1
|
Quadroni S, Servanzi L, Crosa G, Espa P. Two-year assessment of the effects of controlled sediment flushing on stream habitats and biota at reach scale. Sci Rep 2024; 14:21048. [PMID: 39251684 PMCID: PMC11385546 DOI: 10.1038/s41598-024-72015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024] Open
Abstract
Controlled sediment flushing operations (CSFOs) allow to recover reservoirs storage loss while rebalancing the sediment flux interrupted by dams but, at the same time, may cause unacceptable ecological impact. In this study, we investigated the responses of the food web of an upland stream to a CSFO, focusing on the effects of fine sediment deposition detected in three different mesohabitats, i.e., a pool, a riffle, and a step-pool. The field campaign lasted two years and included repeated measurements of fine sediment deposits, and sampling of periphyton, benthic macroinvertebrates and fishes. A moderate and patchy deposition occurred due to the CSFO with short and medium-term ecological impact on the lower trophic levels of the food web, which may affect the whole ecosystem functioning. The monitoring of all available mesohabitats in the investigated stream allowed to detect variations in the ecological response to CSFO, providing a more adequate assessment of the impact. As expected, sedimentation was larger in the pool but, in contrast to our hypotheses, the impact was lower and the recovery was longer for the benthic organisms inhabiting the riffle. In the case of fishes, no lethal impact of both brown trout and bullhead was recorded in the short term but the occurrence of longer lasting effects could not be excluded. To date, this is one of the few studies dealing with a detailed integrative assessment of the downstream impact of sediment management from reservoir on both abiotic and biotic components of stream ecosystem.
Collapse
Affiliation(s)
- Silvia Quadroni
- Department of Theoretical and Applied Sciences, University of Insubria, Via JH Dunant 3, 21100, Varese, Italy.
| | - Livia Servanzi
- Department of Theoretical and Applied Sciences, University of Insubria, Via JH Dunant 3, 21100, Varese, Italy
| | - Giuseppe Crosa
- Department of Theoretical and Applied Sciences, University of Insubria, Via JH Dunant 3, 21100, Varese, Italy
| | - Paolo Espa
- Department of Science and High Technology, University of Insubria, Via GB Vico 46, 21100, Varese, Italy
| |
Collapse
|
2
|
Walther EJ, Arthur DE, Cyr A, Fraley KM, Cubbage T, Hinkle E, McMahon J, Westley PAH. Ecotoxicology of mercury in burbot (Lota lota) from interior Alaska and insights towards human health. CHEMOSPHERE 2022; 298:134279. [PMID: 35283142 PMCID: PMC9081214 DOI: 10.1016/j.chemosphere.2022.134279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 05/26/2023]
Abstract
Fish consumption has many health benefits, but exposure to contaminants, such as mercury (Hg), in fish tissue can be detrimental to human health. The Tanana River drainage, Alaska, USA supports the largest recreational harvest of burbot (Lota lota) in the state, yet information to evaluate the potential risks of consumption by humans is lacking. To narrow this knowledge gap, we sought to (i) quantify the concentrations of total Hg ([THg]) in burbot muscle and liver tissue and the ratio between the two tissues, (ii) assess the effect of age, length, and sex on [THg] in muscle and liver tissue, (iii) evaluate if [THg] in muscle tissue varied based on trophic information, and (iv) compare observed [THg] to consumption guidelines and statewide baseline data. The mean [THg] was 268.2 ng/g ww for muscle tissue and 62.3 ng/g ww for liver tissue. Both muscle [THg] and liver [THg] values were positively associated with fish length. Trophic information (δ15N and δ13C) was not significantly related to measured [THg] in burbot muscle, which is inconsistent with typical patterns of biomagnification observed in other fishes. All burbot sampled were within the established categories for consumption recommendations determined by the State of Alaska for women of childbearing age and children. Our results provide the necessary first step towards informed risk assessment of burbot consumption in the Tanana drainage and offer parallels to fisheries and consumers throughout the subarctic and Arctic region.
Collapse
Affiliation(s)
- Eric J Walther
- Department of Fisheries, College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA.
| | - Donald E Arthur
- Department of Fisheries, College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA.
| | - Andrew Cyr
- Department of Fisheries, College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA; Department of Veterinary Medicine, College of Natural Sciences and Mathematics, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Kevin M Fraley
- Arctic Beringia Program, Wildlife Conservation Society, Fairbanks, AK, 99709, USA
| | - Taylor Cubbage
- Department of Fisheries, College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Elizabeth Hinkle
- Department of Fisheries, College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Julia McMahon
- Department of Fisheries, College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Peter A H Westley
- Department of Fisheries, College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA.
| |
Collapse
|