (HFD) in the absence of obesity affected physical activity, food motivation, and circadian patterns in mice. METHODS C57Bl6/J mice were given ~80% of their daily calories in an HFD, known as isocaloric feeding, along with ad libitum access to laboratory chow. Weekly weights, physical activity levels, circadian patterns, operant behavior, and peripheral blood metabolic markers were measured to determine how an isocaloric HFD affected behavior and physiology. Following this period, the same cohort was exposed to an ad libitum HFD to monitor changes in weight gain and physical activity. RESULTS An isocaloric HFD did not significantly increase weight or change physical activity levels. An isocaloric HFD decreased motivation for sucrose pellets but did not alter weight gain with ad libitum HFD exposure. CONCLUSIONS An isocaloric HFD was associated with decreased motivation for sucrose, as observed in reports of rodent models of obesity. These findings suggest that exposure to an obesogenic diet, even in the absence of significant weight gain, can induce behavioral changes associated with obesity.
Collapse
Affiliation(s)
- Kenny Arbuckle
- Behavioral and Systems Neuroscience, Psychology DepartmentRutgers UniversityPiscatawayNew JerseyUSA
| | - Reema Sharma
- Behavioral and Systems Neuroscience, Psychology DepartmentRutgers UniversityPiscatawayNew JerseyUSA
| | - Frannie E. Drake
- Behavioral and Systems Neuroscience, Psychology DepartmentRutgers UniversityPiscatawayNew JerseyUSA
- Department of NeuroscienceCarthage CollegeKenoshaWisconsinUSA
| | - Abigail Usiyevich
- Behavioral and Systems Neuroscience, Psychology DepartmentRutgers UniversityPiscatawayNew JerseyUSA
| | - Sarah Usman
- Behavioral and Systems Neuroscience, Psychology DepartmentRutgers UniversityPiscatawayNew JerseyUSA
| | | |
Collapse
|
2
|
Finnell JE, Ferrario CR. Applying behavioral economics-based approaches to examine the effects of liquid sucrose consumption on motivation. Appetite 2023; 186:106556. [PMID: 37044175 PMCID: PMC10575208 DOI: 10.1016/j.appet.2023.106556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/14/2023]
Abstract
Overconsumption of sugar contributes to obesity in part by changing the activity of brain areas that drive the motivation to seek out and consume food. Sugar-sweetened beverages are the most common source of excess dietary sugar and contribute to weight gain. However, very few studies have assessed the effects of liquid sucrose consumption on motivation. This is due in part to the need for novel approaches to assess motivation in pre-clinical models. To address this, we developed a within-session behavioral economics procedure to assess motivation for liquid sucrose. We first established and validated the procedure: we tested several sucrose concentrations, evaluated sensitivity of the procedure to satiety, and optimized several testing parameters. We then applied this new procedure to determine how intermittent vs. continuous access to liquid sucrose (1 M) in the home cage affects sucrose motivation. We found that intermittent liquid sucrose access results in an escalation of sucrose intake in the home cage, without altering motivation for liquid sucrose during demand testing (1 M or 0.25 M) compared to water-maintained controls. In contrast, continuous home cage access selectively blunted motivation for 1 M sucrose, while motivation for 0.25 M sucrose was similar to intermittent sucrose and control groups. Thus, effects of continuous home cage liquid sucrose access were selective to the familiar sucrose concentration. Finally, effects of sucrose on motivation recovered after removal of liquid sucrose from the diet. These data provide a new approach to examine motivation for liquid sucrose and show that escalation of intake and motivation for sucrose are dissociable processes.
Collapse
Affiliation(s)
- Julie E Finnell
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Carrie R Ferrario
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109, USA; Psychology Department (Biopsychology Area), University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
3
|
Brown RM, James MH. Binge eating, overeating and food addiction: Approaches for examining food overconsumption in laboratory rodents. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123:110717. [PMID: 36623582 PMCID: PMC10162020 DOI: 10.1016/j.pnpbp.2023.110717] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Overeating ranges in severity from casual overindulgence to an overwhelming drive to consume certain foods. At its most extreme, overeating can manifest as clinical diagnoses such as binge eating disorder or bulimia nervosa, yet subclinical forms of overeating such as emotional eating or uncontrolled eating can still have a profoundly negative impact on health and wellbeing. Although rodent models cannot possibly capture the full spectrum of disordered overeating, studies in laboratory rodents have substantially progressed our understanding of the neurobiology of overconsumption. These experimental approaches range from simple food-exposure protocols that promote binge-like eating and the development of obesity, to more complex operant procedures designed to examine distinct 'addiction-like' endophenotypes for food. This review provides an overview of these experimental approaches, with the view to providing a comprehensive resource for preclinical investigators seeking to utilize behavioural models for studying the neural systems involved in food overconsumption.
Collapse
Affiliation(s)
- Robyn M Brown
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.
| | - Morgan H James
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, NJ, USA; Brain Health Institute, Rutgers University, NJ, USA.
| |
Collapse
|
4
|
Matikainen-Ankney BA, Legaria AA, Pan Y, Vachez YM, Murphy CA, Schaefer RF, McGrath QJ, Wang JG, Bluitt MN, Ankney KC, Norris AJ, Creed MC, Kravitz AV. Nucleus Accumbens D 1 Receptor-Expressing Spiny Projection Neurons Control Food Motivation and Obesity. Biol Psychiatry 2023; 93:512-523. [PMID: 36494220 DOI: 10.1016/j.biopsych.2022.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND Obesity is a chronic relapsing disorder that is caused by an excess of caloric intake relative to energy expenditure. There is growing recognition that food motivation is altered in people with obesity. However, it remains unclear how brain circuits that control food motivation are altered in obese animals. METHODS Using a novel behavioral assay that quantifies work during food seeking, in vivo and ex vivo cell-specific recordings, and a synaptic blocking technique, we tested the hypothesis that activity of circuits promoting appetitive behavior in the core of the nucleus accumbens (NAc) is enhanced in the obese state, particularly during food seeking. RESULTS We first confirmed that mice made obese with ad libitum exposure to a high fat diet work harder than lean mice to obtain food, consistent with an increase in food motivation in obese mice. We observed greater activation of D1 receptor-expressing NAc spiny projection neurons (NAc D1SPNs) during food seeking in obese mice relative to lean mice. This enhanced activity was not observed in D2 receptor-expressing neurons (D2SPNs). Consistent with these in vivo findings, both intrinsic excitability and excitatory drive onto D1SPNs were enhanced in obese mice relative to lean mice, and these measures were selective for D1SPNs. Finally, blocking synaptic transmission from D1SPNs, but not D2SPNs, in the NAc core decreased physical work during food seeking and, critically, attenuated high fat diet-induced weight gain. CONCLUSIONS These experiments demonstrate the necessity of NAc core D1SPNs in food motivation and the development of diet-induced obesity, establishing these neurons as a potential therapeutic target for preventing obesity.
Collapse
Affiliation(s)
| | - Alex A Legaria
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri; Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri
| | - Yiyan Pan
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Yvan M Vachez
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri
| | - Caitlin A Murphy
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri
| | - Robert F Schaefer
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri; Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri
| | - Quinlan J McGrath
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Justin G Wang
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri; Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri
| | - Maya N Bluitt
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Kevin C Ankney
- Department of Economics, Georgetown University, Washington, DC
| | - Aaron J Norris
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri
| | - Meaghan C Creed
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri; Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri; Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri
| | - Alexxai V Kravitz
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri; Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri; Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri.
| |
Collapse
|
5
|
Morales I. Brain regulation of hunger and motivation: The case for integrating homeostatic and hedonic concepts and its implications for obesity and addiction. Appetite 2022; 177:106146. [PMID: 35753443 DOI: 10.1016/j.appet.2022.106146] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/19/2022]
Abstract
Obesity and other eating disorders are marked by dysregulations to brain metabolic, hedonic, motivational, and sensory systems that control food intake. Classic approaches in hunger research have distinguished between hedonic and homeostatic processes, and have mostly treated these systems as independent. Hindbrain structures and a complex network of interconnected hypothalamic nuclei control metabolic processes, energy expenditure, and food intake while mesocorticolimbic structures are though to control hedonic and motivational processes associated with food reward. However, it is becoming increasingly clear that hedonic and homeostatic brain systems do not function in isolation, but rather interact as part of a larger network that regulates food intake. Incentive theories of motivation provide a useful route to explore these interactions. Adapting incentive theories of motivation can enable researchers to better how motivational systems dysfunction during disease. Obesity and addiction are associated with profound alterations to both hedonic and homeostatic brain systems that result in maladaptive patterns of consumption. A subset of individuals with obesity may experience pathological cravings for food due to incentive sensitization of brain systems that generate excessive 'wanting' to eat. Further progress in understanding how the brain regulates hunger and appetite may depend on merging traditional hedonic and homeostatic concepts of food reward and motivation.
Collapse
Affiliation(s)
- Ileana Morales
- Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI, 48109-1043, USA.
| |
Collapse
|
6
|
The role of the nucleus accumbens and ventral pallidum in feeding and obesity. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110394. [PMID: 34242717 DOI: 10.1016/j.pnpbp.2021.110394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 05/31/2021] [Accepted: 06/29/2021] [Indexed: 02/04/2023]
Abstract
Obesity is a growing global epidemic that stems from the increasing availability of highly-palatable foods and the consequent enhanced calorie consumption. Extensive research has shown that brain regions that are central to reward seeking modulate feeding and evidence linking obesity to pathology in such regions have recently started to accumulate. In this review we focus on the contribution of two major interconnected structures central to reward processing, the nucleus accumbens and the ventral pallidum, to obesity. We first review the known literature linking these structures to feeding behavior, then discuss recent advances connecting pathology in the nucleus accumbens and ventral pallidum to obesity, and finally examine the similarities and differences between drug addiction and obesity in the context of these two structures. The understanding of how pathology in brain regions involved in reward seeking and consumption may drive obesity and how mechanistically similar obesity and addiction are, is only now starting to be revealed. We hope that future research will advance knowledge in the field and open new avenues to studying and treating obesity.
Collapse
|
7
|
Metaplasticity in the Ventral Pallidum as a Potential Marker for the Propensity to Gain Weight in Chronic High-Calorie Diet. J Neurosci 2020; 40:9725-9735. [PMID: 33199503 DOI: 10.1523/jneurosci.1809-20.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/03/2020] [Accepted: 10/06/2020] [Indexed: 12/30/2022] Open
Abstract
A major driver of obesity is the increasing palatability of processed foods. Although reward circuits promote the consumption of palatable food, their involvement in obesity remains unclear. The ventral pallidum (VP) is a key hub in the reward system that encodes the hedonic aspects of palatable food consumption and participates in various proposed feeding circuits. However, there is still no evidence for its involvement in developing diet-induced obesity. Here we examine, using male C57BL6/J mice and patch-clamp electrophysiology, how chronic high-fat high-sugar (HFHS) diet changes the physiology of the VP and whether mice that gain the most weight differ in their VP physiology from others. We found that 10-12 weeks of HFHS diet hyperpolarized and decreased the firing rate of VP neurons without a major change in synaptic inhibitory input. Within the HFHS group, the top 33% weight gainers (WGs) had a more hyperpolarized VP with longer latency to fire action potentials on depolarization compared with bottom 33% of weight gainers (i.e., non-weight gainers). WGs also showed synaptic potentiation of inhibitory inputs both at the millisecond and minute ranges. Moreover, we found that the tendency to potentiate the inhibitory inputs to the VP might exist in overeating mice even before exposure to HFHS, thus making it a potential property of being an overeater. These data point to the VP as a critical player in obesity and suggest that hyperpolarized membrane potential of, and potentiated inhibitory inputs to, VP neurons may play a significant role in promoting the overeating of palatable food.SIGNIFICANCE STATEMENT In modern world, where highly palatable food is readily available, overeating is often driven by motivational, rather than metabolic, needs. It is thus conceivable that reward circuits differ between obese and normal-weight individuals. But is such difference, if it exists, innate or does it develop with overeating? Here we reveal synaptic properties in the ventral pallidum, a central hub of reward circuits, that differ between mice that gain the most and the least weight when given unlimited access to highly palatable food. We show that these synaptic differences also exist without exposure to palatable food, potentially making them innate properties that render some more susceptible than others to overeat. Thus, the propensity to overeat may have a strong innate component embedded in reward circuits.
Collapse
|
8
|
Vulnerability to diet-induced obesity is associated with greater food priming-induced reinstatement of palatable food seeking. Physiol Behav 2019; 213:112730. [PMID: 31678197 DOI: 10.1016/j.physbeh.2019.112730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 01/24/2023]
Abstract
We examined whether individual differences in weight gain during exposure to a "junk-food" diet were related to differences in later relapse-like behavior in a rat model. Following free access to a junk-food diet for 7 weeks, rats were trained to press a lever for palatable food pellets. Following extinction training, rats were tested for cue- and pellet priming-induced reinstatement. Results showed that rats prone to obesity while on the junk-food diet displayed greater pellet priming-, but not cue-, induced reinstatement relative to obesity-resistant rats, suggesting that obesity vulnerability is a factor determining one's chances for some types of relapse.
Collapse
|