1
|
Su J, Mazei YA, Tsyganov AN, Chernyshov VA, Mazei NG, Saldaev DA, Yakimov BN. Multi-scale beta-diversity patterns in testate amoeba communities: species turnover and nestedness along a latitudinal gradient. Oecologia 2024; 205:691-707. [PMID: 39115695 DOI: 10.1007/s00442-024-05602-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 07/26/2024] [Indexed: 08/30/2024]
Abstract
The relationship between species diversity and spatial scale is a central topic in spatial community ecology. Latitudinal gradient is among the core mechanisms driving biodiversity distribution on most scales. Patterns of β-diversity along latitudinal gradient have been well studied for aboveground terrestrial and marine communities, whereas soil organisms remain poorly investigated in this regard. The West Siberian Plain is a good model to address diversity scale-dependence since the latitudinal gradient does not overlap with other possible factors such as elevational or maritime. Here, we collected 111 samples following hierarchical sampling (sub-zones, ecosystem types, microhabitat and replicate samples) and performed multi-scale partitioning of β-diversity of testate amoeba assemblages as a model of study. We found that among-ecosystem β-diversity is a leading scale in testate amoeba assemblages variation. Rare species determine β-diversity at all scale levels especially in the northern regions, where rare taxa almost exclusively accounted for the diversity at the ecosystem level. β-Diversity is generally dominated by the turnover component at all scales in lower latitudes, whereas nestedness prevailed at among-ecosystem scale in higher latitudes. These findings indicate that microbial assemblages in northern latitudes are spatially homogeneous and constrained by historical drivers at larger scales, whereas in southern regions, it is dominated by the turnover component both at the microhabitat and ecosystem scales and therefore determined by recent vegetation and environmental heterogeneity. Overall, we have provided the evidence for the existence of negative latitudinal gradient for among-ecosystem β-diversity but not for among-microhabitat and among-sample β-diversity for terrestrial testate amoeba communities.
Collapse
Affiliation(s)
- Jiahui Su
- Shenzhen MSU-BIT University, Shenzhen, 518172, China
- Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991, Russia
| | - Yuri A Mazei
- Shenzhen MSU-BIT University, Shenzhen, 518172, China
- Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991, Russia
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskiy Ave. 33, Moscow, 117071, Russia
| | - Andrey N Tsyganov
- Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991, Russia
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskiy Ave. 33, Moscow, 117071, Russia
| | | | - Natalia G Mazei
- Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991, Russia
| | - Damir A Saldaev
- Shenzhen MSU-BIT University, Shenzhen, 518172, China
- Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991, Russia
| | - Basil N Yakimov
- Shenzhen MSU-BIT University, Shenzhen, 518172, China.
- Lobachevsky State University of Nizhny Novgorod, Pr. Gagarina 23, Nizhny Novgorod, 603950, Russia.
| |
Collapse
|
2
|
de Paz V, Asís JD, Holzschuh A, Baños-Picón L. Effects of Traditional Orchard Abandonment and Landscape Context on the Beneficial Arthropod Community in a Mediterranean Agroecosystem. INSECTS 2023; 14:277. [PMID: 36975963 PMCID: PMC10056667 DOI: 10.3390/insects14030277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Agricultural abandonment is one of the main land-use changes in Europe, and its consequences on biodiversity are context- and taxa-dependent. While several studies have worked on this topic, few have focused on traditional orchards, especially in different landscapes and under a Mediterranean climate. In this context, we aimed to determine the effects of almond orchard abandonment on the communities of three groups of beneficial arthropods and the role of the landscape context in modulating these effects. Between February and September 2019, four samplings were carried out in twelve almond orchards (three abandoned and three traditional (active orchards under traditional agricultural management) located in simple landscapes as well as three abandoned and three traditional in complex landscapes). Abandoned and traditional almond orchards harbor different arthropod communities and diversity metrics that are strongly conditioned by seasonality. Abandoned orchards can favor pollinators and natural enemies, providing alternative resources in simple landscapes. However, the role that abandoned orchards play in simple landscapes disappears as the percentage of semi-natural habitats in the landscape increases. Our results show that landscape simplification, through the loss of semi-natural habitats, has negative consequences on arthropod biodiversity, even in traditional farming landscapes with small fields and high crop diversity.
Collapse
Affiliation(s)
- Víctor de Paz
- Departmento de Biología Animal, Ecología, Parasitología, Edafología y Química Agrícola, Facultad de Farmacia, Campus Miguel de Unamuno s/n, Universidad de Salamanca, 37007 Salamanca, Spain; (V.d.P.); (L.B.-P.)
| | - Josep D. Asís
- Departmento de Biología Animal, Ecología, Parasitología, Edafología y Química Agrícola, Facultad de Farmacia, Campus Miguel de Unamuno s/n, Universidad de Salamanca, 37007 Salamanca, Spain; (V.d.P.); (L.B.-P.)
| | - Andrea Holzschuh
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany;
| | - Laura Baños-Picón
- Departmento de Biología Animal, Ecología, Parasitología, Edafología y Química Agrícola, Facultad de Farmacia, Campus Miguel de Unamuno s/n, Universidad de Salamanca, 37007 Salamanca, Spain; (V.d.P.); (L.B.-P.)
| |
Collapse
|
3
|
Lalagüe H, Vedel V, Pétillon J. Small scale changes in spider diversity and composition between two close elevations in a Neotropical forest. STUDIES ON NEOTROPICAL FAUNA AND ENVIRONMENT 2022. [DOI: 10.1080/01650521.2022.2117530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hadrien Lalagüe
- UMR EcoFoG, AgroParisTech, CNRS, CIRAD, INRAE, Université des Antilles, Université de Guyane, Kourou Cedex, France
| | - Vincent Vedel
- UMR EcoFoG, AgroParisTech, CNRS, CIRAD, INRAE, Université des Antilles, Université de Guyane, Kourou Cedex, France
| | - Julien Pétillon
- UMR Ecobio, Université de Rennes 1, Rennes, France
- Institute for Coastal and Marine Research, Nelson Mandela University, Port Elizabeth, South Africa
| |
Collapse
|
4
|
Ramos D, Hartke TR, Buchori D, Dupérré N, Hidayat P, Lia M, Harms D, Scheu S, Drescher J. Rainforest conversion to rubber and oil palm reduces abundance, biomass and diversity of canopy spiders. PeerJ 2022; 10:e13898. [PMID: 35990898 PMCID: PMC9390325 DOI: 10.7717/peerj.13898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/22/2022] [Indexed: 01/19/2023] Open
Abstract
Rainforest canopies, home to one of the most complex and diverse terrestrial arthropod communities, are threatened by conversion of rainforest into agricultural production systems. However, little is known about how predatory arthropod communities respond to such conversion. To address this, we compared canopy spider (Araneae) communities from lowland rainforest with those from three agricultural systems in Jambi Province, Sumatra, Indonesia, i.e., jungle rubber (rubber agroforest) and monoculture plantations of rubber and oil palm. Using canopy fogging, we collected 10,676 spider specimens belonging to 36 families and 445 morphospecies. The four most abundant families (Salticidae N = 2,043, Oonopidae N = 1,878, Theridiidae N = 1,533 and Clubionidae N = 1,188) together comprised 62.2% of total individuals, while the four most speciose families, Salticidae (S = 87), Theridiidae (S = 83), Araneidae (S = 48) and Thomisidae (S = 39), contained 57.8% of all morphospecies identified. In lowland rainforest, average abundance, biomass and species richness of canopy spiders was at least twice as high as in rubber or oil palm plantations, with jungle rubber showing similar abundances as rainforest, and intermediate biomass and richness. Community composition of spiders was similar in rainforest and jungle rubber, but differed from rubber and oil palm, which also differed from each other. Canonical Correspondence Analysis showed that canopy openness, aboveground tree biomass and tree density together explained 18.2% of the variation in spider communities at family level. On a morphospecies level, vascular plant species richness and tree density significantly affected the community composition but explained only 6.8% of the variance. While abundance, biomass and diversity of spiders declined strongly with the conversion of rainforest into monoculture plantations of rubber and oil palm, we also found that a large proportion of the rainforest spider community can thrive in extensive agroforestry systems such as jungle rubber. Despite being very different from rainforest, the canopy spider communities in rubber and oil palm plantations may still play a vital role in the biological control of canopy herbivore species, thus contributing important ecosystem services. The components of tree and palm canopy structure identified as major determinants of canopy spider communities may aid in decision-making processes toward establishing cash-crop plantation management systems which foster herbivore control by spiders.
Collapse
Affiliation(s)
- Daniel Ramos
- Department of Animal Ecology, J.-F. Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Untere Karspüle, Göttingen, Germany
| | - Tamara R. Hartke
- Department of Animal Ecology, J.-F. Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Untere Karspüle, Göttingen, Germany
| | - Damayanti Buchori
- Center for Transdisciplinary and Sustainability Sciences, IPB University, Bogor, West Java, Indonesia
- Department of Plant Protection, Faculty of Agriculture, IPB University Bogor, Bogor, West Java, Indonesia
| | - Nadine Dupérré
- Center for Taxonomy and Morphology, Zoological Museum Hamburg, Leibnitz Institute for the Analysis of Biodiversity Change (LIB), Hamburg, Germany
| | - Purnama Hidayat
- Department of Plant Protection, Faculty of Agriculture, IPB University Bogor, Bogor, West Java, Indonesia
| | - Mayanda Lia
- Department of Plant Protection, Faculty of Agriculture, IPB University Bogor, Bogor, West Java, Indonesia
| | - Danilo Harms
- Center for Taxonomy and Morphology, Zoological Museum Hamburg, Leibnitz Institute for the Analysis of Biodiversity Change (LIB), Hamburg, Germany
| | - Stefan Scheu
- Department of Animal Ecology, J.-F. Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Untere Karspüle, Göttingen, Germany
- Center for Biodiversity and Sustainable Land Use, Georg-August Universität Göttingen, Göttingen, Germany
| | - Jochen Drescher
- Department of Animal Ecology, J.-F. Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Untere Karspüle, Göttingen, Germany
| |
Collapse
|
5
|
Mavasa R, Yekwayo I, Mwabvu T, Tsvuura Z. Preliminary patterns of seasonal changes in species composition of surface‐active arthropods in a South African savannah. AUSTRAL ECOL 2022. [DOI: 10.1111/aec.13213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Risuna Mavasa
- School of Life Sciences University of KwaZulu‐Natal Private Bag X01, Scottsville Pietermaritzburg 3209 South Africa
| | - Inam Yekwayo
- Department of Biological and Environmental Sciences Walter Sisulu University Mthatha South Africa
| | - Tarombera Mwabvu
- School of Biology & Environmental Sciences University of Mpumalanga Mbombela South Africa
- School of Life Sciences University of KwaZulu‐Natal Durban South Africa
| | - Zivanai Tsvuura
- School of Life Sciences University of KwaZulu‐Natal Private Bag X01, Scottsville Pietermaritzburg 3209 South Africa
- School of Life Sciences, Centre for Functional Biodiversity University of KwaZulu‐Natal Pietermaritzburg South Africa
| |
Collapse
|
6
|
Sebata S, Haddad CR, FitzPatrick MJ, Foord SH. Weak negative responses of spider diversity to short-term ‘kraaling’. RANGELAND JOURNAL 2022. [DOI: 10.1071/rj22004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The influence of short-duration, concentrated kraaling (enclosure) has been documented for plants, wildlife, and macro-invertebrates. However, limited information is available on its impact on ground-dwelling spiders. The purpose of this study was to assess the effect of short-duration kraaling, time since cattle removal, and microhabitat variables on spider assemblages in Matabeleland North Province, Zimbabwe. We used a matched-pair and space for time design (inside vs outside previously kraaled inclusions) across 11 sites, using four cattle herds (H1, H6, H7 and HNguni). Spiders were sampled in the early and late rainy season with pitfall traps left open for 14-day sampling periods and emptied twice in each period. We captured 634 spiders, comprising 63 species in 44 genera and 18 families. The most abundant family was Lycosidae (37%; 16 spp.), followed by Gnaphosidae (15%; 10 spp.) and Salticidae (14.5%; 7 spp.). Generalised linear mixed models showed that generic richness was greater in sites with more bare ground. However, this effect was reversed in previously kraaled sites, and was particularly evident for spider abundance that responded negatively relative to unkraaled sites. Furthermore, with a U-shaped recovery, generic richness increased with time since kraaling. Model-based multivariate models showed that short-duration kraaling had a significant impact on spider assemblage structure, but this impact was relatively small compared with the effect of seasonality. Most of the species that made significant contributions to this multivariate response were less abundant in kraaled sites. Spider diversity, therefore, had a weak negative response to short-term kraaling. However, these impacts should also be assessed at broader scales, including areas where cattle go to graze during the day.
Collapse
|
7
|
de Paz V, Tobajas E, Rosas-Ramos N, Tormos J, Asís JD, Baños-Picón L. Effect of Organic Farming and Agricultural Abandonment on Beneficial Arthropod Communities Associated with Olive Groves in Western Spain: Implications for Bactrocera oleae Management. INSECTS 2022; 13:insects13010048. [PMID: 35055891 PMCID: PMC8778029 DOI: 10.3390/insects13010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022]
Abstract
Agricultural abandonment and intensification are among the main land-use changes in Europe. Along with these processes, different proposals have been developed to counteract the negative effects derived from agricultural intensification, including organic management. In this context, we aimed to determine how organic management and farmland abandonment affect Bactrocera oleae and its main groups of natural enemies: hymenopteran parasitoids, spiders, ants, carabids, and staphylinids. Between May and October 2018, four samplings were carried out in nine olive groves (three under organic management, three under traditional management, and three abandoned) in a rural area on the border between Spain and Portugal (Salamanca, Western Spain). Our results suggested differences between the natural enemy community composition of abandoned and organic groves, with slightly higher levels of richness and abundance in abandoned groves. We found no differences between organic and traditional groves. The managed olive groves sustained a different natural enemy community but were similarly rich and diverse compared with the more complex abandoned groves, with the latter not acting as a reservoir of B. oleae in our study area. Both systems may provide complementary habitats; however, further abandonment could cause a reduction in heterogeneity at the landscape scale and, consequently, a biodiversity loss.
Collapse
|
8
|
Abstract
Spiders (Araneae) make up a remarkably diverse lineage of predators that have successfully colonized most terrestrial ecosystems. All spiders produce silk, and many species use it to build capture webs with an extraordinary diversity of forms. Spider diversity is distributed in a highly uneven fashion across lineages. This strong imbalance in species richness has led to several causal hypotheses, such as codiversification with insects, key innovations in silk structure and web architecture, and loss of foraging webs. Recent advances in spider phylogenetics have allowed testing of some of these hypotheses, but results are often contradictory, highlighting the need to consider additional drivers of spider diversification. The spatial and historical patterns of diversity and diversification remain contentious. Comparative analyses of spider diversification will advance only if we continue to make progress with studies of species diversity, distribution, and phenotypic traits, together with finer-scale phylogenies and genomic data.
Collapse
Affiliation(s)
- Dimitar Dimitrov
- Department of Natural History, University Museum of Bergen, University of Bergen, 5020 Bergen, Norway;
| | - Gustavo Hormiga
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA;
| |
Collapse
|
9
|
Maisey AC, Haslem A, Leonard SWJ, Bennett AF. Foraging by an avian ecosystem engineer extensively modifies the litter and soil layer in forest ecosystems. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02219. [PMID: 32810887 DOI: 10.1002/eap.2219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/04/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Ecosystem engineers physically modify their environment, thereby altering habitats for other organisms. Increasingly, "engineers" are recognized as an important focus for conservation and ecological restoration because their actions affect a range of ecosystem processes and thereby influence how ecosystems function. The Superb Lyrebird Menura novaehollandiae is proposed as an ecosystem engineer in forests of southeastern Australia due to the volume of soil and litter it turns over when foraging. We measured the seasonal and spatial patterns of foraging by Lyrebirds and the amount of soil displaced in forests in the Central Highlands, Victoria. We tested the effects of foraging on litter, soil nutrients and soil physical properties by using an experimental approach with three treatments: Lyrebird exclusion, Lyrebird exclusion with simulated foraging, and non-exclusion reference plots. Treatments were replicated in three forest types in each of three forest blocks. Lyrebirds foraged extensively in all forest types in all seasons. On average, Lyrebirds displaced 155.7 Mg/ha of litter and soil in a 12-month period. Greater displacement occurred where vegetation complexity (<50 cm height) was low. After two years of Lyrebird exclusion, soil compaction (top 7.5 cm) increased by 37% in exclusion plots compared with baseline measures, while in unfenced plots it decreased by 22%. Litter depth was almost three times greater in fenced than unfenced plots. Soil moisture, pH, and soil nutrients showed no difference between treatments. The enormous extent of litter and soil turned over by the Superb Lyrebird is unparalleled by any other vertebrate soil engineer in terrestrial ecosystems globally. The profound influence of such foraging activity on forest ecosystems is magnified by its year-round pattern and widespread distribution. The disturbance regime that Lyrebirds impose has implications for diverse ecosystem processes including decomposition and nutrient cycling, the composition of litter- and soil-dwelling invertebrate communities, the shaping of ground-layer vegetation patterns, and fire behavior and post-fire ecosystem recovery. Maintaining Lyrebird populations as a key facilitator of ecosystem function is now timely and critical as unprecedented wildfires in eastern Australia in summer 2019-2020 have severely burned ~12 million ha of forest, including ~30% of the geographic range of the Superb Lyrebird.
Collapse
Affiliation(s)
- Alex C Maisey
- Department of Ecology, Environment and Evolution, La Trobe University, Bundoora, 3086, Victoria, Australia
- Research Centre for Future Landscapes, La Trobe University, Bundoora, 3086, Victoria, Australia
| | - Angie Haslem
- Department of Ecology, Environment and Evolution, La Trobe University, Bundoora, 3086, Victoria, Australia
- Research Centre for Future Landscapes, La Trobe University, Bundoora, 3086, Victoria, Australia
| | - Steven W J Leonard
- Department of Ecology, Environment and Evolution, La Trobe University, Bundoora, 3086, Victoria, Australia
- Research Centre for Future Landscapes, La Trobe University, Bundoora, 3086, Victoria, Australia
- Department of Primary Industries, Parks, Water and Environment, GPO Box 44, Hobart, 7001, Tasmania, Australia
| | - Andrew F Bennett
- Department of Ecology, Environment and Evolution, La Trobe University, Bundoora, 3086, Victoria, Australia
- Research Centre for Future Landscapes, La Trobe University, Bundoora, 3086, Victoria, Australia
| |
Collapse
|
10
|
Ingle K, Kaur H, Gallé-Szpisjak N, Bürgés J, Szabó Á, Gallé R. Winter-Active Spider Fauna is Affected by Plantation Forest Type. ENVIRONMENTAL ENTOMOLOGY 2020; 49:601-606. [PMID: 32159751 DOI: 10.1093/ee/nvaa025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Plantations of non-native trees for commercial use are common practice in Europe. They are known to have severe ecological impacts on arthropod fauna by altering microclimatic conditions and reducing microhabitat diversity. However, the effect of plantation tree species on winter-active fauna is relatively unknown. Spiders are a diverse predatory arthropod taxon with strong effect on their prey populations. The composition of spider communities sensitively indicates changes in habitat structure. We established 40 sampling sites in five non-native pine and five native poplar plantations and collected spiders with pitfall traps for two winters in the Southern part of Hungary. We assessed the average height of vegetation and percentage cover of leaf litter, mosses, herbaceous vegetation, and shrubs to characterize habitat structure. We found species richness and activity density of spiders in the non-native compared to the native plantations, presumably due to the more temperate microclimate in pine than in poplar plantations. However, there was no significant effect of habitat structure and its interaction with forest type on species richness and activity density of spiders. Species composition of non-native and native plantation forests differed significantly. Furthermore, we identified six characteristic spider species of non-native plantations with preference for relatively moist habitat conditions. The single characteristic species, (Agroeca cuprea Menge, 1873) for the native plantations preferred dry and partly shaded habitats. We conclude that the effect of microclimatic differences and prey availability presumably overrides the effect of habitat structure on winter-active spiders.
Collapse
Affiliation(s)
- Kapilkumar Ingle
- Department of Ecology, University of Szeged, Közép fasor 52, Szeged, Hungary
- Doctoral School of Environmental Sciences, University of Szeged, Rerrich Béla tér 1, Szeged, Hungary
| | - Hardeep Kaur
- Department of Ecology, University of Szeged, Közép fasor 52, Szeged, Hungary
- MTA Centre for Ecological Research, Institute of Ecology and Botany, 'Lendület' Landscape and Conservation Ecology, Alkotmány u. 2-4, 2163 Vácrátót, Hungary
| | - Nikolett Gallé-Szpisjak
- MTA Centre for Ecological Research, Institute of Ecology and Botany, 'Lendület' Landscape and Conservation Ecology, Alkotmány u. 2-4, 2163 Vácrátót, Hungary
- MTA Centre for Ecological Research, GINOP Sustainable Ecosystems Group, Klebelsberg Kuno utca 3, ihany, Hungary
| | - József Bürgés
- Department of Ecology, University of Szeged, Közép fasor 52, Szeged, Hungary
| | - Áron Szabó
- Department of Ecology, University of Szeged, Közép fasor 52, Szeged, Hungary
| | - Róbert Gallé
- MTA Centre for Ecological Research, Institute of Ecology and Botany, 'Lendület' Landscape and Conservation Ecology, Alkotmány u. 2-4, 2163 Vácrátót, Hungary
| |
Collapse
|
11
|
Diez F, Coscarón MDC. Roles of the environment, vegetation and spatial structure in the species composition of the Heteroptera community. SYST BIODIVERS 2020. [DOI: 10.1080/14772000.2020.1737844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Fernando Diez
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa CONICET, Uruguay 151, Santa Rosa, La Pampa, L6300CLB, Argentina
| | - MaríA Del Carmen Coscarón
- Facultad de Ciencias Naturales y Museo, División Entomología, Universidad Nacional de La Plata CONICET, Paseo del Bosque s/n 1900, La Plata, Buenos Aires, Argentina
| |
Collapse
|