1
|
Bender BN, Carew JM, Bedard ML, McElligott ZA, Besheer J. Xylazine potentiates the interoceptive effects of fentanyl in male and female rats. Psychopharmacology (Berl) 2025:10.1007/s00213-025-06804-z. [PMID: 40383852 DOI: 10.1007/s00213-025-06804-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 05/01/2025] [Indexed: 05/20/2025]
Abstract
RATIONALE Xylazine, a sedative typically used in veterinary medicine, has been increasingly detected as an adulterant in the unregulated opioid supply and present in opioid overdose deaths. Therefore, xylazine-adulterated fentanyl is a growing public health concern. People who use drugs have reported that xylazine changes and prolongs the effects of fentanyl. OBJECTIVES We used standard operant drug discrimination procedures to better understand how xylazine impacts the discriminative stimulus/interoceptive effects of fentanyl. METHODS Male and female Long-Evans rats (n = 23) were trained to discriminate fentanyl (0.032 mg/kg intraperitoneal) such that one lever was reinforced with sucrose on days when fentanyl was administered, and the other lever was reinforced when vehicle was administered. Once rats met testing criteria, we tested a dose range of fentanyl to confirm discriminative stimulus control, then we tested if xylazine alone produced fentanyl-like effects and if the addition of xylazine to fentanyl impacted fentanyl interoceptive effects. RESULTS Stimulus control was confirmed, as rats showed increased percent responses on the fentanyl-appropriate lever as well as decreased response rates for increasing doses of fentanyl. Xylazine alone did not substitute for the stimulus effects of fentanyl but produced similar response rate reductions as fentanyl alone. Xylazine co-administered with fentanyl potentiated the stimulus effects of lower doses of fentanyl in both males and females and potentiated response rate reductions. CONCLUSIONS These results indicate that xylazine enhances the interoceptive effects of fentanyl, which may inform clinical research about xylazine-adulterated fentanyl.
Collapse
Affiliation(s)
- Brooke N Bender
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA
| | - Joseph M Carew
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA
| | - Madigan L Bedard
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA
| | - Zoe A McElligott
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA
- Department of Psychiatry, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Joyce Besheer
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA.
- Department of Psychiatry, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Bender BN, Carew JM, Bedard ML, McElligott ZA, Besheer J. Xylazine potentiates the interoceptive effects of fentanyl in male and female rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.637099. [PMID: 39975201 PMCID: PMC11839042 DOI: 10.1101/2025.02.07.637099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Rationale Xylazine, a sedative typically used in veterinary medicine, has been increasingly detected as an adulterant in the unregulated opioid supply and present in opioid overdose deaths. Therefore, xylazine-adulterated fentanyl is a growing public health concern. People who use drugs have reported that xylazine changes and prolongs the effects of fentanyl. Objectives We used standard operant drug discrimination procedures to better understand how xylazine impacts the discriminative stimulus/interoceptive effects of fentanyl. Methods Male and female Long-Evans rats (n=23) were trained to discriminate fentanyl (0.032 mg/kg intraperitoneal) such that one lever was reinforced with sucrose on days when fentanyl was administered, and the other lever was reinforced when vehicle was administered. Once rats met testing criteria, we tested a dose range of fentanyl to confirm discriminative stimulus control, then we tested if xylazine alone produced fentanyl-like effects and if the addition of xylazine to fentanyl impacted fentanyl interoceptive effects. Results Stimulus control was confirmed, as rats showed increased percent responses on the fentanyl-appropriate lever as well as decreased response rates for increasing doses of fentanyl. Xylazine alone did not substitute for the stimulus effects of fentanyl but produced similar response rate reductions as fentanyl alone. Xylazine co-administered with fentanyl potentiated the stimulus effects of lower doses of fentanyl in both males and females and potentiated response rate reductions. Conclusions These results indicate that xylazine enhances the interoceptive effects of fentanyl, which may inform clinical research about xylazine-adulterated fentanyl.
Collapse
|
3
|
Tyler RE, Bluitt MN, Van Voorhies KJ, Liu W, Magee SN, Pitrolo ER, Cordero VL, Ornelas LC, Krieman CG, Bender BN, Mosera AM, Besheer J. The persistent effects of predator odor stressor enhance interoceptive sensitivity to alcohol through GABA A receptor adaptations in the prelimbic cortex in male, but not female rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.621141. [PMID: 39554092 PMCID: PMC11565848 DOI: 10.1101/2024.10.30.621141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Background Traumatic stress is associated with high rates of problematic alcohol use, but how the persistent effects of trauma impact sensitivity to alcohol remain unknown. This study examined the persistent effects of traumatic stress exposure on sensitivity to alcohol and underlying neurobiological mechanisms in rats. Methods Male (N=98) and female (N=98) Long-Evans rats were exposed to the predator odor TMT, and two weeks later, molecular, neuronal, and behavioral sensitivity to alcohol were assessed. Next, rats were trained to discriminate alcohol from water (male N=70; female N=56), and the impact of TMT on interoceptive sensitivity to alcohol and the alcohol-like effects of systemic GABAA receptor activation were evaluated. Lastly, functional involvement of GABAA and NMDA receptors in the prelimbic cortex (PrL) and the anterior insular cortex (aIC) was investigated. Results TMT exposure sex-dependently altered PrL Gabra1, and elevated aIC Grin2b and Grin2c in males. TMT increased PrL c-Fos in males, which was attenuated by alcohol administration. Alcohol-induced locomotor and startle response effects were attenuated in the TMT group in both sexes. TMT exposure potentiated interoceptive sensitivity to alcohol in males but not in females, and this effect was driven by GABAA receptors in the PrL. Greater stress reactivity during TMT exposure was associated with higher interoceptive sensitivity to alcohol, and alcohol exposure history was linked to a heightened stress response to TMT in males. Conclusions Traumatic stress increased interoceptive sensitivity to alcohol in males, but not females, through PrL GABAA receptor adaptations, potentially enhancing the stimulatory, and by extension the rewarding, effects of alcohol.
Collapse
Affiliation(s)
- Ryan E. Tyler
- Neuroscience Curriculum, School of Medicine, University of North Carolina – Chapel Hill, Chapel Hill, NC
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, NC
| | - Maya N. Bluitt
- Neuroscience Curriculum, School of Medicine, University of North Carolina – Chapel Hill, Chapel Hill, NC
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, NC
| | - Kalynn J. Van Voorhies
- Neuroscience Curriculum, School of Medicine, University of North Carolina – Chapel Hill, Chapel Hill, NC
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, NC
| | - Wen Liu
- Neuroscience Curriculum, School of Medicine, University of North Carolina – Chapel Hill, Chapel Hill, NC
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, NC
| | - Sarah N. Magee
- Neuroscience Curriculum, School of Medicine, University of North Carolina – Chapel Hill, Chapel Hill, NC
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, NC
| | - Elisabeth R. Pitrolo
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, NC
| | - Victoria L. Cordero
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, NC
| | - Laura C. Ornelas
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, NC
| | - Caroline G. Krieman
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, NC
| | - Brooke N. Bender
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, NC
| | - Alejandro M. Mosera
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, NC
| | - Joyce Besheer
- Neuroscience Curriculum, School of Medicine, University of North Carolina – Chapel Hill, Chapel Hill, NC
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, NC
- Department of Psychiatry, School of Medicine, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
4
|
Peart DR, Nolan CJ, Stone AP, Williams MA, Karlovcec JM, Murray JE. Disruption of positive- and negative-feature morphine interoceptive occasion setters by dopamine receptor agonism and antagonism in male and female rats. Psychopharmacology (Berl) 2024; 241:1597-1615. [PMID: 38580732 DOI: 10.1007/s00213-024-06584-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 03/29/2024] [Indexed: 04/07/2024]
Abstract
RATIONALE Internally perceived stimuli evoked by morphine administration can form Pavlovian associations such that they can function as occasion setters (OSs) for externally perceived reward cues in rats, coming to modulate reward-seeking behaviour. Though much research has investigated mechanisms underlying opioid-related reinforcement and analgesia, neurotransmitter systems involved in the functioning of opioids as Pavlovian interoceptive discriminative stimuli remain to be disentangled despite documented differences in the development of tolerance to analgesic versus discriminative stimulus effects. OBJECTIVES Dopamine has been implicated in many opioid-related behaviours, so we aimed to investigate the role of this neurotransmitter in expression of morphine occasion setting. METHODS Male and female rats were assigned to positive- (FP) or negative-feature (FN) groups and received an injection of morphine or saline before each training session. A 15-s white noise conditioned stimulus (CS) was presented 8 times during every training session; offset of this stimulus was followed by 4-s access to liquid sucrose on morphine, but not saline, sessions for FP rats. FN rats learned the reverse contingency. Following stable discrimination, rats began generalization testing for expression of morphine-guided sucrose seeking after systemic pretreatment with different doses of the non-selective dopamine receptor antagonist, flupenthixol, and the non-selective dopamine receptor agonist, apomorphine, combined with training doses of morphine or saline in a Latin-square design. RESULTS The morphine discrimination was acquired under both FP and FN contingencies by males and females. Neither flupenthixol nor apomorphine at any dose substituted for morphine, but both apomorphine and flupenthixol disrupted expression of the morphine OS. This inhibition was specific to sucrose seeking during CS presentations rather than during the period before CS onset and, in the case of apomorphine more so than flupenthixol, to trials on which access to sucrose was anticipated. CONCLUSIONS Our findings lend support to a mechanism of occasion setting involving gating of CS-induced dopamine release rather than by direct dopaminergic modulation by the morphine stimulus.
Collapse
Affiliation(s)
- Davin R Peart
- Department of Psychology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
- Collaborative Neurosciences Graduate Program, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Caitlin J Nolan
- Collaborative Neurosciences Graduate Program, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Adiia P Stone
- Department of Psychology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
- Collaborative Neurosciences Graduate Program, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Mckenna A Williams
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Jessica M Karlovcec
- Department of Psychology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
- Collaborative Neurosciences Graduate Program, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Jennifer E Murray
- Department of Psychology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
- Collaborative Neurosciences Graduate Program, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
5
|
Tyler RE, Van Voorhies K, Blough BE, Landavazo A, Besheer J. mGlu 2 and mGlu 3 receptor negative allosteric modulators attenuate the interoceptive effects of alcohol in male and female rats. Pharmacol Biochem Behav 2024; 239:173767. [PMID: 38608960 PMCID: PMC11090252 DOI: 10.1016/j.pbb.2024.173767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
RATIONALE The subjective effects of alcohol are associated with alcohol use disorder (AUD) vulnerability and treatment outcomes. The interoceptive effects of alcohol are part of these subjective effects and can be measured in animal models using drug discrimination procedures. The newly developed mGlu2 and mGlu3 negative allosteric modulators (NAMs) are potential therapeutics for AUD and may alter interoceptive sensitivity to alcohol. OBJECTIVES To determine the effects of mGlu2 and mGlu3 NAMs on the interoceptive effects of alcohol in rats. METHODS Long-Evans rats were trained to discriminate the interoceptive stimulus effects of alcohol (2.0 g/kg, i.g.) from water using both operant (males only) and Pavlovian (male and female) drug discrimination techniques. Following acquisition training, an alcohol dose-response (0, 0.5, 1.0, 2.0 g/kg) experiment was conducted to confirm stimulus control over behavior. Next, to test the involvement of mGlu2 and mGlu3, rats were pretreated with the mGlu2-NAM (VU6001966; 0, 3, 6, 12 mg/kg, i.p.) or the mGlu3-NAM (VU6010572; 0, 3, 6, 12 mg/kg, i.p.) before alcohol administration (2.0 g/kg, i.g.). RESULTS In Pavlovian discrimination, male rats showed greater interoceptive sensitivity to 1.0 and 2.0 g/kg alcohol compared to female rats. Both mGlu2-NAM and mGlu3-NAM attenuated the interoceptive effects of alcohol in male and female rats using Pavlovian and operant discrimination. There may be a potential sex difference in response to the mGlu2-NAM at the highest dose tested. CONCLUSIONS Male rats may be more sensitive to the interoceptive effects of the 2.0 g/kg alcohol training dose compared to female rats. Both mGlu2-and mGlu3-NAM attenuate the interoceptive effects of alcohol in male and female rats. These drugs may have potential for treatment of AUD in part by blunting the subjective effects of alcohol.
Collapse
Affiliation(s)
- Ryan E Tyler
- Neuroscience Curriculum, School of Medicine, University of North Carolina - Chapel Hill, Chapel Hill, NC, United States of America; Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, NC, United States of America
| | - Kalynn Van Voorhies
- Neuroscience Curriculum, School of Medicine, University of North Carolina - Chapel Hill, Chapel Hill, NC, United States of America; Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, NC, United States of America
| | - Bruce E Blough
- Center for Drug Discovery, RTI International, Research Triangle Park, NC, United States of America
| | - Antonio Landavazo
- Center for Drug Discovery, RTI International, Research Triangle Park, NC, United States of America
| | - Joyce Besheer
- Neuroscience Curriculum, School of Medicine, University of North Carolina - Chapel Hill, Chapel Hill, NC, United States of America; Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, NC, United States of America; Department of Psychiatry, School of Medicine, University of North Carolina, Chapel Hill, NC, United States of America.
| |
Collapse
|
6
|
Randall CA, Sun D, Randall PA. Differential Effects of Nicotine, Alcohol, and Coexposure on Neuroimmune-Related Protein and Gene Expression in Corticolimbic Brain Regions of Rats. ACS Chem Neurosci 2023; 14:628-644. [PMID: 36705334 DOI: 10.1021/acschemneuro.2c00413] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Nicotine and alcohol co-use is extremely common and their use constitutes two of the most common causes of preventable death, yet the underlying biological mechanisms are largely understudied. Activation of neuroimmune toll-like receptors (TLRs) promotes the induction of proinflammatory cascades and increases alcohol intake in rodents, which further promotes TLRs in the brain; nicotine may decrease central proinflammatory signaling. The current studies sought to determine the effects of nicotine ± alcohol (alone or in combination) on circulating blood plasma and TLR protein/gene expression in addiction-associated corticolimbic brain regions, including the prefrontal cortex-prelimbic (mPFC-PL) and nucleus accumbens core (AcbC). Adult rats were treated with alcohol (0 or 2 g/kg, IG) and exposed to nicotine vapor (0 or 30 mg/mL solution) daily for 2, 14, or 28 days. Plasma studies indicated no effects of independent exposure or coexposure in males. Coexposure decreased plasma nicotine levels versus nicotine-only treated females, yet alcohol and cotinine concentrations were unchanged. By 28 days, the anti-inflammatory cytokine IL-13 was decreased in alcohol-only females. Divergent changes in TLR3 (but not TLR4) protein occurred for independent-drug exposed males (but not coexposure), with reductions in the mPFC-PL after 14 days and increases in the AcbC by 28 days. Gene expression following chronic coexposure suggests nicotine may regionally counteract alcohol-induced inflammation, including increased AcbC-TLR3/4/7 and several downstream markers in females and increased mPFC-PL-TLR3 and -STAT3 (but not IRF3) evident in males with exposure to either drug alone. These findings give further insight into the role of sex and the neuroimmune system in independent exposure and coexposure to nicotine ± alcohol.
Collapse
Affiliation(s)
- Christie A Randall
- Department of Anesthesiology and Perioperative Medicine, College of Medicine, Pennsylvania State University, 500 University Drive, Hershey, Pennsylvania 17033, United States
| | - Dongxiao Sun
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania 17033 United States
| | - Patrick A Randall
- Department of Anesthesiology and Perioperative Medicine, College of Medicine, Pennsylvania State University, 500 University Drive, Hershey, Pennsylvania 17033, United States.,Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania 17033 United States
| |
Collapse
|
7
|
Amico KN, Arnold ME, Dourron MS, Solomon MG, Schank JR. The effect of concurrent access to alcohol and oxycodone on self-administration and reinstatement in rats. Psychopharmacology (Berl) 2022; 239:3277-3286. [PMID: 35972517 DOI: 10.1007/s00213-022-06210-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022]
Abstract
RATIONALE Although polysubstance use is highly prevalent, preclinical studies that assess voluntary consumption of multiple substances at the same time are rather uncommon. Overlooking drug taking patterns commonly observed in humans may limit the translational value of preclinical models. OBJECTIVES Here, we aimed to develop a model of polysubstance use that could be used to assess oral operant self-administration patterns under concurrent access to alcohol and the prescription opioid oxycodone. METHODS After a training period where animals associated specific cues and levers with each drug, rats self-administered alcohol and oxycodone solutions concurrently in daily sessions. Oxycodone was then removed to assess potential changes in alcohol consumption. The role of cues and stress on alcohol consumption and oxycodone seeking was also examined under reinstatement conditions. RESULTS We found that females consumed more alcohol and oxycodone than males when given access to both drugs, and this effect on alcohol intake persisted when oxycodone was removed. Additionally, re-exposure to oxycodone cues in combination with the administration of the pharmacological stressor yohimbine drove reinstatement of oxycodone seeking in females but did not have a strong effect in males, possibly due to low levels of oxycodone intake during active self-administration in male rats. Additionally, yohimbine drove increased alcohol consumption, in line with prior findings from our group and others. CONCLUSIONS Taken together, this study demonstrates that rats will concurrently self-administer both oxycodone and alcohol in operant chambers, and this procedure can serve as a platform for future investigations in polysubstance use and relapse-like behavior.
Collapse
Affiliation(s)
- Kristen N Amico
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA, 30602, USA
| | - Miranda E Arnold
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA, 30602, USA
| | - Morgan S Dourron
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA, 30602, USA
| | - Matthew G Solomon
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA, 30602, USA
| | - Jesse R Schank
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA, 30602, USA.
| |
Collapse
|
8
|
King CP, Meyer PJ. The incentive amplifying effects of nicotine: Roles in alcohol seeking and consumption. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 93:171-218. [PMID: 35341566 DOI: 10.1016/bs.apha.2021.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Nicotine has a unique profile among drugs of abuse. To the noninitiated user, nicotine has powerful aversive effects and its relatively weak euphorigenic effects undergo rapid tolerance. Despite this, nicotine is commonly abused despite negative heath consequences, and nicotine users have enormous difficulty quitting. Further, nicotine is one of the most commonly co-abused substances, in that it is often taken in combination with other drugs. One explanation of this polydrug use is that nicotine has multiple appetitive and consummatory conditioning effects. For example, nicotine is a reinforcement enhancer in that it can potently increase the incentive value of other stimuli, including those surrounding drugs of abuse such as alcohol. In addition, nicotine also has a unique profile of neurobiological effects that alter regulation of alcohol intake and interoception. This review discusses the psychological and biological mechanisms surrounding nicotine's appetitive conditioning and consummatory effects, particularly its interactions with alcohol.
Collapse
Affiliation(s)
- Christopher P King
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY, United States; Clinical and Research Institute on Addictions, State University of New York at Buffalo, Buffalo, NY, United States
| | - Paul J Meyer
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
9
|
Lovelock DF, Randall PA, Van Voorhies K, Vetreno RP, Crews FT, Besheer J. Increased alcohol self-administration following repeated Toll-like receptor 3 agonist treatment in male and female rats. Pharmacol Biochem Behav 2022; 216:173379. [PMID: 35395252 PMCID: PMC9263963 DOI: 10.1016/j.pbb.2022.173379] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/08/2023]
Abstract
Toll-like receptor (TLR) signaling may play an important role in the neuroimmune system's involvement in the development and maintenance of alcohol use disorder (AUD). In the present study we administered the TLR3 agonist poly(I:C) in male and female Long-Evans rats to determine whether TLR3 agonism can increase alcohol consumption on a daily 15% alcohol operant self-administration paradigm. We found few effects when poly(I:C) was given every-other-day at 0.3 or 1.0 mg/kg. However, when 1.0 mg/kg was given on consecutive days, alcohol intake increased in the days following injections specifically in females. In a second experiment, we found that this effect only emerged when rats had a history of multiple poly(I:C) injections. In the final experiment the poly(I:C) dose was increased to 3.0 mg/kg on consecutive days which resulted in significant reductions in alcohol intake on injection days in females that were not accompanied by subsequent increases. The poly(I:C) dose was increased to 9.0 mg/kg for one final pair of injections which led to reductions in intake in both males and females followed by a male specific delayed increase in alcohol intake. Overall, repeated poly(I:C) administration was able to increase subsequent alcohol consumption in both sexes, with females showing an increase at a lower dose than males. These findings support TLR3 agonism in contributing to increased alcohol consumption and add to the body of work identifying the neuroimmune system as a potential therapeutic target for AUD.
Collapse
Affiliation(s)
- Dennis F Lovelock
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Patrick A Randall
- Department of Anesthesiology & Perioperative Medicine, Penn State College of Medicine, Hershey, PA 17033, USA; Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Kalynn Van Voorhies
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Fulton T Crews
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joyce Besheer
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
10
|
Interoception and alcohol: Mechanisms, networks, and implications. Neuropharmacology 2021; 200:108807. [PMID: 34562442 DOI: 10.1016/j.neuropharm.2021.108807] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 01/25/2023]
Abstract
Interoception refers to the perception of the internal state of the body and is increasingly being recognized as an important factor in mental health disorders. Drugs of abuse produce powerful interoceptive states that are upstream of behaviors that drive and influence drug intake, and addiction pathology is impacted by interoceptive processes. The goal of the present review is to discuss interoceptive processes related to alcohol. We will cover physiological responses to alcohol, how interoceptive states can impact drinking, and the recruitment of brain networks as informed by clinical research. We also review the molecular and brain circuitry mechanisms of alcohol interoceptive effects as informed by preclinical studies. Finally, we will discuss emerging treatments with consideration of interoception processes. As our understanding of the role of interoception in drug and alcohol use grows, we suggest that the convergence of information provided by clinical and preclinical studies will be increasingly important. Given the complexity of interoceptive processing and the multitude of brain regions involved, an overarching network-based framework can provide context for how focused manipulations modulate interoceptive processing as a whole. In turn, preclinical studies can systematically determine the roles of individual nodes and their molecular underpinnings in a given network, potentially suggesting new therapeutic targets and directions. As interoceptive processing drives and influences motivation, emotion, and subsequent behavior, consideration of interoception is important for our understanding of processes that drive ongoing drinking and relapse.
Collapse
|
11
|
Randall PA, Lovelock DF, VanVoorhies K, Agan VE, Kash TL, Besheer J. Low-dose alcohol: Interoceptive and molecular effects and the role of dentate gyrus in rats. Addict Biol 2021; 26:e12965. [PMID: 33015936 DOI: 10.1111/adb.12965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 01/24/2023]
Abstract
Alcohol abuse and dependence are world-wide health problems. Most research on alcohol use focuses on the consequences of moderate to high levels of alcohol. However, even at low concentrations, alcohol is capable of producing effects in the brain that can ultimately affect behavior. The current studies seek to understand the effects of low-dose alcohol (blood alcohol levels of ≤10mM). To do so, these experiments utilize a combination of behavioral and molecular techniques to (1) assess the ability of the interoceptive effects of a low dose of alcohol to gain control over goal-tracking behavior in a Pavlovian discrimination task, (2) determine brain regional differences in cellular activity via expression of immediate early genes (IEGs), and (3) assess the role of the dentate gyrus in modulating sensitivity to the interoceptive effects of a low dose of alcohol. Here, we show that intragastric administration of a dose of 0.8 g/kg alcohol produces blood alcohol levels ≤10mM in both male and female Long-Evans rats and can readily be trained as a Pavlovian interoceptive drug cue. In rats trained on this procedure, this dose of alcohol also modulates expression of the IEGs c-Fos and Arc in brain regions known to modulate expression of alcohol interoceptive effects. Finally, pharmacological inactivation of the dentate gyrus with GABA agonists baclofen and muscimol disrupted the ability of a low dose of alcohol to serve as an interoceptive cue. Together, these findings demonstrate behavioral and molecular consequences of low-dose alcohol.
Collapse
Affiliation(s)
- Patrick A. Randall
- Department of Anesthesiology and Perioperative Medicine Penn State College of Medicine Hershey Pennsylvania USA
- Department of Pharmacology Penn State College of Medicine Hershey Pennsylvania USA
| | - Dennis F. Lovelock
- Bowles Center for Alcohol Studies University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Kalynn VanVoorhies
- Bowles Center for Alcohol Studies University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Verda E. Agan
- Bowles Center for Alcohol Studies University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Thomas L. Kash
- Bowles Center for Alcohol Studies University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
- Department of Pharmacology University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Joyce Besheer
- Bowles Center for Alcohol Studies University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
- Department of Psychiatry University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| |
Collapse
|
12
|
Coley AA, Padilla-Coreano N, Patel R, Tye KM. Valence processing in the PFC: Reconciling circuit-level and systems-level views. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 158:171-212. [PMID: 33785145 DOI: 10.1016/bs.irn.2020.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An essential component in animal behavior is the ability to process emotion and dissociate among positive and negative valence in response to a rewarding or aversive stimulus. The medial prefrontal cortex (mPFC)-responsible for higher order executive functions that include cognition, learning, and working memory; and is also involved in sociability-plays a major role in emotional processing and control. Although the amygdala is widely regarded as the "emotional hub," the mPFC encodes for context-specific salience and elicits top-down control over limbic circuitry. The mPFC can then conduct behavioral responses, via cortico-striatal and cortico-brainstem pathways, that correspond to emotional stimuli. Evidence shows that abnormalities within the mPFC lead to sociability deficits, working memory impairments, and drug-seeking behavior that include addiction and compulsive disorders; as well as conditions such as anhedonia. Recent studies investigate the effects of aberrant salience processing on cortical circuitry and neuronal populations associated with these behaviors. In this chapter, we discuss mPFC valence processing, neuroanatomical connections, and physiological substrates involved in mPFC-associated behavior. We review neurocomputational and theoretical models such as "mixed selectivity," that describe cognitive control, attentiveness, and motivational drives. Using this knowledge, we describe the effects of valence imbalances and its influence on mPFC neural pathways that contribute to deficits in social cognition, while understanding the effects in addiction/compulsive behaviors and anhedonia.
Collapse
Affiliation(s)
- Austin A Coley
- Salk Institute for Biological Studies, La Jolla, CA, United States
| | | | - Reesha Patel
- Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Kay M Tye
- Salk Institute for Biological Studies, La Jolla, CA, United States.
| |
Collapse
|
13
|
The synthetically produced predator odor 2,5-dihydro-2,4,5-trimethylthiazoline increases alcohol self-administration and alters basolateral amygdala response to alcohol in rats. Psychopharmacology (Berl) 2021; 238:67-82. [PMID: 32978649 PMCID: PMC7796942 DOI: 10.1007/s00213-020-05659-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/07/2020] [Indexed: 12/27/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric illness that can increase the risk for developing an alcohol use disorder (AUD). While clinical data has been useful in identifying similarities in the neurobiological bases of these disorders, preclinical models are essential for understanding the mechanism(s) by which stressors increase the risk for escalated alcohol consumption. The purpose of these studies was to examine if exposure of male Long-Evans rats to the synthetically derived predator odor 2,5-dihydro-2,4,5-trimethylthiazoline (TMT; a component of fox feces) would increase sweetened alcohol self-administration, potentially by facilitating transfer of salience towards cues, and alter neuronal response to alcohol as measured by the immediate early gene c-Fos. In experiment 1, rats exposed to repeated (4×) TMT showed reductions in port entries in Pavlovian conditioned approach and increases in sweetened alcohol self-administration. In experiment 2, rats exposed to repeated TMT showed blunted basolateral amygdala c-Fos response to alcohol. In experiment 3, rats exposed to single, but not repeated TMT, showed increases in sweetened alcohol self-administration, and no change in anxiety-like behavior or hyperarousal. In experiment 4, rats continued to show a significant corticosterone response to TMT after repeated exposures. In summary, exposure of male rats to TMT can cause escalations in sweetened alcohol self-administration and reduction in BLA response to alcohol. These studies outline and utilize a novel preclinical model that can be used to further neurobiological understanding of the emergence of escalated alcohol consumption following stress exposure.
Collapse
|
14
|
LeCocq MR, Randall PA, Besheer J, Chaudhri N. Considering Drug-Associated Contexts in Substance Use Disorders and Treatment Development. Neurotherapeutics 2020; 17:43-54. [PMID: 31898285 PMCID: PMC7007469 DOI: 10.1007/s13311-019-00824-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Environmental contexts that are reliably associated with the use of pharmacologically active substances are hypothesized to contribute to substance use disorders. In this review, we provide an updated summary of parallel preclinical and human studies that support this hypothesis. Research conducted in rats shows that environmental contexts that are reliably paired with drug use can renew extinguished drug-seeking behavior and amplify responding elicited by discrete, drug-predictive cues. Akin to drug-associated contexts, interoceptive drug stimuli produced by the psychopharmacological effects of drugs can also influence learning and memory processes that play a role in substance use disorders. Findings from human laboratory studies show that drug-associated contexts, including social stimuli, can have profound effects on cue reactivity, drug use, and drug-related cognitive expectancies. This translationally relevant research supports the idea that treatments for substance use disorders could be improved by considering drug-associated contexts as a factor in treatment interventions. We conclude this review with ideas for how to integrate drug-associated contexts into treatment-oriented research based on 4 approaches: pharmacology, brain stimulation, mindfulness-based relapse prevention, and cognitive behavioral group therapy. Throughout, we focus on alcohol- and tobacco-related research, which are two of the most prevalent and commonly misused drugs worldwide for which there are known treatments.
Collapse
Affiliation(s)
- Mandy Rita LeCocq
- Department of Psychology, Center for Studies in Behavioural Neurobiology, Concordia University, 7141 Sherbrooke Street West, Room SP 244, Montreal, Quebec, H4B-1R6, Canada
| | - Patrick A Randall
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Joyce Besheer
- Department of Psychiatry, Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nadia Chaudhri
- Department of Psychology, Center for Studies in Behavioural Neurobiology, Concordia University, 7141 Sherbrooke Street West, Room SP 244, Montreal, Quebec, H4B-1R6, Canada.
| |
Collapse
|