1
|
Woodley MMO, Zhao Q, Goldston DB, Michael AM, Clark DB, Brown SA, Nooner KB. Adverse childhood experiences and post-traumatic stress impacts on brain connectivity and alcohol use in adolescence. Child Neuropsychol 2025:1-21. [PMID: 39819312 DOI: 10.1080/09297049.2025.2451799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025]
Abstract
The current study investigated the relationship between adverse childhood experiences (ACEs), post-traumatic stress disorder (PTSD) symptoms, within-network resting-state functional connectivity (rs-FC), and alcohol use during adolescence using functional magnetic resonance imaging (fMRI) data from the National Consortium on Alcohol and Neurodevelopment in Adolescence study (NCANDA; N = 687). Significant rs-FC differences emerged that linked participant ACEs, PTSD symptoms, and alcohol use problems. Participants with ACEs compared to those without had diminished rs-FC within the default mode, salience, and medial frontoparietal networks (p ≤ 0.005). Further reduction in rs-FC within the default mode and medial frontoparietal networks (p ≤ 0.005) was found when PTSD symptoms were present in addition to ACEs. Findings suggest that PTSD symptoms are associated with lower within network rs-FC beyond exposure to ACEs, and some of these rs-FC changes were associated with worsened alcohol use problems (i.e. withdrawal symptoms). These findings highlight the importance of addressing PTSD symptoms in adolescents with a history of ACEs as it may mitigate problematic changes in brain connectivity and reduce the risk of developing alcohol use problems.
Collapse
Affiliation(s)
- Mary Milo O Woodley
- Department of Psychology, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Qingyu Zhao
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - David B Goldston
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NY, USA
| | - Andrew M Michael
- Duke Institute for Brain Sciences, Duke University, Durham, NY, USA
| | - Duncan B Clark
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sandra A Brown
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Department of Psychology, University of California San Diego, La Jolla, CA, USA
| | - Kate B Nooner
- Department of Psychology, University of North Carolina Wilmington, Wilmington, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NY, USA
| |
Collapse
|
2
|
McIntyre CC, Bahrami M, Shappell HM, Lyday RG, Fish J, Bollt EM, Laurienti PJ. Contrasting topologies of synchronous and asynchronous functional brain networks. Netw Neurosci 2024; 8:1491-1506. [PMID: 39735494 PMCID: PMC11675104 DOI: 10.1162/netn_a_00413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/01/2024] [Indexed: 12/31/2024] Open
Abstract
We generated asynchronous functional networks (aFNs) using a novel method called optimal causation entropy and compared aFN topology with the correlation-based synchronous functional networks (sFNs), which are commonly used in network neuroscience studies. Functional magnetic resonance imaging (fMRI) time series from 212 participants of the National Consortium on Alcohol and Neurodevelopment in Adolescence study were used to generate aFNs and sFNs. As a demonstration of how aFNs and sFNs can be used in tandem, we used multivariate mixed effects models to determine whether age interacted with node efficiency to influence connection probabilities in the two networks. After adjusting for differences in network density, aFNs had higher global efficiency but lower local efficiency than the sFNs. In the aFNs, nodes with the highest outgoing global efficiency tended to be in the brainstem and orbitofrontal cortex. aFN nodes with the highest incoming global efficiency tended to be members of the default mode network in sFNs. Age interacted with node global efficiency in aFNs and node local efficiency in sFNs to influence connection probability. We conclude that the sFN and aFN both offer information about functional brain connectivity that the other type of network does not.
Collapse
Affiliation(s)
- Clayton C. McIntyre
- Laboratory for Complex Brain Networks, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Neuroscience Graduate Program, Wake Forest Graduate School of Arts and Sciences, Winston-Salem, NC, USA
| | - Mohsen Bahrami
- Laboratory for Complex Brain Networks, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Heather M. Shappell
- Laboratory for Complex Brain Networks, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Robert G. Lyday
- Laboratory for Complex Brain Networks, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jeremie Fish
- Department of Electrical and Computer Engineering, Clarkson University, Potsdam, NY, USA
- Clarkson Center for Complex Systems Science, Potsdam, NY, USA
| | - Erik M. Bollt
- Department of Electrical and Computer Engineering, Clarkson University, Potsdam, NY, USA
- Clarkson Center for Complex Systems Science, Potsdam, NY, USA
| | - Paul J. Laurienti
- Laboratory for Complex Brain Networks, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
3
|
González C, Miraoui Y, Fan Y, Adeli E, Pohl KM. SpaRG: Sparsely Reconstructed Graphs for Generalizable fMRI Analysis. MACHINE LEARNING IN CLINICAL NEUROIMAGING : 7TH INTERNATIONAL WORKSHOP, MLCN 2024, HELD IN CONJUNCTION WITH MICCAI 2024, MARRAKESH, MOROCCO, OCTOBER 10, 2024, PROCEEDINGS. MLCN (WORKSHOP) (7TH : 2024 : MARRAKESH, MOROCCO) 2024; 15266:46-56. [PMID: 39758707 PMCID: PMC11694515 DOI: 10.1007/978-3-031-78761-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Deep learning can help uncover patterns in resting-state functional Magnetic Resonance Imaging (rs-fMRI) associated with psychiatric disorders and personal traits. Yet the problem of interpreting deep learning findings is rarely more evident than in fMRI analyses, as the data is sensitive to scanning effects and inherently difficult to visualize. We propose a simple approach to mitigate these challenges grounded on sparsification and self-supervision. Instead of extracting post-hoc feature attributions to uncover functional connections that are important to the target task, we identify a small subset of highly informative connections during training and occlude the rest. To this end, we jointly train a (1) sparse input mask, (2) variational autoencoder (VAE), and (3) downstream classifier in an end-to-end fashion. While we need a portion of labeled samples to train the classifier, we optimize the sparse mask and VAE with unlabeled data from additional acquisition sites, retaining only the input features that generalize well. We evaluate our method - Sparsely Reconstructed Graphs (SpaRG) - on the public ABIDE dataset for the task of sex classification, training with labeled cases from 18 sites and adapting the model to two additional out-of-distribution sites with a portion of unlabeled samples. For a relatively coarse parcellation (64 regions), SpaRG utilizes only 1% of the original connections while improving the classification accuracy across domains. Our code can be found at www.github.com/yanismiraoui/SpaRG.
Collapse
Affiliation(s)
| | | | - Yiran Fan
- Stanford University, Stanford, CA 94305, USA
| | - Ehsan Adeli
- Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
4
|
Morales AM, Jones SA, Carlson B, Kliamovich D, Dehoney J, Simpson BL, Dominguez-Savage KA, Hernandez KO, Lopez DA, Baker FC, Clark DB, Goldston DB, Luna B, Nooner KB, Muller-Oehring EM, Tapert SF, Thompson WK, Nagel BJ. Associations between mesolimbic connectivity, and alcohol use from adolescence to adulthood. Dev Cogn Neurosci 2024; 70:101478. [PMID: 39577156 PMCID: PMC11617707 DOI: 10.1016/j.dcn.2024.101478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/18/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024] Open
Abstract
Dopaminergic projections from the ventral tegmental area (VTA) to limbic regions play a key role in the initiation and maintenance of substance use; however, the relationship between mesolimbic resting-state functional connectivity (RSFC) and alcohol use during development remains unclear. We examined the associations between alcohol use and VTA RSFC to subcortical structures in 796 participants (12-21 years old at baseline, 51 % female) across 9 waves of longitudinal data from the National Consortium on Alcohol and Neurodevelopment in Adolescence. Linear mixed effects models included interactions between age, sex, and alcohol use, and best fitting models were selected using log-likelihood ratio tests. Results demonstrated a positive association between alcohol use and VTA RSFC to the nucleus accumbens. Age was associated with VTA RSFC to the amygdala and hippocampus, and an age-by-alcohol use interaction on VTA-globus pallidus connectivity was driven by a positive association between alcohol and VTA-globus pallidus RSFC in adolescence, but not adulthood. On average, male participants exhibited greater VTA RSFC to the amygdala, nucleus accumbens, caudate, hippocampus, globus pallidus, and thalamus. Differences in VTA RSFC related to age, sex, and alcohol, may inform our understanding of neurobiological risk and resilience for alcohol use and other psychiatric disorders.
Collapse
Affiliation(s)
- Angelica M Morales
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States.
| | - Scott A Jones
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| | - Birgitta Carlson
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| | - Dakota Kliamovich
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| | - Joseph Dehoney
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Brooke L Simpson
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| | | | - Kristina O Hernandez
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| | - Daniel A Lopez
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| | - Fiona C Baker
- Center for Health Sciences, SRI International, Menlo Park, CA, United States
| | - Duncan B Clark
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - David B Goldston
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kate B Nooner
- Department of Psychology, University of North Carolina Wilmington, Wilmington, NC, United States
| | - Eva M Muller-Oehring
- Center for Health Sciences, SRI International, Menlo Park, CA, United States; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, United States
| | - Susan F Tapert
- Department of Psychiatry, University of California, San Diego, CA, United States
| | | | - Bonnie J Nagel
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
5
|
McIntyre CC, Bahrami M, Shappell HM, Lyday RG, Fish J, Bollt EM, Laurienti PJ. Contrasting topologies of synchronous and asynchronous functional brain networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604765. [PMID: 39211082 PMCID: PMC11361138 DOI: 10.1101/2024.07.23.604765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
We generated asynchronous functional networks (aFNs) using a novel method called optimal causation entropy (oCSE) and compared aFN topology to the correlation-based synchronous functional networks (sFNs) which are commonly used in network neuroscience studies. Functional magnetic resonance imaging (fMRI) time series from 212 participants of the National Consortium on Alcohol and NeuroDevelopment in Adolescence (NCANDA) study were used to generate aFNs and sFNs. As a demonstration of how aFNs and sFNs can be used in tandem, we used multivariate mixed effects models to determine whether age interacted with node efficiency to influence connection probabilities in the two networks. After adjusting for differences in network density, aFNs had higher global efficiency but lower local efficiency than the sFNs. In the aFNs, nodes with the highest outgoing global efficiency tended to be in the brainstem and orbitofrontal cortex. aFN nodes with the highest incoming global efficiency tended to be members of the Default Mode Network (DMN) in sFNs. Age interacted with node global efficiency in aFNs and node local efficiency in sFNs to influence connection probability. We conclude that the sFN and aFN both offer information about functional brain connectivity which the other type of network does not.
Collapse
|
6
|
Kirse HA, Bahrami M, Lyday RG, Simpson SL, Peterson-Sockwell H, Burdette JH, Laurienti PJ. Differences in Brain Network Topology Based on Alcohol Use History in Adolescents. Brain Sci 2023; 13:1676. [PMID: 38137124 PMCID: PMC10741456 DOI: 10.3390/brainsci13121676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Approximately 6 million youth aged 12 to 20 consume alcohol monthly in the United States. The effect of alcohol consumption in adolescence on behavior and cognition is heavily researched; however, little is known about how alcohol consumption in adolescence may alter brain function, leading to long-term developmental detriments. In order to investigate differences in brain connectivity associated with alcohol use in adolescents, brain networks were constructed using resting-state functional magnetic resonance imaging data collected by the National Consortium on Alcohol and NeuroDevelopment in Adolescence (NCANDA) from 698 youth (12-21 years; 117 hazardous drinkers and 581 no/low drinkers). Analyses assessed differences in brain network topology based on alcohol consumption in eight predefined brain networks, as well as in whole-brain connectivity. Within the central executive network (CEN), basal ganglia network (BGN), and sensorimotor network (SMN), no/low drinkers demonstrated stronger and more frequent connections between highly globally efficient nodes, with fewer and weaker connections between highly clustered nodes. Inverse results were observed within the dorsal attention network (DAN), visual network (VN), and frontotemporal network (FTN), with no/low drinkers demonstrating weaker connections between nodes with high efficiency and increased frequency of clustered nodes compared to hazardous drinkers. Cross-sectional results from this study show clear organizational differences between adolescents with no/low or hazardous alcohol use, suggesting that aberrant connectivity in these brain networks is associated with risky drinking behaviors.
Collapse
Affiliation(s)
- Haley A. Kirse
- Laboratory for Complex Brain Networks, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (H.A.K.); (M.B.); (R.G.L.); (S.L.S.); (H.P.-S.); (J.H.B.)
- Graduate Program, Wake Forest Graduate School of Arts and Sciences, Integrative Physiology and Pharmacology, Winston-Salem, NC 27101, USA
| | - Mohsen Bahrami
- Laboratory for Complex Brain Networks, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (H.A.K.); (M.B.); (R.G.L.); (S.L.S.); (H.P.-S.); (J.H.B.)
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Robert G. Lyday
- Laboratory for Complex Brain Networks, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (H.A.K.); (M.B.); (R.G.L.); (S.L.S.); (H.P.-S.); (J.H.B.)
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Sean L. Simpson
- Laboratory for Complex Brain Networks, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (H.A.K.); (M.B.); (R.G.L.); (S.L.S.); (H.P.-S.); (J.H.B.)
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Hope Peterson-Sockwell
- Laboratory for Complex Brain Networks, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (H.A.K.); (M.B.); (R.G.L.); (S.L.S.); (H.P.-S.); (J.H.B.)
| | - Jonathan H. Burdette
- Laboratory for Complex Brain Networks, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (H.A.K.); (M.B.); (R.G.L.); (S.L.S.); (H.P.-S.); (J.H.B.)
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Paul J. Laurienti
- Laboratory for Complex Brain Networks, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (H.A.K.); (M.B.); (R.G.L.); (S.L.S.); (H.P.-S.); (J.H.B.)
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| |
Collapse
|
7
|
Nwachukwu KN, Healey KL, Swartzwelder HS, Marshall SA. The Influence of Sex on Hippocampal Neurogenesis and Neurotrophic Responses on the Persistent Effects of Adolescent Intermittent Ethanol Exposure into Adulthood. Neuroscience 2022; 506:68-79. [PMID: 36343720 PMCID: PMC9764262 DOI: 10.1016/j.neuroscience.2022.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
In the United States, approximately 90% of alcohol consumed by adolescents is binge drinking. Binge-like ethanol exposure during adolescence promotes dysregulation of neurotrophic responses and neurogenesis in the hippocampus. These effects include changes in proliferation, regulation, differentiation, and maturation of neurons, and there is indication that such effects may be disproportionate between sexes. This study determined whether sex impacts neurotrophic responses and neurogenesis in adulthood after adolescent intermittent ethanol (AIE) exposure. To determine this, adolescent rats underwent AIE with ethanol (5 g/kg). In adulthood, animals were euthanized, and immunohistochemical techniques and ELISAs were utilized to determine AIE effects on sex-specific neurogenesis factors and neurotrophic markers, respectively. AIE exposure led to a significant decrease in neurogenesis in the dentate gyrus of the hippocampal formation indicated by reductions in the numbers of DCX+, SOX2+ and Ki-67+ cells in male and female AIE-exposed rats. Additionally, AIE increased markers for the pro-inflammatory cytokines, TNF-α and IL-1β, in the hippocampus into adulthood in male AIE-exposed rats only. No significant AIE-induced differences were observed in the anti-inflammatory cytokines, IL-10 and TGF-β, nor in the neurotrophic factors BDNF and GDNF. Altogether, our findings indicate that although AIE did not have a persistent effect on hippocampal neurotrophic levels, there was still a reduction in neurogenesis. The neurogenic impairment was not sex specific, but the neurogenic deficits in males may be attributed to an increase in pro-inflammatory cytokine expression. A persistent impairment in neurogenesis may have an impact on both behavioral maladaptations and neurodegeneration in adulthood.
Collapse
Affiliation(s)
- Kala N Nwachukwu
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC 27707, United States; Integrated Biosciences PhD Program, North Carolina Central University, Durham, NC 27707, USA
| | - Kati L Healey
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27708, United States
| | - H Scott Swartzwelder
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27708, United States
| | - S Alex Marshall
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC 27707, United States.
| |
Collapse
|
8
|
Fan CC, Loughnan R, Makowski C, Pecheva D, Chen CH, Hagler DJ, Thompson WK, Parker N, van der Meer D, Frei O, Andreassen OA, Dale AM. Multivariate genome-wide association study on tissue-sensitive diffusion metrics highlights pathways that shape the human brain. Nat Commun 2022; 13:2423. [PMID: 35505052 PMCID: PMC9065144 DOI: 10.1038/s41467-022-30110-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 04/12/2022] [Indexed: 11/12/2022] Open
Abstract
The molecular determinants of tissue composition of the human brain remain largely unknown. Recent genome-wide association studies (GWAS) on this topic have had limited success due to methodological constraints. Here, we apply advanced whole-brain analyses on multi-shell diffusion imaging data and multivariate GWAS to two large scale imaging genetic datasets (UK Biobank and the Adolescent Brain Cognitive Development study) to identify and validate genetic association signals. We discover 503 unique genetic loci that have impact on multiple regions of human brain. Among them, more than 79% are validated in either of two large-scale independent imaging datasets. Key molecular pathways involved in axonal growth, astrocyte-mediated neuroinflammation, and synaptogenesis during development are found to significantly impact the measured variations in tissue-specific imaging features. Our results shed new light on the biological determinants of brain tissue composition and their potential overlap with the genetic basis of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Chun Chieh Fan
- Population Neuroscience and Genetics Lab, University of California, San Diego, La Jolla, CA, USA.
- Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, CA, USA.
- Department of Radiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA.
| | - Robert Loughnan
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA
| | - Carolina Makowski
- Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, CA, USA
- Department of Radiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Diliana Pecheva
- Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, CA, USA
- Department of Radiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Chi-Hua Chen
- Department of Radiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Donald J Hagler
- Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, CA, USA
- Department of Radiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Wesley K Thompson
- Population Neuroscience and Genetics Lab, University of California, San Diego, La Jolla, CA, USA
- Department of Radiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Nadine Parker
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dennis van der Meer
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Oleksandr Frei
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, CA, USA
- Department of Radiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA
- Department of Neuroscience, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
9
|
Nwachukwu KN, King DM, Healey KL, Swartzwelder HS, Marshall SA. Sex-specific effects of adolescent intermittent ethanol exposure-induced dysregulation of hippocampal glial cells in adulthood. Alcohol 2022; 100:31-39. [PMID: 35182671 PMCID: PMC8983575 DOI: 10.1016/j.alcohol.2022.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 12/11/2022]
Abstract
Adolescent alcohol abuse is a significant public health concern, with approximately 4.3 million U.S. adolescents reporting monthly binge drinking. Excessive ethanol consumption during adolescence has been linked to dysregulation of the neuroimmune system, particularly in the hippocampus. Because there are sex differences in both neuroimmune responses and ethanol's pharmacologic actions, this study tested whether there were disparate effects based on sex in glial cells and neurodegeneration in adulthood after the adolescent intermittent ethanol (AIE) model. Male and female adolescent Sprague-Dawley rats underwent AIE. In adulthood, immunohistochemical techniques were utilized to determine the effects of AIE on astrocytes and microglia, and Fluoro-Jade C (FJC) was used to assess neurodegeneration in the hippocampus. AIE exposure significantly increased astrocyte activation in the cornu ammonis 1 (CA1), CA2/3, and dentate gyrus (DG) in both male and female rats with no discernible sex differences in immunoreactivity. Likewise, the number of GFAP + cells was significantly increased by AIE across the hippocampus. In our microglial assessment, AIE only led to increased Iba1 immunoreactivity in the CA1 but not CA2/3 or DG regions. However, the number of Iba1+ cells was increased by AIE in both the CA1 and DG subregions. In the DG, the ethanol effect was observed in both sexes, but in the CA1, AIE-induced increased Iba1 cells were only observed in females. In regard to neurodegeneration, there were no persisting AIE effects on FJC + cells. These findings indicate that AIE alters hippocampal glial cells in adulthood, in the absence of active neurodegeneration. However, while AIE induced long-term elevation of astroglial measures in both males and females, persisting AIE-induced microglial activation was more sparse and sex-dependent. While the majority of these findings suggest that AIE has similar effects on glial morphology and number between males and females, additional work should determine whether there are molecular differences as well as innate sex differences in glial interaction with AIE's influence on glial functions in behavior.
Collapse
Affiliation(s)
- Kala N Nwachukwu
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC, 27707, United States
| | - Dantae M King
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC, 27707, United States
| | - Kati L Healey
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, 27708, United States
| | - H Scott Swartzwelder
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, 27708, United States
| | - S Alex Marshall
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC, 27707, United States.
| |
Collapse
|
10
|
Abstract
This article is part of a Festschrift commemorating the 50th anniversary of the National Institute on Alcohol Abuse and Alcoholism (NIAAA). Established in 1970, first as part of the National Institute of Mental Health and later as an independent institute of the National Institutes of Health, NIAAA today is the world's largest funding agency for alcohol research. In addition to its own intramural research program, NIAAA supports the entire spectrum of innovative basic, translational, and clinical research to advance the diagnosis, prevention, and treatment of alcohol use disorder and alcohol-related problems. To celebrate the anniversary, NIAAA hosted a 2-day symposium, "Alcohol Across the Lifespan: 50 Years of Evidence-Based Diagnosis, Prevention, and Treatment Research," devoted to key topics within the field of alcohol research. This article is based on Dr. Tapert's presentation at the event. NIAAA Director George F. Koob, Ph.D., serves as editor of the Festschrift.
Collapse
Affiliation(s)
- Susan F Tapert
- Department of Psychiatry, University of California San Diego, La Jolla, California
| | | |
Collapse
|
11
|
Holmgren EB, Wills TA. Regulation of glutamate signaling in the extended amygdala by adolescent alcohol exposure. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 160:223-250. [PMID: 34696874 DOI: 10.1016/bs.irn.2021.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Adolescence is a critical period for brain development and behavioral maturation, marked by increased risk-taking behavior and the initiation of drug use. There are significant changes in gray matter volume and pruning of synapses along with a shift in excitatory to inhibitory balance which marks the maturation of cognition and decision-making. Because of ongoing brain development, adolescents are particularly sensitive to the detrimental effects of drugs, including alcohol, which can cause long-lasting consequences into adulthood. The extended amygdala is a region critically implicated in withdrawal and negative affect such as anxiety and depression. As negative affective disorders develop during adolescence, the effects of adolescent alcohol exposure on extended amygdala circuitry needs further inquiry. Here we aim to provide a framework to discuss the existing literature on the extended amygdala, the neuroadaptations which result from alcohol use, and the intersection of factors which contribute to the long-lasting effects of this exposure.
Collapse
Affiliation(s)
- E B Holmgren
- Department of Cell Biology and Anatomy, LSU Health Sciences Center New Orleans, New Orleans, LA, United States
| | - T A Wills
- Department of Cell Biology and Anatomy, LSU Health Sciences Center New Orleans, New Orleans, LA, United States; Neuroscience Center of Excellence, LSU Health Sciences Center New Orleans, New Orleans, LA, United States.
| |
Collapse
|
12
|
Abstract
PURPOSE Alcohol and cannabis are the most commonly used substances during adolescence and are typically initiated during this sensitive neurodevelopmental period. The aim of this review is to provide a comprehensive overview of the most recent literature focused on understanding how these substances affect the developing brain. SEARCH METHODS Articles included in this review were identified by entering 30 search terms focused on substance use, adolescence, and neurodevelopment into MEDLINE, Embase, PsycINFO, ProQuest Central, and Web of Science. Studies were eligible for inclusion if they longitudinally examined the effect of adolescent alcohol and/or cannabis use on structural or functional outcomes in 50 or more participants. SEARCH RESULTS More than 700 articles were captured by the search, and 43 longitudinal studies met inclusion criteria, including 18 studies focused on alcohol use, 13 on cannabis use, and 12 on alcohol and cannabis co-use. DISCUSSION AND CONCLUSIONS Existing studies suggest heavy alcohol and cannabis use during adolescence are related to small to moderate disruptions in brain structure and function, as well as neurocognitive impairment. The effects of alcohol use include widespread decreases in gray matter volume and cortical thickness across time; slowed white matter growth and poorer integrity; disrupted network efficiency; and poorer impulse and attentional control, learning, memory, visuospatial processing, and psychomotor speed. The severity of some effects is dependent on dose. Heavy to very heavy cannabis use is associated with decreased subcortical volume and increased frontoparietal cortical thickness, disrupted functional development, and decreased executive functioning and IQ compared to non-using controls. Overall, co-use findings suggest more pronounced effects related to alcohol use than to cannabis use. Several limitations exist in the literature. Sample sizes are relatively small and demographically homogenous, with significant heterogeneity in substance use patterns and methodologies across studies. More research is needed to clarify how substance dosing and interactions between substances, as well as sociodemographic and environmental factors, affect outcomes. Larger longitudinal studies, already underway, will help clarify the relationship between brain development and substance use.
Collapse
Affiliation(s)
- Briana Lees
- Matilda Centre for Research in Mental Health and Substance Use, University of Sydney, Camperdown, Australia
| | - Jennifer Debenham
- Matilda Centre for Research in Mental Health and Substance Use, University of Sydney, Camperdown, Australia
| | - Lindsay M Squeglia
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
13
|
Zhang J, Zuo X, Yu C, Lian Q, Tu X, Lou C. The Association between Gender Role Attitudes and Alcohol Use among Early Adolescents in Shanghai, China. Subst Use Misuse 2021; 56:1403-1410. [PMID: 34027812 DOI: 10.1080/10826084.2021.1928214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Adolescent alcohol use was a major social and public health concern given its negative impacts. Previous studies indicated gender role attitudes (GRA) were associated with alcohol use; however, few studies focused on early adolescents (10 to 14 years) and similar researches were not found in China. Objective: This study sought to explore the association between GRA and alcohol use among early adolescents. Methods: A cross-sectional study was conducted among students in grades six to eight across three public secondary schools in Shanghai, China. Data were collected by Computer-Assisted Self-Interview (CASI) questionnaire on mobile tablets. Alcohol use was measured by self-report, and six items with 5-point Likert-type options assessed the attitude toward traditional gender roles. The logistic regression model was adopted to examine the associations between GAR and alcohol use. Results: Totally 1,631 adolescents aged 10 to 14 years with 50.33% of boys included in this study. The mean score of GRA in drinkers was significantly higher than nondrinkers among boys (3.03 vs. 2.78, p < 0.001) but not girls (2.15 vs. 2.18, p = 0.499). After controlling the covariates of age, depression, peers' substance use, social cohesion, etc., we found that more traditional GRA was associated with a higher risk of alcohol use among boys (OR = 1.39, 95%CI: 1.11-1.75), whereas the association was not significant among girls (OR = 0.96, 95%CI: 0.74-1.24). Conclusions: Traditional GRA may increase the risk of alcohol use among early adolescent boys, suggesting that altering traditional GRA among this population group may help to prevent alcohol use.
Collapse
Affiliation(s)
- Jiashuai Zhang
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Public Health, Fudan University, Shanghai, China
| | - Xiayun Zuo
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Chunyan Yu
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Qiguo Lian
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Xiaowen Tu
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Chaohua Lou
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| |
Collapse
|