1
|
Bokoliya SC, Russell J, Dorsett Y, Panier HA, Singh V, Daddi L, Yuan H, Dedon LR, Liu Z, Zhou Y, Min Z, Barson JR, Covault J, Bubier JA, Zhou Y. Short-chain fatty acid valerate reduces voluntary alcohol intake in male mice. MICROBIOME 2024; 12:108. [PMID: 38886761 PMCID: PMC11181657 DOI: 10.1186/s40168-024-01829-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/04/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Despite serious health and social consequences, effective intervention strategies for habitual alcohol binge drinking are lacking. The development of novel therapeutic and preventative approaches is highly desirable. Accumulating evidence in the past several years has established associations between the gut microbiome and microbial metabolites with drinking behavior, but druggable targets and their underlying mechanism of action are understudied. RESULTS Here, using a drink-in-the-dark mouse model, we identified a microbiome metabolite-based novel treatment (sodium valerate) that can reduce excessive alcohol drinking. Sodium valerate is a sodium salt of valeric acid short-chain fatty acid with a similar structure as γ-aminobutyric acid (GABA). Ten days of oral sodium valerate supplementation attenuates excessive alcohol drinking by 40%, reduces blood ethanol concentration by 53%, and improves anxiety-like or approach-avoidance behavior in male mice, without affecting overall food and water intake. Mechanistically, sodium valerate supplementation increases GABA levels across stool, blood, and amygdala. It also significantly increases H4 acetylation in the amygdala of mice. Transcriptomics analysis of the amygdala revealed that sodium valerate supplementation led to changes in gene expression associated with functional pathways including potassium voltage-gated channels, inflammation, glutamate degradation, L-DOPA degradation, and psychological behaviors. 16S microbiome profiling showed that sodium valerate supplementation shifts the gut microbiome composition and decreases microbiome-derived neuroactive compounds through GABA degradation in the gut microbiome. CONCLUSION Our findings suggest that sodium valerate holds promise as an innovative therapeutic avenue for the reduction of habitual binge drinking, potentially through multifaceted mechanisms. Video Abstract.
Collapse
Affiliation(s)
- Suresh C Bokoliya
- Department of Medicine, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Jordan Russell
- Department of Medicine, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Yair Dorsett
- Department of Medicine, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Hunter A Panier
- Department of Medicine, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Vijender Singh
- Computational Biology Core, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Lauren Daddi
- Department of Medicine, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Hanshu Yuan
- Department of Medicine, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Liv R Dedon
- Department of Medicine, University of Connecticut Health Center, Farmington, CT, 06030, USA
- Calhoun Cardiology Center, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Zhongmao Liu
- Department of Statistics, University of Connecticut, Storrs, CT, 06269, USA
| | - Yuqi Zhou
- Department of Medicine, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Zefang Min
- Department of Statistics, University of Connecticut, Storrs, CT, 06269, USA
| | - Jessica R Barson
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Jonathan Covault
- Department of Psychiatry, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | | | - Yanjiao Zhou
- Department of Medicine, University of Connecticut Health Center, Farmington, CT, 06030, USA.
| |
Collapse
|
2
|
Liu X, Huang W, Bishir M, Hodgkinson C, Goldman D, Chang SL. Sex-dependent responses to high concentration of binge ethanol in spleen of adolescent F344 rats. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:1063-1075. [PMID: 38627206 DOI: 10.1111/acer.15328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND We previously reported that binge ethanol induces atrophy of the spleen, a key immune organ, in adolescent male F344 rats. Because there are significant sex effects in immune function, we investigated whether binge ethanol exerts sex-dependent effects on the spleen, including producing splenic atrophy. METHODS We gave F344 rats ethanol (4.8 g/kg/day; 52% w/v; i.g.) on postnatal days [PND] 36 ~ 38 and sacrificed them on PND 39 for spleen collection. We performed immunophenotyping analysis of splenic cells and examined the expression of 158 genes related to alcohol metabolism, epigenetic modification, and immune regulation in the spleens of adolescent (PND 39) male and female rats. RESULTS Following a 3-day ethanol exposure, a loss of body weight, and absolute and relative spleen weight, was seen only in male adolescent rats. Ethanol altered the relative proportions of lymphocyte subtypes in both sexes with different patterns. We also found that 3-day ethanol exposure induced sex-dependent gene expression changes in spleen. Among the 158 genes studied, the expression of only three genes was significantly increased in female rats. However, the expression of 30 genes was significantly increased/decreased in male rats. Female rats had greater expression of alcohol metabolizing enzyme genes in the spleen under physiological conditions and when stimulated by binge ethanol. The genes are involved in epigenetic modification were differentially expressed in a sex-dependent manner. CONCLUSION We found that male adolescent rats were more sensitive to binge ethanol than female rats. Differential expression of the genes related to alcohol metabolism and epigenetic modification (of DNA methyltransferase and histone deacetylases) between the sexes could account for the observed sex-dependent responses to binge ethanol in adolescent rats.
Collapse
Affiliation(s)
- Xiangqian Liu
- Institute of NeuroImmune Pharmacology, South Orange, New Jersey, USA
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenfei Huang
- Institute of NeuroImmune Pharmacology, South Orange, New Jersey, USA
- Department of Biological Sciences, Seton Hall University, South Orange, New Jersey, USA
| | - Muhammed Bishir
- Institute of NeuroImmune Pharmacology, South Orange, New Jersey, USA
- Department of Biological Sciences, Seton Hall University, South Orange, New Jersey, USA
| | - Colin Hodgkinson
- Laboratory of Neurogenetics, NIAAA, NIH, Rockville, Maryland, USA
| | - David Goldman
- Laboratory of Neurogenetics, NIAAA, NIH, Rockville, Maryland, USA
| | - Sulie L Chang
- Institute of NeuroImmune Pharmacology, South Orange, New Jersey, USA
- Department of Biological Sciences, Seton Hall University, South Orange, New Jersey, USA
| |
Collapse
|
3
|
García-Cabrerizo R, Cryan JF. A gut (microbiome) feeling about addiction: Interactions with stress and social systems. Neurobiol Stress 2024; 30:100629. [PMID: 38584880 PMCID: PMC10995916 DOI: 10.1016/j.ynstr.2024.100629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/29/2024] [Accepted: 03/17/2024] [Indexed: 04/09/2024] Open
Abstract
In recent years, an increasing attention has given to the intricate and diverse connection of microorganisms residing in our gut and their impact on brain health and central nervous system disease. There has been a shift in mindset to understand that drug addiction is not merely a condition that affects the brain, it is now being recognized as a disorder that also involves external factors such as the intestinal microbiota, which could influence vulnerability and the development of addictive behaviors. Furthermore, stress and social interactions, which are closely linked to the intestinal microbiota, are powerful modulators of addiction. This review delves into the mechanisms through which the microbiota-stress-immune axis may shape drug addiction and social behaviors. This work integrates preclinical and clinical evidence that demonstrate the bidirectional communication between stress, social behaviors, substance use disorders and the gut microbiota, suggesting that gut microbes might modulate social stress having a significance in drug addiction.
Collapse
Affiliation(s)
- Rubén García-Cabrerizo
- IUNICS, University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Medicine, University of the Balearic Islands, Palma, Spain
| | - John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
4
|
Browning BD, Kirkland AE, Green R, Engevik M, Alekseyenko AV, Leggio L, Tomko RL, Squeglia LM. The adolescent and young adult microbiome and its association with substance use: a scoping review. Alcohol Alcohol 2024; 59:agad055. [PMID: 37665023 PMCID: PMC10979412 DOI: 10.1093/alcalc/agad055] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/18/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
AIMS The microbiome is a critical factor in health throughout human development. The aims of this scoping review are to (i) elucidate the differences between the youth (post-natal day 21-65 for rodents, 2-7 years for non-human primates, and 10-25 years for humans) microbiome with other life stages and (ii) identify youth-specific microbial changes associated with substance use. METHODS Peer-reviewed studies published up to May 2023 were identified in PubMed and SCOPUS and included gut and oral microbiome studies from rodents, non-human primates, and humans (N = 1733). Twenty-six articles were determined eligible based on inclusion criteria (aim 1: n = 19, aim 2: n = 7). RESULTS The adolescent and young adult oral and gut microbiomes are distinct compared to other life stages, within both non-human and human models. While there is limited research in this area, the microbiome appears to be vulnerable to substance use exposure earlier in life, including substances commonly initiated and escalated during adolescence and young adulthood (i.e. alcohol, cannabis, and tobacco). CONCLUSIONS Studies across the lifespan indicate that adolescence and young adulthood are distinct periods of development, where the microbiome is sensitive to exposures, including substance use. There is a need for more studies focused on the adolescent and young adult microbiome and substance use, as well as focused on the oral microbiome during this developmental period. Understanding the gut and oral microbiome during adolescence and young adulthood may provide insight into the pathophysiology of substance use disorders.
Collapse
Affiliation(s)
- Brittney D Browning
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 67 President St., Charleston, SC 29425, United States
- Department of Neuroscience, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, United States
| | - Anna E Kirkland
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 67 President St., Charleston, SC 29425, United States
| | - Rejoyce Green
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 67 President St., Charleston, SC 29425, United States
| | - Melinda Engevik
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Ave., Charleston SC, 29425, United States
| | - Alexander V Alekseyenko
- Department of Public Health Sciences, Biomedical Informatics Center, Medical University of South Carolina, 135 Cannon St., Charleston, SC 29425, United States
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, Maryland, USA
| | - Rachel L Tomko
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 67 President St., Charleston, SC 29425, United States
| | - Lindsay M Squeglia
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 67 President St., Charleston, SC 29425, United States
| |
Collapse
|
5
|
Carbia C, Bastiaanssen TFS, Iannone LF, García-Cabrerizo R, Boscaini S, Berding K, Strain CR, Clarke G, Stanton C, Dinan TG, Cryan JF. The Microbiome-Gut-Brain axis regulates social cognition & craving in young binge drinkers. EBioMedicine 2023; 89:104442. [PMID: 36739238 PMCID: PMC10025767 DOI: 10.1016/j.ebiom.2023.104442] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Binge drinking is the consumption of an excessive amount of alcohol in a short period of time. This pattern of consumption is highly prevalent during the crucial developmental period of adolescence. Recently, the severity of alcohol use disorders (AUDs) has been linked with microbiome alterations suggesting a role for the gut microbiome in its development. Furthermore, a strong link has emerged too between microbiome composition and socio-emotional functioning across different disorders including AUD. The aim of this study was to investigate the potential link (and its predictive value) between alcohol-related altered microbial profile, social cognition, impulsivity and craving. METHODS Young people (N = 71) aged 18-25 reported their alcohol use and underwent a neuropsychological evaluation. Craving was measured at baseline and three months later. Diet was controlled for. Blood, saliva and hair samples were taken for inflammatory, kynurenine and cortisol analysis. Stool samples were provided for shotgun metagenomic sequencing and short-chain fatty acids (SCFAs) were measured. FINDINGS Binge drinking was associated with distinct microbiome alterations and emotional recognition difficulties. Associations were found for several microbiome species with emotional processing and impulsivity. Craving showed a strong link with alterations in microbiome composition and neuroactive potential over time. INTERPRETATION In conclusion, this research demonstrates alterations in the gut microbiome of young binge drinkers (BDs) and identifies early biomarkers of craving. Associations between emotional processing and microbiome composition further support the growing literature on the gut microbiome as a regulator of social cognition. These findings are of relevance for new gut-derived interventions directed at improving early alcohol-related alterations during the vulnerability period of adolescence. FUNDING C.C. and R.G-C. received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 754535. APC Microbiome Ireland is a research centre funded by Science Foundation Ireland (SFI), through the Irish Government's National Development Plan [grant no. SFI/12/RC/2273_P2]. J.F.C has research support from Cremo, Pharmavite, DuPont and Nutricia. He has spoken at meetings sponsored by food and pharmaceutical companies. G.C. has received honoraria from Janssen, Probi, and Apsen as an invited speaker; is in receipt of research funding from Pharmavite, Fonterra, Nestle and Reckitt; and is a paid consultant for Yakult, Zentiva and Heel pharmaceuticals. All the authors declare no competing interests.
Collapse
Affiliation(s)
- Carina Carbia
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
| | | | | | | | - Serena Boscaini
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Kirsten Berding
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | | | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
6
|
Zhou X, Wang B, Demkowicz PC, Johnson JS, Chen Y, Spakowicz DJ, Zhou Y, Dorsett Y, Chen L, Sodergren E, Kuchel GA, Weinstock GM. Exploratory studies of oral and fecal microbiome in healthy human aging. FRONTIERS IN AGING 2022; 3:1002405. [PMID: 36338834 PMCID: PMC9631447 DOI: 10.3389/fragi.2022.1002405] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022]
Abstract
Growing evidence has linked an altered host fecal microbiome composition with health status, common chronic diseases, and institutionalization in vulnerable older adults. However, fewer studies have described microbiome changes in healthy older adults without major confounding diseases or conditions, and the impact of aging on the microbiome across different body sites remains unknown. Using 16S ribosomal RNA gene sequencing, we reconstructed the composition of oral and fecal microbiomes in young (23-32; mean = 25 years old) and older (69-94; mean = 77 years old) healthy community-dwelling research subjects. In both body sites, we identified changes in minor bacterial operational taxonomic units (OTUs) between young and older subjects. However, the composition of the predominant bacterial species of the healthy older group in both microbiomes was not significantly different from that of the young cohort, which suggests that dominant bacterial species are relatively stable with healthy aging. In addition, the relative abundance of potentially pathogenic genera, such as Rothia and Mycoplasma, was enriched in the oral microbiome of the healthy older group relative to the young cohort. We also identified several OTUs with a prevalence above 40% and some were more common in young and others in healthy older adults. Differences with aging varied for oral and fecal samples, which suggests that members of the microbiome may be differentially affected by aging in a tissue-specific fashion. This is the first study to investigate both oral and fecal microbiomes in the context of human aging, and provides new insights into interactions between aging and the microbiome within two different clinically relevant sites.
Collapse
Affiliation(s)
- Xin Zhou
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, United States
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, United States
| | - Baohong Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University School of Medicine, Hangzhou City, China
| | - Patrick C. Demkowicz
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
- Yale University School of Medicine, New Haven, CT, United States
| | - Jethro S. Johnson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
- Oxford Centre for Microbiome Studies, Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Yanfei Chen
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University School of Medicine, Hangzhou City, China
| | - Daniel J. Spakowicz
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Yanjiao Zhou
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
- Department of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Yair Dorsett
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
- Department of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Lei Chen
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Erica Sodergren
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - George A. Kuchel
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, United States
| | | |
Collapse
|
7
|
A biological framework for emotional dysregulation in alcohol misuse: from gut to brain. Mol Psychiatry 2021; 26:1098-1118. [PMID: 33288871 DOI: 10.1038/s41380-020-00970-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/21/2020] [Accepted: 11/20/2020] [Indexed: 02/08/2023]
Abstract
Alcohol use disorder (AUD) has been associated with impairments in social and emotional cognition that play a crucial role in the development and maintenance of addiction. Repeated alcohol intoxications trigger inflammatory processes and sensitise the immune system. In addition, emerging data point to perturbations in the gut microbiome as a key regulator of the inflammatory cascade in AUD. Inflammation and social cognition are potent modulators of one another. At the same time, accumulating evidence implicates the gut microbiome in shaping emotional and social cognition, suggesting the possibility of a common underlying loop of crucial importance for addiction. Here we propose an integrative microbiome neuro-immuno-affective framework of how emotional dysregulation and alcohol-related microbiome dysbiosis could accelerate the cycle of addiction. We outline the overlapping effects of chronic alcohol use, inflammation and microbiome alterations on the fronto-limbic circuitry as a convergence hub for emotional dysregulation. We discuss the interdependent relationship of social cognition, immunity and the microbiome in relation to alcohol misuse- from binge drinking to addiction. In addition, we emphasise adolescence as a sensitive period for the confluence of alcohol harmful effects and emotional dysregulation in the developing gut-brain axis.
Collapse
|
8
|
Salavrakos M, Leclercq S, De Timary P, Dom G. Microbiome and substances of abuse. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110113. [PMID: 32971216 DOI: 10.1016/j.pnpbp.2020.110113] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022]
Abstract
There is a growing amount of evidence showing a reciprocal relation between the gut microbiota and the brain. Substance use disorders (SUD), which are a major cause of preventable morbidity and mortality worldwide, have an influence on the gut microbiota and on the gut-brain axis. The communication between the microbiota and the brain exists through different pathways: (1) the immune response elicited by bacterial products, coupled with alterations of the intestinal barrier allowing these products to enter the bloodstream, (2) the direct and indirect effects of bacterial metabolites such as short chain fatty acids (SCFAs) or tryptophan on the brain, (3) and the hypothalamic-pituitary-adrenal (HPA) axis, whose peripheral afferents can be influenced by the microbiota, and can in turn activate microglia. Among substances of abuse, alcohol has been the subject of the greatest number of studies in this field. In some but not all patients suffering from alcohol-use-disorder (AUD), alcohol alters the composition of the gut microbiota and the permeability of the intestinal barrier, directly and through dysbiosis. It has also been well demonstrated that alcohol induces a peripheral inflammation; it is still unclear whether it induces a central inflammation, as there are contradictory results in human studies. In animal studies, it has been shown that neuroinflammation increases during alcohol withdrawal. Literature on opioids and stimulants is less numerous. Chronic morphine intake induces dysbiosis, increased intestinal permeability and a probable neuroinflammation, which could explain symptoms such as tolerance, hyperalgesia and deficit in reward behavior. Cocaine induces a dysbiosis and conversely the microbiome can modulate the behavioral response to stimulant drugs. Tobacco cessation is associated with an increase in microbiota diversity. Taken together, the findings of our narrative literature review suggest a bidirectional influence in the pathogenesis of substance use disorders.
Collapse
Affiliation(s)
- M Salavrakos
- Target Journal Progress in Neuropsychopharmacology and Biological Psychiatry, Belgium
| | - S Leclercq
- Target Journal Progress in Neuropsychopharmacology and Biological Psychiatry, Belgium
| | - P De Timary
- Target Journal Progress in Neuropsychopharmacology and Biological Psychiatry, Belgium
| | - G Dom
- Target Journal Progress in Neuropsychopharmacology and Biological Psychiatry, Belgium.
| |
Collapse
|