1
|
Altinok DCA, Ohl K, Volkmer S, Brandt GA, Fritze S, Hirjak D. 3D-optical motion capturing examination of sensori- and psychomotor abnormalities in mental disorders: Progress and perspectives. Neurosci Biobehav Rev 2024; 167:105917. [PMID: 39389438 DOI: 10.1016/j.neubiorev.2024.105917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/19/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
Sensori-/psychomotor abnormalities refer to a wide range of disturbances in individual motor, affective and behavioral functions that are often observed in mental disorders. However, many of these studies have mainly used clinical rating scales, which can be potentially confounded by observer bias and are not able to detect subtle sensori-/psychomotor abnormalities. Yet, an innovative three-dimensional (3D) optical motion capturing technology (MoCap) can provide more objective and quantifiable data about movements and posture in psychiatric patients. To draw attention to recent rapid progress in the field, we performed a systematic review using PubMed, Medline, Embase, and Web of Science until May 01st 2024. We included 55 studies in the qualitative analysis and gait was the most examined movement. The identified studies suggested that sensori-/psychomotor abnormalities in neurodevelopmental, mood, schizophrenia spectrum and neurocognitive disorders are associated with alterations in spatiotemporal parameters (speed, step width, length and height; stance time, swing time, double limb support time, phases duration, adjusting sway, acceleration, etc.) during various movements such as walking, running, upper body, hand and head movements. Some studies highlighted the advantages of 3D optical MoCap systems over traditional rating scales and measurements such as actigraphy and ultrasound gait analyses. 3D optical MoCap systems are susceptible to detecting differences not only between patients with mental disorders and healthy persons but also among at-risk individuals exhibiting subtle sensori-/psychomotor abnormalities. Overall, 3D optical MoCap systems hold promise for objectively examining sensori-/psychomotor abnormalities, making them valuable tools for use in future clinical trials.
Collapse
Affiliation(s)
- Dilsa Cemre Akkoc Altinok
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Kristin Ohl
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Sebastian Volkmer
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Geva A Brandt
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Stefan Fritze
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; German Centre for Mental Health (DZPG), Partner Site Mannheim, Germany.
| |
Collapse
|
2
|
Ertl N, Freeman TP, Mokrysz C, Ofori S, Borissova A, Petrilli K, Curran HV, Lawn W, Wall MB. Acute effects of different types of cannabis on young adult and adolescent resting-state brain networks. Neuropsychopharmacology 2024; 49:1640-1651. [PMID: 38806583 PMCID: PMC11319659 DOI: 10.1038/s41386-024-01891-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024]
Abstract
Adolescence is a time of rapid neurodevelopment and the endocannabinoid system is particularly prone to change during this time. Cannabis is a commonly used drug with a particularly high prevalence of use among adolescents. The two predominant phytocannabinoids are Delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), which affect the endocannabinoid system. It is unknown whether this period of rapid development makes adolescents more or less vulnerable to the effects of cannabis on brain-network connectivity, and whether CBD may attenuate the effects of THC. Using fMRI, we explored the impact of vaporized cannabis (placebo, THC: 8 mg/75 kg, THC + CBD: 8 mg/75 kg THC & 24 mg/75 kg CBD) on resting-state networks in groups of semi-regular cannabis users (usage frequency between 0.5 and 3 days/week), consisting of 22 adolescents (16-17 years) and 24 young adults (26-29 years) matched for cannabis use frequency. Cannabis caused reductions in within-network connectivity in the default mode (F[2,88] = 3.97, P = 0.022, η² = 0.018), executive control (F[2,88] = 18.62, P < 0.001, η² = 0.123), salience (F[2,88] = 12.12, P < 0.001, η² = 0.076), hippocampal (F[2,88] = 14.65, P < 0.001, η² = 0.087), and limbic striatal (F[2,88] = 16.19, P < 0.001, η² = 0.102) networks compared to placebo. Whole-brain analysis showed cannabis significantly disrupted functional connectivity with cortical regions and the executive control, salience, hippocampal, and limbic striatal networks compared to placebo. CBD did not counteract THC's effects and further reduced connectivity both within networks and the whole brain. While age-related differences were observed, there were no interactions between age group and cannabis treatment in any brain network. Overall, these results challenge the assumption that CBD can make cannabis safer, as CBD did not attenuate THC effects (and in some cases potentiated them); furthermore, they show that cannabis causes similar disruption to resting-state connectivity in the adolescent and adult brain.
Collapse
Affiliation(s)
- Natalie Ertl
- Invicro London, Burlington Danes Building, Hammersmith Hospital, Du Cane Road, W12 0NN, London, UK
- Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, W12 0NN, London, UK
| | - Tom P Freeman
- Clinical Psychopharmacology Unit, University College London, 1-19 Torrington Place, WC1E 7HB, London, UK
- Addiction and Mental Health Group (AIM), Department of Psychology, University of Bath, Bath, UK
| | - Claire Mokrysz
- Clinical Psychopharmacology Unit, University College London, 1-19 Torrington Place, WC1E 7HB, London, UK
| | - Shelan Ofori
- Clinical Psychopharmacology Unit, University College London, 1-19 Torrington Place, WC1E 7HB, London, UK
| | - Anna Borissova
- Clinical Psychopharmacology Unit, University College London, 1-19 Torrington Place, WC1E 7HB, London, UK
- National Addiction Centre, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Kat Petrilli
- Addiction and Mental Health Group (AIM), Department of Psychology, University of Bath, Bath, UK
| | - H Valerie Curran
- Clinical Psychopharmacology Unit, University College London, 1-19 Torrington Place, WC1E 7HB, London, UK
| | - Will Lawn
- Clinical Psychopharmacology Unit, University College London, 1-19 Torrington Place, WC1E 7HB, London, UK
- National Addiction Centre, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Matthew B Wall
- Invicro London, Burlington Danes Building, Hammersmith Hospital, Du Cane Road, W12 0NN, London, UK.
- Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, W12 0NN, London, UK.
| |
Collapse
|
3
|
Fazio G, Olivo D, Wolf ND, Hirjak D, Schmitgen MM, Werler F, Witteman M, Kubera KM, Calhoun VD, Reith W, Wolf RC, Sambataro F. The risk of cannabis use disorder is mediated by altered brain connectivity: A chronnectome study. Addict Biol 2024; 29:e13395. [PMID: 38709211 PMCID: PMC11072977 DOI: 10.1111/adb.13395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 02/05/2024] [Accepted: 03/26/2024] [Indexed: 05/07/2024]
Abstract
The brain mechanisms underlying the risk of cannabis use disorder (CUD) are poorly understood. Several studies have reported changes in functional connectivity (FC) in CUD, although none have focused on the study of time-varying patterns of FC. To fill this important gap of knowledge, 39 individuals at risk for CUD and 55 controls, stratified by their score on a self-screening questionnaire for cannabis-related problems (CUDIT-R), underwent resting-state functional magnetic resonance imaging. Dynamic functional connectivity (dFNC) was estimated using independent component analysis, sliding-time window correlations, cluster states and meta-state indices of global dynamics and were compared among groups. At-risk individuals stayed longer in a cluster state with higher within and reduced between network dFNC for the subcortical, sensory-motor, visual, cognitive-control and default-mode networks, relative to controls. More globally, at-risk individuals had a greater number of meta-states and transitions between them and a longer state span and total distance between meta-states in the state space. Our findings suggest that the risk of CUD is associated with an increased dynamic fluidity and dynamic range of FC. This may result in altered stability and engagement of the brain networks, which can ultimately translate into altered cortical and subcortical function conveying CUD risk. Identifying these changes in brain function can pave the way for early pharmacological and neurostimulation treatment of CUD, as much as they could facilitate the stratification of high-risk individuals.
Collapse
Affiliation(s)
- Giovanni Fazio
- Department of Neuroscience, Padua Neuroscience CenterUniversity of PaduaPaduaItaly
| | - Daniele Olivo
- Department of Neuroscience, Padua Neuroscience CenterUniversity of PaduaPaduaItaly
| | - Nadine D. Wolf
- Department of General Psychiatry at the Center for Psychosocial MedicineHeidelberg UniversityHeidelbergGermany
| | - Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Mike M. Schmitgen
- Department of General Psychiatry at the Center for Psychosocial MedicineHeidelberg UniversityHeidelbergGermany
| | - Florian Werler
- Department of General Psychiatry at the Center for Psychosocial MedicineHeidelberg UniversityHeidelbergGermany
| | - Miriam Witteman
- Department of Psychiatry and PsychotherapySaarland UniversitySaarbrückenGermany
| | - Katharina M. Kubera
- Department of General Psychiatry at the Center for Psychosocial MedicineHeidelberg UniversityHeidelbergGermany
| | - Vince D. Calhoun
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of TechnologyEmory UniversityAtlantaGeorgiaUSA
| | - Wolfgang Reith
- Department of NeuroradiologySaarland UniversitySaarbrückenGermany
| | - Robert Christian Wolf
- Department of General Psychiatry at the Center for Psychosocial MedicineHeidelberg UniversityHeidelbergGermany
| | - Fabio Sambataro
- Department of Neuroscience, Padua Neuroscience CenterUniversity of PaduaPaduaItaly
| |
Collapse
|
4
|
Wolf RC, Werler F, Schmitgen MM, Wolf ND, Wittemann M, Reith W, Hirjak D. Functional correlates of neurological soft signs in heavy cannabis users. Addict Biol 2023; 28:e13270. [PMID: 36825488 DOI: 10.1111/adb.13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/03/2022] [Accepted: 01/20/2023] [Indexed: 02/17/2023]
Abstract
Sensorimotor dysfunction has been previously reported in persons with cannabis dependence. Such individuals can exhibit increased levels of neurological soft signs (NSS), particularly involving motor coordination, sensorimotor integration and complex motor task performance. Abnormal NSS levels can also be detected in non-dependent individuals with heavy cannabis use (HCU), yet very little is known about the functional correlates underlying such deficits. Here, we used resting-state functional magnetic resonance imaging (MRI) to investigate associations between NSS and intrinsic neural activity (INA) in HCU (n = 21) and controls (n = 26). Compared with controls, individuals with HCU showed significantly higher NSS across all investigated subdomains. Three of these subdomains, that is, motor coordination, sensorimotor integration and complex motor task behaviour, were associated with specific use-dependent variables, particularly age of onset of cannabis use and current cannabis use. Between-group comparisons of INA revealed lower regional homogeneity (ReHo) in left precentral gyrus, left inferior occipital gyrus, right triangular pat of the inferior frontal gyrus and right precentral gyrus in HCU compared with controls. In addition, HCU showed also higher ReHo in right cerebellum and left postcentral gyrus compared with controls. Complex motor task behaviour in HCU was significantly related to INA in postcentral, inferior frontal and occipital cortices. Our findings indicate abnormal ReHo in HCU in regions associated with sensorimotor, executive control and visuomotor-integration processes. Importantly, we show associations between ReHo, cannabis-use behaviour and execution of complex motor tasks. Given convergent findings in manifest psychotic disorders, this study suggests an HCU endophenotype that may present with a cumulative risk for psychosis.
Collapse
Affiliation(s)
- Robert Christian Wolf
- Department of General Psychiatry at the Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Florian Werler
- Department of General Psychiatry at the Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Mike M Schmitgen
- Department of General Psychiatry at the Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Nadine D Wolf
- Department of General Psychiatry at the Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Miriam Wittemann
- Department of Psychiatry and Psychotherapy, Saarland University, Saarbrücken, Germany
| | - Wolfgang Reith
- Department of Neuroradiology, Saarland University, Saarbrücken, Germany
| | - Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
5
|
Odoardi S, Biosa G, Mestria S, Valentini V, De Giovanni N, Cittadini F, Strano Rossi S. DRUG-IMPAIRED DRIVING AND TRAFFIC COLLISIONS: STUDY ON A CROSS SECTION OF THE ITALIAN POPULATION. Drug Test Anal 2022; 15:477-483. [PMID: 36082405 DOI: 10.1002/dta.3366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/11/2022]
Abstract
The present study focuses on the association between road accidents and the presence of drugs of abuse markers in the biological fluids of the drivers. Biological fluids collected from 1,236 drivers involved in road accidents (54 fatal and 1,182 non-fatal crashes) in the Rome area were analysed for alcohol and psychotropic drugs, as required by judicial authorities. The substance most frequently detected was alcohol (in 19% of non-fatal and 32% of fatal crashes), followed by cannabinoids (12% of non-fatal crashes) and cocaine (9% of non-fatal and 20% of fatal crashes). The results obtained for cocaine and cannabinoids in blood and urine were compared. We observed the absence or low concentrations of the active drug in blood (cocaine was often below 5 ng/mL and THC below 1 ng/mL), whereas urinary concentrations of metabolites were generally high (benzoylecgonine 250 - above 5000 ng/mL, THCCOOH 15-270 ng/mL). The risk of being involved in a road accident if cocaine or cannabis markers were present in the urine specimens was evaluated compared to a control population. The odds ratios calculated, being 8.13 for cannabis and 5.32 for cocaine, suggest a strong association between the presence of these drugs in the urine of drivers and traffic accidents, regardless of their presence in blood samples. The present data suggest that the chance of being involved in a road accident is higher than in the control population even if the subject is no longer "under the influence" of cannabis or cocaine at the time of the accident.
Collapse
Affiliation(s)
- Sara Odoardi
- Department of Healthcare Surveillance and Bioethics, Section of Legal medicine, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario IRCCS A. Gemelli, Rome, Italy
| | - Giulia Biosa
- Department of Healthcare Surveillance and Bioethics, Section of Legal medicine, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario IRCCS A. Gemelli, Rome, Italy
| | - Serena Mestria
- Department of Healthcare Surveillance and Bioethics, Section of Legal medicine, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario IRCCS A. Gemelli, Rome, Italy
| | - Valeria Valentini
- Department of Healthcare Surveillance and Bioethics, Section of Legal medicine, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario IRCCS A. Gemelli, Rome, Italy
| | - Nadia De Giovanni
- Department of Healthcare Surveillance and Bioethics, Section of Legal medicine, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario IRCCS A. Gemelli, Rome, Italy
| | - Francesca Cittadini
- Department of Healthcare Surveillance and Bioethics, Section of Legal medicine, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario IRCCS A. Gemelli, Rome, Italy
| | - Sabina Strano Rossi
- Department of Healthcare Surveillance and Bioethics, Section of Legal medicine, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario IRCCS A. Gemelli, Rome, Italy
| |
Collapse
|
6
|
Multiparametric assessment of sensorimotor abnormalities in vulnerable populations: A window of opportunity. Neurosci Biobehav Rev 2022; 137:104658. [PMID: 35398452 DOI: 10.1016/j.neubiorev.2022.104658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/21/2022] [Accepted: 04/06/2022] [Indexed: 11/20/2022]
Abstract
This commentary suggests that neuroscience research on young healthy heavy cannabis users and patients with cannabis-induced psychosis using multimodal assessment of sensorimotor dysfunction (e.g. neuroimaging, clinical rating scales, and instrumental assessments) may help to identify both biological resistance and vulnerability without constraints and confounder factors imposed by antipsychotic treatment or disease chronicity.
Collapse
|
7
|
Hirjak D, Meyer-Lindenberg A, Sambataro F, Fritze S, Kukovic J, Kubera KM, Wolf RC. Progress in sensorimotor neuroscience of schizophrenia spectrum disorders: Lessons learned and future directions. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110370. [PMID: 34087392 DOI: 10.1016/j.pnpbp.2021.110370] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/15/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022]
Abstract
The number of neuroimaging studies on movement disorders, sensorimotor, and psychomotor functioning in schizophrenia spectrum disorders (SSD) has steadily increased over the last two decades. Accelerated by the addition of the "sensorimotor domain" to the Research Domain Criteria (RDoC) framework in January 2019, neuroscience research on the role of sensorimotor dysfunction in SSD has gained greater scientific and clinical relevance. To draw attention to recent rapid progress in the field, we performed a triennial systematic review (PubMed search from January 1st, 2018 through December 31st, 2020), in which we highlight recent neuroimaging findings and discuss methodological pitfalls as well as challenges for future research. The identified magnetic resonance imaging (MRI) studies suggest that sensorimotor abnormalities in SSD are related to cerebello-thalamo-cortico-cerebellar network dysfunction. Longitudinal and interventional studies highlight the translational potential of the sensorimotor domain as putative biomarkers for treatment response and as targets for non-invasive neurostimulation techniques in SSD.
Collapse
Affiliation(s)
- Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Fabio Sambataro
- Department of Neuroscience (DNS), University of Padua, Padua, Italy; Padova Neuroscience Center, University of Padua, Padua, Italy
| | - Stefan Fritze
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | | | - Katharina M Kubera
- Department of General Psychiatry at the Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Robert C Wolf
- Department of General Psychiatry at the Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| |
Collapse
|