1
|
Wanat MJ, Garcia-Castañeda BI, Alducin-Martinez C, Cedillo LG, Camacho ET, Phillips PEM. Nucleus accumbens dopamine encodes the trace period during appetitive Pavlovian conditioning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631806. [PMID: 40235964 PMCID: PMC11996318 DOI: 10.1101/2025.01.07.631806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Pavlovian conditioning tasks have been used to identify the neural systems involved with learning cue-outcome relationships. In delay conditioning, the conditioned stimulus (CS) overlaps or co-terminates with the delivery of the unconditioned stimulus (US). Prior studies demonstrate that dopamine in the nucleus accumbens (NAc) regulates behavioral responding during delay conditioning. Furthermore, the dopamine response to the CS reflects the relative value of the upcoming reward in these tasks. In contrast to delay conditioning, trace conditioning involves a 'trace' period separating the end of the CS and the US delivery. While dopamine has been implicated in trace conditioning, no studies have examined how NAc dopamine responds to reward-related stimuli in these tasks. Here, we developed a within-subject trace conditioning task where distinct CSs signaled either a short trace period (5s) or a long trace period (55s) prior to food reward delivery. Male rats exhibited greater conditioned responding and a faster response latency to the Short Trace CS relative to the Long Trace CS. Voltammetry recordings in the NAc found that the CS-evoked dopamine response increased on Short Trace trials but decreased on Long Trace trials. Conversely, US-evoked dopamine responses were greater on Long Trace trials relative to Short Trace trials. The CS dopamine response correlated with the response latency and not with conditioned responding. Furthermore, the relationship between CS dopamine and latency was best explained by an exponential function. Our results collectively illustrate that the trace period is encoded by the bidirectional NAc dopamine response to the CS during Pavlovian conditioning. Significance statement Learning to associate a cue with given outcome is a fundamental process underlying reward seeking behavior. Striatal dopamine is important for associating cues with rewards during Pavlovian conditioning. However, it is unclear how the dopamine system responds to cues during trace conditioning when there is temporal gap between the cue and reward. Here, we performed voltammetry recordings of striatal dopamine levels in male rats during trace conditioning. We find that cue-evoked dopamine signals encode the trace period and is related to the response latency. While prior reports find dopamine neurons signal the relative reward value by increases in dopamine levels, we demonstrate that the dopamine response to reward-predictive cues can signal the reward value through bidirectional changes in dopamine transmission.
Collapse
|
2
|
Guenther KG, Wirt JL, Oliva I, Saberi SA, Crystal JD, Hohmann AG. The cannabinoid CB 2 agonist LY2828360 suppresses neuropathic pain behavior and attenuates morphine tolerance and conditioned place preference in rats. Neuropharmacology 2025; 265:110257. [PMID: 39644993 PMCID: PMC11729772 DOI: 10.1016/j.neuropharm.2024.110257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/06/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Cannabinoid CB2 agonists show promise as analgesics because they lack unwanted side effects associated with direct activation of CB1 receptors. CB2 receptor activation suppresses pathological pain in animal models, but the types of pain that best respond to CB2 agonists are incompletely understood. This gap in knowledge may contribute to failures in clinical translation. We previously showed that the G protein-biased CB2 receptor agonist LY2828360 attenuated the maintenance of neuropathic pain behavior in mouse models of inflammatory and neuropathic pain. Whether this finding generalizes to neuropathic pain induced by traumatic nerve injury or occurs in multiple rodent species remains unknown. Here we show that LY2828360 (3 and 10 mg/kg i.p.), administered acutely, reversed paclitaxel-induced mechanical hypersensitivity in male rats. By contrast, LY2828360 (10 mg/kg i.p.), administered acutely, attenuated mechanical hypersensitivity in a spared nerve injury (SNI) rat model, whereas the low dose (3 mg/kg i.p.) was ineffective. In both models, efficacy of LY2828360 was sustained following 10 days of repeated dosing. LY2828360 (3 mg/kg i.p.) also prevented development of tolerance to the opioid analgesic morphine (6 mg/kg i.p.) in rats with SNI when co-administered. LY2828360 (3 mg/kg i.p.) did not produce preference or aversion in the conditioned place preference (CPP) test in rats when administered alone but blocked CPP to morphine (6 mg/kg i.p.). Lastly, LY2828360 (3 mg/kg i.p.) did not alter the acquisition of i.v. morphine self-administration under fixed ratio 1 (FR1) and 3 (FR3) or motivation to work for morphine under a progressive ratio (PR) schedule of reinforcement.
Collapse
Affiliation(s)
- Kelsey G Guenther
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Jonah L Wirt
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Idaira Oliva
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Gill Institute for Neuroscience, Indiana University, Bloomington, IN, USA
| | - Shahin A Saberi
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Jonathon D Crystal
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Gill Institute for Neuroscience, Indiana University, Bloomington, IN, USA
| | - Andrea G Hohmann
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Gill Institute for Neuroscience, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
3
|
Gordon-Fennell L, Farero R, Jones J, Zweifel L, Phillips P. Corticotropin-Releasing Factor in the Nucleus Accumbens Does Not Drive High Levels of Cocaine Consumption. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.25.640140. [PMID: 40060554 PMCID: PMC11888372 DOI: 10.1101/2025.02.25.640140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Uncovering the neurobiological processes underlying substance use disorder informs future therapeutic interventions. Prior research implicates the corticotropin releasing factor (CRF) system as a major player in a wide variety of substance use disorder -like phenotypes. However, the complexity of the CRF system in regard to brain region specific effects and experience-dependent changes in activity is poorly understood. Employing a cocaine self-administration paradigm that induces escalation of cocaine consumption in a subset of subjects, we investigated the role of CRF activity in the Nucleus Accumbens (NAc) in cocaine-taking patterns both before and after chronic cocaine experience. Our results showed that pharmacologically inhibiting CRF-R1 in the NAc did not reduce cocaine consumption following escalation and genetically deleting CRF-R1 from cells in the NAc did not prevent escalation. Overall, this suggests that any effect of CRF activity driving escalation or high levels of cocaine consumption is not through its actions on CRF-R1 in the NAc.
Collapse
Affiliation(s)
- L. Gordon-Fennell
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195
- Center for Neurobiology of Addiction, Pain & Emotion, University of Washington, Seattle, WA 98195
- Department of Psychiatry & Behavioral Science, University of Washington, Seattle, WA 98195
| | - R.D. Farero
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195
- Center for Neurobiology of Addiction, Pain & Emotion, University of Washington, Seattle, WA 98195
- Department of Psychiatry & Behavioral Science, University of Washington, Seattle, WA 98195
| | - J.D. Jones
- Center for Neurobiology of Addiction, Pain & Emotion, University of Washington, Seattle, WA 98195
- Department of Psychiatry & Behavioral Science, University of Washington, Seattle, WA 98195
| | - L.S. Zweifel
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195
- Center for Neurobiology of Addiction, Pain & Emotion, University of Washington, Seattle, WA 98195
- Department of Psychiatry & Behavioral Science, University of Washington, Seattle, WA 98195
- Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - P.E.M. Phillips
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195
- Center for Neurobiology of Addiction, Pain & Emotion, University of Washington, Seattle, WA 98195
- Department of Psychiatry & Behavioral Science, University of Washington, Seattle, WA 98195
- Department of Pharmacology, University of Washington, Seattle, WA 98195
| |
Collapse
|
4
|
Oliva I, Kazi F, Cantwell LN, Thakur GA, Crystal JD, Hohmann AG. Negative allosteric modulation of CB1 cannabinoid receptor signalling decreases intravenous morphine self-administration and relapse in mice. Addict Biol 2024; 29:e13429. [PMID: 39109814 PMCID: PMC11304470 DOI: 10.1111/adb.13429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024]
Abstract
The endocannabinoid system interacts with the reward system to modulate responsiveness to natural reinforcers, as well as drugs of abuse. Previous preclinical studies suggested that direct blockade of CB1 cannabinoid receptors (CB1R) could be leveraged as a potential pharmacological approach to treat substance use disorder, but this strategy failed during clinical trials due to severe psychiatric side effects. Alternative strategies have emerged to circumvent the side effects of direct CB1 binding through the development of allosteric modulators. We hypothesized that negative allosteric modulation of CB1R signalling would reduce the reinforcing properties of morphine and decrease behaviours associated with opioid misuse. By employing intravenous self-administration in mice, we studied the effects of GAT358, a functionally-biased CB1R negative allosteric modulator (NAM), on morphine intake, relapse-like behaviour and motivation to work for morphine infusions. GAT358 reduced morphine infusion intake during the maintenance phase of morphine self-administration under a fixed ratio 1 schedule of reinforcement. GAT358 also decreased morphine-seeking behaviour after forced abstinence. Moreover, GAT358 dose dependently decreased the motivation to obtain morphine infusions under a progressive ratio schedule of reinforcement. Strikingly, GAT358 did not affect the motivation to work for food rewards in an identical progressive ratio task, suggesting that the effect of GAT358 in decreasing opioid self-administration was reward specific. Furthermore, GAT58 did not produce motor ataxia in the rotarod test. Our results suggest that CB1R NAMs reduced the reinforcing properties of morphine and could represent a viable therapeutic route to safely decrease misuse of opioids.
Collapse
Affiliation(s)
- Idaira Oliva
- Department of Psychological and Brain SciencesIndiana University BloomingtonBloomingtonIndianaUSA
| | - Fezaan Kazi
- Department of Psychological and Brain SciencesIndiana University BloomingtonBloomingtonIndianaUSA
| | - Lucas N. Cantwell
- Department of Pharmaceutical SciencesNortheastern UniversityBostonMassachusettsUSA
| | - Ganesh A. Thakur
- Department of Pharmaceutical SciencesNortheastern UniversityBostonMassachusettsUSA
| | - Jonathon D. Crystal
- Department of Psychological and Brain SciencesIndiana University BloomingtonBloomingtonIndianaUSA
| | - Andrea G. Hohmann
- Department of Psychological and Brain SciencesIndiana University BloomingtonBloomingtonIndianaUSA
- Gill Institute for NeuroscienceIndiana University BloomingtonBloomingtonIndianaUSA
| |
Collapse
|
5
|
Oliva I, Saberi SA, Rangel‐Barajas C, Iyer V, Bunner KD, Lai YY, Kulkarni PM, Garai S, Thakur GA, Crystal JD, Rebec GV, Hohmann AG. Inhibition of PSD95-nNOS protein-protein interactions decreases morphine reward and relapse vulnerability in rats. Addict Biol 2022; 27:e13220. [PMID: 36001441 PMCID: PMC9539577 DOI: 10.1111/adb.13220] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 01/18/2023]
Abstract
Glutamate signalling through the N-methyl-d-aspartate receptor (NMDAR) activates the enzyme neuronal nitric oxide synthase (nNOS) to produce the signalling molecule nitric oxide (NO). We hypothesized that disruption of the protein-protein interaction between nNOS and the scaffolding protein postsynaptic density 95 kDa (PSD95) would block NMDAR-dependent NO signalling and represent a viable therapeutic route to decrease opioid reward and relapse-like behaviour without the unwanted side effects of NMDAR antagonists. We used a conditioned place preference (CPP) paradigm to evaluate the impact of two small-molecule PSD95-nNOS inhibitors, IC87201 and ZL006, on the rewarding effects of morphine. Both IC87201 and ZL006 blocked morphine-induced CPP at doses that lacked intrinsic rewarding or aversive properties. Furthermore, in vivo fast-scan cyclic voltammetry (FSCV) was used to ascertain the impact of ZL006 on morphine-induced increases in dopamine (DA) efflux in the nucleus accumbens shell (NAc shell) evoked by electrical stimulation of the medial forebrain bundle (MFB). ZL006 attenuated morphine-induced increases in DA efflux at a dose that did not have intrinsic effects on DA transmission. We also employed multiple intravenous drug self-administration approaches to examine the impact of ZL006 on the reinforcing effects of morphine. Interestingly, ZL006 did not alter acquisition or maintenance of morphine self-administration, but reduced lever pressing in a morphine relapse test after forced abstinence. Our results provide behavioural and neurochemical support for the hypothesis that inhibition of PSD95-nNOS protein-protein interactions decreases morphine reward and relapse-like behaviour, highlighting a previously unreported application for these novel therapeutics in the treatment of opioid addiction.
Collapse
Affiliation(s)
- Idaira Oliva
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonINUSA
| | - Shahin A. Saberi
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonINUSA
| | | | - Vishakh Iyer
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonINUSA,Program in NeuroscienceIndiana UniversityBloomingtonINUSA
| | - Kendra D. Bunner
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonINUSA,Program in NeuroscienceIndiana UniversityBloomingtonINUSA
| | - Yvonne Y. Lai
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonINUSA
| | | | - Sumanta Garai
- Department of Pharmaceutical SciencesNortheastern UniversityBostonMAUSA
| | - Ganesh A. Thakur
- Department of Pharmaceutical SciencesNortheastern UniversityBostonMAUSA
| | - Jonathon D. Crystal
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonINUSA,Program in NeuroscienceIndiana UniversityBloomingtonINUSA
| | - George V. Rebec
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonINUSA,Program in NeuroscienceIndiana UniversityBloomingtonINUSA
| | - Andrea G. Hohmann
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonINUSA,Program in NeuroscienceIndiana UniversityBloomingtonINUSA,Gill Center for Biomolecular ScienceIndiana UniversityBloomingtonINUSA
| |
Collapse
|
6
|
Sex Differences in Behavioral Responding and Dopamine Release during Pavlovian Learning. eNeuro 2022; 9:ENEURO.0050-22.2022. [PMID: 35264461 PMCID: PMC8941639 DOI: 10.1523/eneuro.0050-22.2022] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 12/15/2022] Open
Abstract
Learning associations between cues and rewards require the mesolimbic dopamine system. The dopamine response to cues signals differences in reward value in well trained animals. However, these value-related dopamine responses are absent during early training sessions when cues signal differences in the reward rate. These findings suggest cue-evoked dopamine release conveys differences between outcomes only after extensive training, though it is unclear whether this is unique to when cues signal differences in reward rate, or whether this is also evident when cues signal differences in other value-related parameters such as reward size. To address this, we used a Pavlovian conditioning task in which one audio cue was associated with a small reward (one pellet) and another audio cue was associated with a large reward (three pellets). We performed fast-scan cyclic voltammetry to record changes in dopamine release in the nucleus accumbens of male and female rats throughout learning. While female rats exhibited higher levels of conditioned responding, a faster latency to respond, and elevated post-reward head entries relative to male rats, there were no sex differences in the dopamine response to cues. Multiple training sessions were required before cue-evoked dopamine release signaled differences in reward size. Reward-evoked dopamine release scaled with reward size, though females displayed lower reward-evoked dopamine responses relative to males. Conditioned responding related to the decrease in the peak reward-evoked dopamine response and not to cue-evoked dopamine release. Collectively, these data illustrate sex differences in behavioral responding as well as in reward-evoked dopamine release during Pavlovian learning.
Collapse
|
7
|
Dopamine release and its control over early Pavlovian learning differs between the NAc core and medial NAc shell. Neuropsychopharmacology 2021; 46:1780-1787. [PMID: 33452431 PMCID: PMC8357921 DOI: 10.1038/s41386-020-00941-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 11/08/2022]
Abstract
Dopamine neurons respond to cues to reflect the value of associated outcomes. These cue-evoked dopamine responses can encode the relative rate of reward in rats with extensive Pavlovian training. Specifically, a cue that always follows the previous reward by a short delay (high reward rate) evokes a larger dopamine response in the nucleus accumbens (NAc) core relative to a distinct cue that always follows the prior reward by a long delay (low reward rate). However, it was unclear if these reward rate dopamine signals are evident during early Pavlovian training sessions and across NAc subregions. To address this, we performed fast-scan cyclic voltammetry recordings of dopamine levels to track the pattern of cue- and reward-evoked dopamine signals in the NAc core and medial NAc shell. We identified regional differences in the progression of cue-evoked dopamine signals across training. However, the dopamine response to cues did not reflect the reward rate in either the NAc core or the medial NAc shell during early training sessions. Pharmacological experiments found that dopamine-sensitive conditioned responding emerged in the NAc core before the medial NAc shell. Together, these findings illustrate regional differences in NAc dopamine release and its control over behavior during early Pavlovian learning.
Collapse
|