1
|
Senczuk G, Macrì M, Di Civita M, Mastrangelo S, Del Rosario Fresno M, Capote J, Pilla F, Delgado JV, Amills M, Martínez A. The demographic history and adaptation of Canarian goat breeds to environmental conditions through the use of genome-wide SNP data. Genet Sel Evol 2024; 56:2. [PMID: 38172652 PMCID: PMC10763158 DOI: 10.1186/s12711-023-00869-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The presence of goats in the Canary Islands dates back to the late 1st millennium BC, which coincides with the colonization by the Amazigh settlers. However, the exact geographic origin of Canarian goats is uncertain since the Amazigh peoples were distributed over a wide spatial range. Nowadays, three Canarian breeds (Palmera, Majorera and Tinerfeña) are officially recognized, along with two distinct South and North Tinerfeña ecotypes, with the South Tinerfeña and Majorera goats thriving in arid and dry semi-desertic environments and the Palmera and North Tinerfeña goats are adapted to humid and temperate areas that are influenced by trade winds. Genotypes for 224 Canarian goats were generated using the Illumina Goat single nucleotide polymorphism (SNP)50 BeadChip. By merging these data with the genotypes from 1007 individuals of African and Southern European ancestry, our aim was to ascertain the geographic origin of the Canarian goats and identify genes associated with adaptation to diverse environmental conditions. RESULTS The diversity indices of the Canarian breeds align with most of those of the analyzed local breeds from Africa and Europe, except for the Palmera goats that showed lower levels of genetic variation. The Canarian breeds demonstrate a significant genetic differentiation compared to other populations, which indicates a history of prolonged geographic isolation. Moreover, the phylogenetic reconstruction indicated that the ancestry of the Canarian goats is fundamentally North African rather than West African. The ADMIXTURE and the TreeMix analyses showed no evidence of gene flow between Canarian goats and other continental breeds. The analysis of runs of homozygosity (ROH) identified 13 ROH islands while the window-based FST method detected 25 genomic regions under selection. Major signals of selection were found on Capra hircus (CHI) chromosomes 6, 7, and 10 using various comparisons and methods. CONCLUSIONS This genome-wide analysis sheds new light on the evolutionary history of the four breeds that inhabit the Canary Islands. Our findings suggest a North African origin of the Canarian goats. In addition, within the genomic regions highlighted by the ROH and FST approaches, several genes related to body size and heat tolerance were identified.
Collapse
Affiliation(s)
- Gabriele Senczuk
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy.
| | - Martina Macrì
- Animal Breeding Consulting S.L., 14014, Córdoba, Spain
- Universidad de Córdoba, 14071, Córdoba, Spain
| | - Marika Di Civita
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| | - Salvatore Mastrangelo
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128, Palermo, Italy
| | | | - Juan Capote
- Instituto Canario de Investigaciones Científicas, 38260, Tenerife, Spain
| | - Fabio Pilla
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| | | | - Marcel Amills
- CRAG, CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | | |
Collapse
|
2
|
Manunza A, Ramirez-Diaz J, Cozzi P, Lazzari B, Tosser-Klopp G, Servin B, Johansson AM, Grøva L, Berg P, Våge DI, Stella A. Genetic diversity and historical demography of underutilised goat breeds in North-Western Europe. Sci Rep 2023; 13:20728. [PMID: 38007600 PMCID: PMC10676416 DOI: 10.1038/s41598-023-48005-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/21/2023] [Indexed: 11/27/2023] Open
Abstract
In the last decade, several studies aimed at dissecting the genetic architecture of local small ruminant breeds to discover which variations are involved in the process of adaptation to environmental conditions, a topic that has acquired priority due to climate change. Considering that traditional breeds are a reservoir of such important genetic variation, improving the current knowledge about their genetic diversity and origin is the first step forward in designing sound conservation guidelines. The genetic composition of North-Western European archetypical goat breeds is still poorly exploited. In this study we aimed to fill this gap investigating goat breeds across Ireland and Scandinavia, including also some other potential continental sources of introgression. The PCA and Admixture analyses suggest a well-defined cluster that includes Norwegian and Swedish breeds, while the crossbred Danish landrace is far apart, and there appears to be a close relationship between the Irish and Saanen goats. In addition, both graph representation of historical relationships among populations and f4-ratio statistics suggest a certain degree of gene flow between the Norse and Atlantic landraces. Furthermore, we identify signs of ancient admixture events of Scandinavian origin in the Irish and in the Icelandic goats. The time when these migrations, and consequently the introgression, of Scandinavian-like alleles occurred, can be traced back to the Viking colonisation of these two isles during the Viking Age (793-1066 CE). The demographic analysis indicates a complicated history of these traditional breeds with signatures of bottleneck, inbreeding and crossbreeding with the improved breeds. Despite these recent demographic changes and the historical genetic background shaped by centuries of human-mediated gene flow, most of them maintained their genetic identity, becoming an irreplaceable genetic resource as well as a cultural heritage.
Collapse
Affiliation(s)
- Arianna Manunza
- Institute of Agricultural Biology and Biotechnology, National Research Council, via Edoardo Bassini, 15, 20133, Milan, Italy.
| | - Johanna Ramirez-Diaz
- Institute of Agricultural Biology and Biotechnology, National Research Council, via Edoardo Bassini, 15, 20133, Milan, Italy
| | - Paolo Cozzi
- Institute of Agricultural Biology and Biotechnology, National Research Council, via Edoardo Bassini, 15, 20133, Milan, Italy
| | - Barbara Lazzari
- Institute of Agricultural Biology and Biotechnology, National Research Council, via Edoardo Bassini, 15, 20133, Milan, Italy
| | | | - Bertrand Servin
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet-Tolosan, France
| | - Anna M Johansson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, 75007, Uppsala, Sweden
| | - Lise Grøva
- Norwegian Institute of Bioeconomy Research, Gunnars vei 6, NO-6630, Tingvoll, Norway
| | - Peer Berg
- Faculty of Biosciences, NMBU, Norwegian University of Life Sciences, P.O. Box 5003, N-1432, ÅS, Norway
| | - Dag Inge Våge
- Faculty of Biosciences, NMBU, Norwegian University of Life Sciences, P.O. Box 5003, N-1432, ÅS, Norway
| | - Alessandra Stella
- Institute of Agricultural Biology and Biotechnology, National Research Council, via Edoardo Bassini, 15, 20133, Milan, Italy
| |
Collapse
|
3
|
García-Olivares V, Rubio-Rodríguez LA, Muñoz-Barrera A, Díaz-de Usera A, Jáspez D, Iñigo-Campos A, Rodríguez Pérez MDC, Cabrera de León A, Lorenzo-Salazar JM, González-Montelongo R, Cabrera VM, Flores C. Digging into the admixture strata of current-day Canary Islanders based on mitogenomes. iScience 2022; 26:105907. [PMID: 36647378 PMCID: PMC9840145 DOI: 10.1016/j.isci.2022.105907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/18/2022] [Accepted: 12/19/2022] [Indexed: 12/30/2022] Open
Abstract
The conquest of the Canary Islands by Europeans began at the beginning of the 15th century and culminated in 1496 with the surrender of the aborigines. The collapse of the aboriginal population during the conquest and the arrival of settlers caused a drastic change in the demographic composition of the archipelago. To shed light on this historical process, we analyzed 896 mitogenomes of current inhabitants from the seven main islands. Our findings confirm the continuity of aboriginal maternal contributions and the persistence of their genetic footprints in the current population, even at higher levels (>60% on average) than previously evidenced. Moreover, the age estimates for most autochthonous founder lineages support a first aboriginal arrival to the islands at the beginning of the first millennium. We also revealed for the first time that the main recognizable genetic influences from Europe are from Portuguese and Galicians.
Collapse
Affiliation(s)
- Víctor García-Olivares
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain,Plataforma Genómica de Alto Rendimiento para el Estudio de la Biodiversidad, Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas, San Cristóbal de La Laguna, Spain
| | - Luis A. Rubio-Rodríguez
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Adrián Muñoz-Barrera
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Ana Díaz-de Usera
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - David Jáspez
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Antonio Iñigo-Campos
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | | | - Antonio Cabrera de León
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain,Área de Medicina Preventiva y Salud Pública, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - José M. Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Rafaela González-Montelongo
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain,Plataforma Genómica de Alto Rendimiento para el Estudio de la Biodiversidad, Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas, San Cristóbal de La Laguna, Spain
| | | | - Carlos Flores
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain,Plataforma Genómica de Alto Rendimiento para el Estudio de la Biodiversidad, Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas, San Cristóbal de La Laguna, Spain,Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain,Facultad de Ciencias de la Salud, Universidad Fernando de Pessoa Canarias, Las Palmas de Gran Canaria, Spain,Corresponding author
| |
Collapse
|
4
|
Salgado Pardo JI, Delgado Bermejo JV, González Ariza A, León Jurado JM, Marín Navas C, Iglesias Pastrana C, Martínez Martínez MDA, Navas González FJ. Candidate Genes and Their Expressions Involved in the Regulation of Milk and Meat Production and Quality in Goats ( Capra hircus). Animals (Basel) 2022; 12:ani12080988. [PMID: 35454235 PMCID: PMC9026325 DOI: 10.3390/ani12080988] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/21/2022] [Accepted: 04/07/2022] [Indexed: 12/13/2022] Open
Abstract
Simple Summary During the present decade, highly selected caprine farming has increased in popularity due to the hardiness and adaptability inherent to goats. Recent advances in genetics have enabled the improvement in goat selection efficiency. The present review explores how genetic technologies have been applied to the goat-farming sector in the last century. The main candidate genes related to economically relevant traits are reported. The major source of income in goat farming derives from the sale of milk and meat. Consequently, yield and quality must be specially considered. Meat-related traits were evaluated considering three functional groups (weight gain, carcass quality and fat profile). Milk traits were assessed in three additional functional groups (milk production, protein and fat content). Abstract Despite their pivotal position as relevant sources for high-quality proteins in particularly hard environmental contexts, the domestic goat has not benefited from the advances made in genomics compared to other livestock species. Genetic analysis based on the study of candidate genes is considered an appropriate approach to elucidate the physiological mechanisms involved in the regulation of the expression of functional traits. This is especially relevant when such functional traits are linked to economic interest. The knowledge of candidate genes, their location on the goat genetic map and the specific phenotypic outcomes that may arise due to the regulation of their expression act as a catalyzer for the efficiency and accuracy of goat-breeding policies, which in turn translates into a greater competitiveness and sustainable profit for goats worldwide. To this aim, this review presents a chronological comprehensive analysis of caprine genetics and genomics through the evaluation of the available literature regarding the main candidate genes involved in meat and milk production and quality in the domestic goat. Additionally, this review aims to serve as a guide for future research, given that the assessment, determination and characterization of the genes associated with desirable phenotypes may provide information that may, in turn, enhance the implementation of goat-breeding programs in future and ensure their sustainability.
Collapse
Affiliation(s)
- Jose Ignacio Salgado Pardo
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14014 Córdoba, Spain; (J.I.S.P.); (J.V.D.B.); (A.G.A.); (C.M.N.); (C.I.P.); (M.d.A.M.M.)
| | - Juan Vicente Delgado Bermejo
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14014 Córdoba, Spain; (J.I.S.P.); (J.V.D.B.); (A.G.A.); (C.M.N.); (C.I.P.); (M.d.A.M.M.)
| | - Antonio González Ariza
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14014 Córdoba, Spain; (J.I.S.P.); (J.V.D.B.); (A.G.A.); (C.M.N.); (C.I.P.); (M.d.A.M.M.)
| | - José Manuel León Jurado
- Agropecuary Provincial Center of Córdoba, Provincial Council of Córdoba, 14014 Córdoba, Spain;
| | - Carmen Marín Navas
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14014 Córdoba, Spain; (J.I.S.P.); (J.V.D.B.); (A.G.A.); (C.M.N.); (C.I.P.); (M.d.A.M.M.)
| | - Carlos Iglesias Pastrana
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14014 Córdoba, Spain; (J.I.S.P.); (J.V.D.B.); (A.G.A.); (C.M.N.); (C.I.P.); (M.d.A.M.M.)
| | - María del Amparo Martínez Martínez
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14014 Córdoba, Spain; (J.I.S.P.); (J.V.D.B.); (A.G.A.); (C.M.N.); (C.I.P.); (M.d.A.M.M.)
| | - Francisco Javier Navas González
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14014 Córdoba, Spain; (J.I.S.P.); (J.V.D.B.); (A.G.A.); (C.M.N.); (C.I.P.); (M.d.A.M.M.)
- Institute of Agricultural Research and Training (IFAPA), Alameda del Obispo, 14004 Córdoba, Spain
- Correspondence: ; Tel.: +34-63-853-5046 (ext. 621262)
| |
Collapse
|
5
|
Petretto E, Dettori ML, Pazzola M, Manca F, Amills M, Vacca GM. Mitochondrial DNA diversity of the Sardinian local cattle stock. Sci Rep 2022; 12:2486. [PMID: 35169207 PMCID: PMC8847569 DOI: 10.1038/s41598-022-06420-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/25/2022] [Indexed: 12/14/2022] Open
Abstract
The aim of this research was to characterize the genetic diversity of the Sarda (Sa, n = 131), Sardo Bruna (SB, n = 44) and Sardo Modicana (SM, n = 26) cattle breeds, reared in the island of Sardinia (Italy). A portion of the mitochondrial DNA hypervariable region was sequenced, in order to identify a potential signature of African introgression. The FST coefficients among populations ranged between 0.056 for Sa vs SB and 0.167 for SB vs SM. AMOVA analysis indicated there was a significant differentiation of the three breeds, although most of diversity was gathered at the within-breed level. The Median Joining Network of the Sardinian sequences showed a potential founder effect signature. A MJ network including Sardinian cattle plus African, Italian, Iberian and Asian sequences, revealed the presence of haplogroup T3, already detected in Sa cattle, and the presence of Hg T1 and Hg T1′2′3, in Sa and SB. The presence of a private haplotype belonging to haplogroup T1, which is characteristic of African taurine breeds, may be due to the introgression of Sardinian breeds with African cattle, either directly (most probable source: North African cattle) or indirectly (through a Mediterranean intermediary already introgressed with African blood).
Collapse
Affiliation(s)
- Elena Petretto
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100, Sassari, Italy.,Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Maria Luisa Dettori
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100, Sassari, Italy.
| | - Michele Pazzola
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - Fabio Manca
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - Marcel Amills
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Giuseppe Massimo Vacca
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| |
Collapse
|
6
|
Delgado-Darias T, Alberto-Barroso V, Velasco-Vázquez J. Oral conditions of the pre-Hispanic mummies of Gran Canaria (Canary Islands, Spain). INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2021; 34:155-162. [PMID: 34271409 DOI: 10.1016/j.ijpp.2021.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To analyse the oral conditions of pre-Hispanic mummies from Gran Canaria (5th-11th centuries AD), comparing the results with published data from the non-mummified population. MATERIALS 440 teeth and 764 alveoli of 30 adult mummies. METHODS Macroscopic examination of pathological and non-pathological features of the oral cavity, using standardized criteria. RESULTS The mummies reveal frequent dental caries (11.8%), especially affecting molars (27.6%), a high prevalence of calculus (66.3%) and periodontal disease (34.9%). The average wear is characterized by extensive dentine exposure. Periapical lesions (10.6%) and antemortem tooth loss (AMTL) (15.9%) are common. A high percentage of individuals exhibit linear enamel hypoplasia (LEH) (84%). Except for periodontitis, the data indicate the absence of significant statistical differences between the mummies and the skeletonized sample. CONCLUSIONS The profile of the dental pathologies of the mummies indicates a carbohydrate-rich diet that contained abrasive grit from the stone querns used to grind cereals. Comparison of the oral conditions of mummified and skeletonized remains shows no differences in access to food resources, reinforcing the recent rejection of the traditional interpretation of the mummies as the pre-eminent status group of Canarian society. SIGNIFICANCE This is the first study to delve into the oral conditions of pre-Hispanic mummified remains from Gran Canaria. The results have implications for the framing of research questions based on the social status of these mummies. LIMITATION The preserved sample of mummified remains of ancient Canarians is small. SUGGESTION FOR FURTHER RESEARCH Comparative analysis from a diachronic perspective would improve understanding of the historical development of ancient Canarians.
Collapse
|
7
|
Ressaissi Y, Amills M, Noce A, Ben Hamouda M. Characterizing the Mitochondrial Diversity of Arbi Goats from Tunisia. Biochem Genet 2021; 59:1225-1232. [PMID: 33743097 DOI: 10.1007/s10528-021-10058-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
Arbi is one of the main local goat breeds in Tunisia, representing an important economic resource in arid and hot areas where cattle and sheep cannot thrive successfully. In the current work, we have characterized the mitochondrial diversity of 26 Arbi goats by partially sequencing the mitochondrial D-loop region. These sequences plus 10 retrieved from GenBank were analyzed with the DnaSP v.5.10.1, evidencing the existence of 12 different haplotypes. Nucleotide and haplotype diversities were 0.02 and 0.96. Moreover, median-joining network analysis showed that all D-loop sequences from Arbi goats correspond to haplogroup A and that in general they do not cluster with sequences from other goat breeds. The high diversity that has been observed in North African goats is compatible with the maritime diffusion of the Neolithic package 10,000-7000 YBP. Moreover, there are evidences that local Tunisian breeds have been extensively crossed with highly productive transboundary breeds in order to improve meat and milk yields. These uncontrolled crossing practices may lead to the loss of alleles that play key roles in the adaptation of Tunisian local breeds to a harsh environment.
Collapse
Affiliation(s)
- Yosra Ressaissi
- Institut National Agronomique de La Tunisie (INAT), 43 Avenue Charles Nicolle, 1082, Tunis, Tunisia.
| | - Marcel Amills
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Antonia Noce
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Mohamed Ben Hamouda
- Institut National de La Recherche Agronomique de Tunisie (INRAT), Rue Hédi Karray, 2049, Ariana, Tunisie
| |
Collapse
|
8
|
Deciphering the Patterns of Genetic Admixture and Diversity in the Ecuadorian Creole Chicken. Animals (Basel) 2019; 9:ani9090670. [PMID: 31514349 PMCID: PMC6770841 DOI: 10.3390/ani9090670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 12/25/2022] Open
Abstract
Simple Summary In Ecuador, the production of Ecuadorian Creole chicken is of crucial importance in the economy and for the nutrition of families. These chickens represent a focal point in scientific research for three main reasons: (1) they are an unknown genetic resource derived from 500 years of environmental and human selection and represent an important reservoir of genetic variability and adaptability; (2) Ecuadorian Creole chicken production is normally familiar, in a marginal dimension, and it is an important source of economic input for medium–low income communities; and (3) being a local genetic resource, it is available to local communities without intermediary international enterprises and represents the starting point for food sovereignty. We aimed to measure the level of genetic diversity and its phylogenetic position compared with other outgroup breeds using information from microsatellite and mitochondrial markers. Our results showed that these chicken populations represent a great reservoir of genetic variability; however, the genetic fragmentation owing to the high geographical diversity of the country could compromise the conservation status and, therefore, the establishment of an official breeding program is needed for the conservation and valuation of these avian populations, with this genetic characterization being a first step. Abstract Latin American Creole chickens are generally not characterized; this is the case in Ecuador, where the lack of scientific information is contributing to their extinction. Here, we developed a characterization of the genetic resources of Ecuadorian chickens located in three continental agroecosystems (Pacific coastal, Andean, and Amazonian). Blood samples of 234 unrelated animals were collected in six provinces across Ecuador: Bolívar, Chimborazo, Cotopaxi, Guayas, Morona Santiago, and Tungurahua, in order to perform a genetic characterization and population structure assessment using the AVIANDIV project microsatellites panel (30 loci) and D-loop sequences of mitochondrial DNA and comparing with reference data from other breeds or genetic lines. The results indicate that Ecuadorian Creole chickens are the result of the admixture of different genetic groups that occurred during the last five centuries. While the influence of South Spanish breeds is demonstrated in the colonial age, genetic relationships with other breeds (Leghorn, Spanish fighter cock) cannot be discarded. The geographical configuration of the country and extreme climate variability have influenced the genetic isolation of groups constituting a homogeneous genetic status into the whole population. This is not only a source of genetic variation, but also a critical point because genetic drift produces a loss of genetic variants.
Collapse
|
9
|
Fregel R, Ordóñez AC, Santana-Cabrera J, Cabrera VM, Velasco-Vázquez J, Alberto V, Moreno-Benítez MA, Delgado-Darias T, Rodríguez-Rodríguez A, Hernández JC, Pais J, González-Montelongo R, Lorenzo-Salazar JM, Flores C, Cruz-de-Mercadal MC, Álvarez-Rodríguez N, Shapiro B, Arnay M, Bustamante CD. Mitogenomes illuminate the origin and migration patterns of the indigenous people of the Canary Islands. PLoS One 2019; 14:e0209125. [PMID: 30893316 PMCID: PMC6426200 DOI: 10.1371/journal.pone.0209125] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/15/2019] [Indexed: 12/30/2022] Open
Abstract
The Canary Islands’ indigenous people have been the subject of substantial archaeological, anthropological, linguistic and genetic research pointing to a most probable North African Berber source. However, neither agreement about the exact point of origin nor a model for the indigenous colonization of the islands has been established. To shed light on these questions, we analyzed 48 ancient mitogenomes from 25 archaeological sites from the seven main islands. Most lineages observed in the ancient samples have a Mediterranean distribution, and belong to lineages associated with the Neolithic expansion in the Near East and Europe (T2c, J2a, X3a…). This phylogeographic analysis of Canarian ancient mitogenomes, the first of its kind, shows that some lineages are restricted to Central North Africa (H1cf, J2a2d and T2c1d3), while others have a wider distribution, including both West and Central North Africa, and, in some cases, Europe and the Near East (U6a1a1, U6a7a1, U6b, X3a, U6c1). In addition, we identify four new Canarian-specific lineages (H1e1a9, H4a1e, J2a2d1a and L3b1a12) whose coalescence dates correlate with the estimated time for the colonization of the islands (1st millennia CE). Additionally, we observe an asymmetrical distribution of mtDNA haplogroups in the ancient population, with certain haplogroups appearing more frequently in the islands closer to the continent. This reinforces results based on modern mtDNA and Y-chromosome data, and archaeological evidence suggesting the existence of two distinct migrations. Comparisons between insular populations show that some populations had high genetic diversity, while others were probably affected by genetic drift and/or bottlenecks. In spite of observing interinsular differences in the survival of indigenous lineages, modern populations, with the sole exception of La Gomera, are homogenous across the islands, supporting the theory of extensive human mobility after the European conquest.
Collapse
Affiliation(s)
- Rosa Fregel
- Department of Genetics, Stanford University, Stanford, California, United States of America
- Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- * E-mail:
| | - Alejandra C. Ordóñez
- Department of Prehistory, Anthropology and Ancient History, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | | | - Vicente M. Cabrera
- Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Javier Velasco-Vázquez
- Department of Historical Sciences, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Verónica Alberto
- Tibicena Arqueología y Patrimonio, Las Palmas de Gran Canaria, Spain
| | | | | | - Amelia Rodríguez-Rodríguez
- Department of Historical Sciences, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | | | - Jorge Pais
- Museo Arqueológico Benahoarita, Los Llanos de Aridane, Spain
| | | | | | - Carlos Flores
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Granadilla, Spain
- Research Unit, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Matilde Arnay
- Department of Prehistory, Anthropology and Ancient History, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Carlos D. Bustamante
- Department of Genetics, Stanford University, Stanford, California, United States of America
| |
Collapse
|
10
|
Cardoso TF, Amills M, Bertolini F, Rothschild M, Marras G, Boink G, Jordana J, Capote J, Carolan S, Hallsson JH, Kantanen J, Pons A, Lenstra JA. Patterns of homozygosity in insular and continental goat breeds. Genet Sel Evol 2018; 50:56. [PMID: 30449277 PMCID: PMC6241035 DOI: 10.1186/s12711-018-0425-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 10/15/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Genetic isolation of breeds may result in a significant loss of diversity and have consequences on health and performance. In this study, we examined the effect of geographic isolation on caprine genetic diversity patterns by genotyping 480 individuals from 25 European and African breeds with the Goat SNP50 BeadChip and comparing patterns of homozygosity of insular and nearby continental breeds. RESULTS Among the breeds analysed, number and total length of ROH varied considerably and depending on breeds, ROH could cover a substantial fraction of the genome (up to 1.6 Gb in Icelandic goats). When compared with their continental counterparts, goats from Iceland, Madagascar, La Palma and Ireland (Bilberry and Arran) displayed a significant increase in ROH coverage, ROH number and FROH values (P value < 0.05). Goats from Mediterranean islands represent a more complex case because certain populations displayed a significantly increased level of homozygosity (e.g. Girgentana) and others did not (e.g. Corse and Sarda). Correlations of number and total length of ROH for insular goat populations with the distance between islands and the nearest continental locations revealed an effect of extremely long distances on the patterns of homozygosity. CONCLUSIONS These results indicate that the effects of insularization on the patterns of homozygosity are variable. Goats raised in Madagascar, Iceland, Ireland (Bilberry and Arran) and La Palma, show high levels of homozygosity, whereas those bred in Mediterranean islands display patterns of homozygosity that are similar to those found in continental populations. These results indicate that the diversity of insular goat populations is modulated by multiple factors such as geographic distribution, population size, demographic history, trading and breed management.
Collapse
Affiliation(s)
- Taina F. Cardoso
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona Spain
- CAPES Foundation, Ministry of Education of Brazil, Brasília, DF 70.040-020 Brazil
| | - Marcel Amills
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Francesca Bertolini
- Department of Animal Science, Iowa State University, Ames, IA 50011-3150 USA
| | - Max Rothschild
- Department of Animal Science, Iowa State University, Ames, IA 50011-3150 USA
| | - Gabriele Marras
- Bioinformatics Core Facility, Fondazione Parco Tecnologico Padano, Loc. Cascina Codazza, 26900 Lodi, LO Italy
| | - Geert Boink
- Stichting Zeldzame Huisdierrassen, De Drieslag 30, 8251 JZ Dronten, The Netherlands
| | - Jordi Jordana
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Juan Capote
- Instituto Canario de Investigaciones Agrarias, 38108 La Laguna, Tenerife Spain
| | - Sean Carolan
- The Old Irish Goat Society, Mulranny, Co Mayo Ireland
| | - Jón H. Hallsson
- Faculty of Land and Animal Resources, Agricultural University of Iceland, Reykjavík, Iceland
| | - Juha Kantanen
- Department of Production Systems, Natural Resources Institute Finland, 31600 Jokioinen, Finland
| | - Agueda Pons
- Unitat de Races Autòctones, Servei de Millora Agrària i Pesquera (SEMILLA), 07198 Son Ferriol, Spain
| | - Johannes A. Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - The AdaptMap Consortium
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona Spain
- CAPES Foundation, Ministry of Education of Brazil, Brasília, DF 70.040-020 Brazil
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Department of Animal Science, Iowa State University, Ames, IA 50011-3150 USA
- Bioinformatics Core Facility, Fondazione Parco Tecnologico Padano, Loc. Cascina Codazza, 26900 Lodi, LO Italy
- Stichting Zeldzame Huisdierrassen, De Drieslag 30, 8251 JZ Dronten, The Netherlands
- Instituto Canario de Investigaciones Agrarias, 38108 La Laguna, Tenerife Spain
- The Old Irish Goat Society, Mulranny, Co Mayo Ireland
- Faculty of Land and Animal Resources, Agricultural University of Iceland, Reykjavík, Iceland
- Department of Production Systems, Natural Resources Institute Finland, 31600 Jokioinen, Finland
- Unitat de Races Autòctones, Servei de Millora Agrària i Pesquera (SEMILLA), 07198 Son Ferriol, Spain
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
11
|
E G, Zhao Y, Chen L, Ma Y, Chu M, Li X, Hong Q, Li L, Guo J, Zhu L, Han Y, Gao H, Zhang J, Jiang H, Jiang C, Wang G, Ren H, Jin M, Sun Y, Zhou P, Huang Y. Genetic diversity of the Chinese goat in the littoral zone of the Yangtze River as assessed by microsatellite and mtDNA. Ecol Evol 2018; 8:5111-5123. [PMID: 29876086 PMCID: PMC5980450 DOI: 10.1002/ece3.4100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 03/21/2018] [Accepted: 03/27/2018] [Indexed: 11/10/2022] Open
Abstract
The objective of this study was to assess the genetic diversity and population structure of goats in the Yangtze River region using microsatellite and mtDNA to better understand the current status of those goat genetic diversity and the effects of natural landscape in fashion of domestic animal genetic diversity. The genetic variability of 16 goat populations in the littoral zone of the Yangtze River was estimated using 21 autosomal microsatellites, which revealed high diversity and genetic population clustering with a dispersed geographical distribution. A phylogenetic analysis of the mitochondrial D-loop region (482 bp) was conducted in 494 goats from the Yangtze River region. In total, 117 SNPs were reconstructed, and 173 haplotypes were identified, 94.5% of which belonged to lineages A and B. Lineages C, D, and G had lower frequencies (5.2%), and lineage F haplotypes were undetected. Several high-frequency haplotypes were shared by different ecogeographically distributed populations, and the close phylogenetic relationships among certain low-frequency haplotypes indicated the historical exchange of genetic material among these populations. In particular, the lineage G haplotype suggests that some west Asian goat genetic material may have been transferred to China via Muslim migration.
Collapse
Affiliation(s)
- Guang‐Xin E
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & HerbivoreChongqing Engineering Research Centre for Herbivores Resource Protection and UtilizationSouthwest UniversityChongqingChina
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of ZoologyChinese Academy of SciencesKunmingChina
| | - Yong‐Ju Zhao
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & HerbivoreChongqing Engineering Research Centre for Herbivores Resource Protection and UtilizationSouthwest UniversityChongqingChina
| | - Li‐Peng Chen
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & HerbivoreChongqing Engineering Research Centre for Herbivores Resource Protection and UtilizationSouthwest UniversityChongqingChina
| | - Yue‐Hui Ma
- Institute of Animal ScienceChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Ming‐Xing Chu
- Institute of Animal ScienceChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Xiang‐Long Li
- College of Animal Science and TechnologyHebei Normal University of Science & TechnologyQinghuangdaoChina
| | - Qiong‐Hua Hong
- Yunnan Animal Scinence and Veterinary InstituteKunmingChina
| | - Lan‐Hui Li
- College of Animal Science and TechnologyAgricultural University of HebeiBaoding, HebeiChina
| | - Ji‐Jun Guo
- Animal Husbandry Station of Qinghai ProvinceXining, QinghaiChina
| | - Lan Zhu
- Yunnan Animal Scinence and Veterinary InstituteKunmingChina
| | - Yan‐Guo Han
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & HerbivoreChongqing Engineering Research Centre for Herbivores Resource Protection and UtilizationSouthwest UniversityChongqingChina
| | - Hui‐Jiang Gao
- Institute of Animal ScienceChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Jia‐Hua Zhang
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & HerbivoreChongqing Engineering Research Centre for Herbivores Resource Protection and UtilizationSouthwest UniversityChongqingChina
| | - Huai‐Zhi Jiang
- Animal Science and Technology CollegeJilin Agriculture UniversityChangchun, JilinChina
| | - Cao‐De Jiang
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & HerbivoreChongqing Engineering Research Centre for Herbivores Resource Protection and UtilizationSouthwest UniversityChongqingChina
| | - Gao‐Fu Wang
- Chongqing Academy of Animal SciencesChongqingChina
| | | | - Mei‐Lan Jin
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & HerbivoreChongqing Engineering Research Centre for Herbivores Resource Protection and UtilizationSouthwest UniversityChongqingChina
| | - Yuan‐Zhi Sun
- Wuhan Tianyi Huiyuan Bioscience & Technology IncWuhanChina
| | - Peng Zhou
- Chongqing Academy of Animal SciencesChongqingChina
| | - Yong‐Fu Huang
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & HerbivoreChongqing Engineering Research Centre for Herbivores Resource Protection and UtilizationSouthwest UniversityChongqingChina
| |
Collapse
|
12
|
Abstract
Goats have played a key role as source of nourishment for humans in their expansion all over the world in long land and sea trips. This has guaranteed a place for this species in the important and rapid episode of livestock expansion triggered by Columbus' arrival in the Americas in the late 1400s. The aims of this study are to provide a comprehensive perspective on genetic diversity in American goat populations and to assess their origins and evolutionary trajectories. This was achieved by combining data from autosomal neutral genetic markers obtained in more than two thousand samples that encompass a wide range of Iberian, African and Creole goat breeds. In general, even though Creole populations differ clearly from each other, they lack a strong geographical pattern of differentiation, such that populations of different admixed ancestry share relatively close locations throughout the large geographical range included in this study. Important Iberian signatures were detected in most Creole populations studied, and many of them, particularly the Cuban Creole, also revealed an important contribution of African breeds. On the other hand, the Brazilian breeds showed a particular genetic structure and were clearly separated from the other Creole populations, with some influence from Cape Verde goats. These results provide a comprehensive characterisation of the present structure of goat genetic diversity, and a dissection of the Iberian and African influences that gave origin to different Creole caprine breeds, disentangling an important part of their evolutionary history. Creole breeds constitute an important reservoir of genetic diversity that justifies the development of appropriate management systems aimed at improving performance without loss of genomic diversity.
Collapse
|
13
|
Martínez A, Manunza A, Delgado JV, Landi V, Adebambo A, Ismaila M, Capote J, El Ouni M, Elbeltagy A, Abushady AM, Galal S, Ferrando A, Gómez M, Pons A, Badaoui B, Jordana J, Vidal O, Amills M. Detecting the existence of gene flow between Spanish and North African goats through a coalescent approach. Sci Rep 2016; 6:38935. [PMID: 27966592 PMCID: PMC5155231 DOI: 10.1038/srep38935] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 11/16/2016] [Indexed: 12/23/2022] Open
Abstract
Human-driven migrations are one of the main processes shaping the genetic diversity and population structure of domestic species. However, their magnitude and direction have been rarely analysed in a statistical framework. We aimed to estimate the impact of migration on the population structure of Spanish and African goats. To achieve this goal, we analysed a dataset of 1,472 individuals typed with 23 microsatellites. Population structure of African and Spanish goats was moderate (mean FST = 0.07), with the exception of the Canarian and South African breeds that displayed a significant differentiation when compared to goats from North Africa and Nigeria. Measurement of gene flow with Migrate-n and IMa coalescent genealogy samplers supported the existence of a bidirectional gene flow between African and Spanish goats. Moreover, IMa estimates of the effective number of migrants were remarkably lower than those calculated with Migrate-n and classical approaches. Such discrepancies suggest that recent divergence, rather than extensive gene flow, is the main cause of the weak population structure observed in caprine breeds.
Collapse
Affiliation(s)
- Amparo Martínez
- Departamento de Genética, Universidad de Córdoba, Córdoba 14071, Spain
| | - Arianna Manunza
- Department of Animal Genetics, Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | | | - Vincenzo Landi
- Departamento de Genética, Universidad de Córdoba, Córdoba 14071, Spain
| | - Ayotunde Adebambo
- Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta PMB 2240, Nigeria
| | - Muritala Ismaila
- Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta PMB 2240, Nigeria
| | - Juan Capote
- Instituto Canario de Investigaciones Agrarias, La Laguna 38108, Tenerife, Spain
| | - Mabrouk El Ouni
- Livestock & Wildlife Laboratory, Arid Land Institute Medenine, 4119 Médenine, Tunisia
| | - Ahmed Elbeltagy
- Department of Animal Biotechnology, Animal Production Research Institute, Dokki, Giza, Egypt
| | - Asmaa M. Abushady
- Genetics Department, Faculty of Agriculture, Ain Shams University, Shubra 11241, Cairo, Egypt
| | - Salah Galal
- Animal Production Department, Faculty of Agriculture, Ain Shams University, Abbassia 11566, Cairo, Egypt
| | - Ainhoa Ferrando
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Mariano Gómez
- Servicio de Ganadería. Diputación Foral de Bizkaia. Avda. Lehendakari Aguirre n° 9-2°, 48014 Bilbao, Spain
| | - Agueda Pons
- Unitat de Races Autòctones, Servei de Millora Agrària, (SEMILLA-SAU), Son Ferriol 07198, Spain
| | - Bouabid Badaoui
- University Mohammed V, Agdal, Faculty of Sciences, 4 Av. Ibn Battota, Rabat, Morocco
| | - Jordi Jordana
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Oriol Vidal
- Departament de Biologia, Universitat de Girona, Girona 17071, Spain
| | - Marcel Amills
- Department of Animal Genetics, Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| |
Collapse
|
14
|
Manunza A, Noce A, Serradilla JM, Goyache F, Martínez A, Capote J, Delgado JV, Jordana J, Muñoz E, Molina A, Landi V, Pons A, Balteanu V, Traoré A, Vidilla M, Sánchez-Rodríguez M, Sànchez A, Cardoso TF, Amills M. A genome-wide perspective about the diversity and demographic history of seven Spanish goat breeds. Genet Sel Evol 2016; 48:52. [PMID: 27455838 PMCID: PMC4960707 DOI: 10.1186/s12711-016-0229-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 06/29/2016] [Indexed: 12/19/2022] Open
Abstract
Background The main goal of the current work was to infer the demographic history of seven Spanish goat breeds (Malagueña, Murciano-Granadina, Florida, Palmera, Mallorquina, Bermeya and Blanca de Rasquera) based on genome-wide diversity data generated with the Illumina Goat SNP50 BeadChip (population size, N = 176). Five additional populations from Europe (Saanen and Carpathian) and Africa (Tunisian, Djallonké and Sahel) were also included in this analysis (N = 80) for comparative purposes. Results Our results show that the genetic background of Spanish goats traces back mainly to European breeds although signs of North African admixture were detected in two Andalusian breeds (Malagueña and Murciano-Granadina). In general, observed and expected heterozygosities were quite similar across the seven Spanish goat breeds under analysis irrespective of their population size and conservation status. For the Mallorquina and Blanca de Rasquera breeds, which have suffered strong population declines during the past decades, we observed increased frequencies of large-sized (ROH), a finding that is consistent with recent inbreeding. In contrast, a substantial part of the genome of the Palmera goat breed comprised short ROH, which suggests a strong and ancient founder effect. Conclusions Admixture with African goats, genetic drift and inbreeding have had different effects across the seven Spanish goat breeds analysed in the current work. This has generated distinct patterns of genome-wide diversity that provide new clues about the demographic history of these populations. Electronic supplementary material The online version of this article (doi:10.1186/s12711-016-0229-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Arianna Manunza
- Department of Animal Genetics, Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Campus Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Antonia Noce
- Department of Animal Genetics, Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Campus Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | | | - Félix Goyache
- Área de Genética y Reproducción Animal, SERIDA-Deva, Camino de Rioseco 1225, Gijón, 33394, Spain
| | - Amparo Martínez
- Departamento de Genética, Universidad de Córdoba, 14071, Córdoba, Spain
| | - Juan Capote
- Instituto Canario de Investigaciones Agrarias, 38108, La Laguna, Tenerife, Spain
| | | | - Jordi Jordana
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Eva Muñoz
- Departamento de Genética, Universidad de Córdoba, 14071, Córdoba, Spain
| | - Antonio Molina
- Departamento de Genética, Universidad de Córdoba, 14071, Córdoba, Spain
| | - Vincenzo Landi
- Departamento de Genética, Universidad de Córdoba, 14071, Córdoba, Spain
| | - Agueda Pons
- Unitat de Races Autòctones, Servei de Millora Agrària i Pesquera (SEMILLA), 07198, Son Ferriol, Spain
| | - Valentin Balteanu
- Faculty of Animal Science and Biotechnologies and Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania
| | - Amadou Traoré
- Institut de l'Environnement et Recherches Agricoles, 04 BP 8645, Ouagadougou 04, Burkina Faso
| | - Montse Vidilla
- Associació de Ramaders de Cabra Blanca de Rasquera, Rasquera, 43513, Spain
| | | | - Armand Sànchez
- Department of Animal Genetics, Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Campus Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Tainã Figueiredo Cardoso
- Department of Animal Genetics, Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Campus Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Marcel Amills
- Department of Animal Genetics, Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Campus Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain. .,Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|
15
|
Halley YA, Oldeschulte DL, Bhattarai EK, Hill J, Metz RP, Johnson CD, Presley SM, Ruzicka RE, Rollins D, Peterson MJ, Murphy WJ, Seabury CM. Northern Bobwhite (Colinus virginianus) Mitochondrial Population Genomics Reveals Structure, Divergence, and Evidence for Heteroplasmy. PLoS One 2015; 10:e0144913. [PMID: 26713762 PMCID: PMC4699210 DOI: 10.1371/journal.pone.0144913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/26/2015] [Indexed: 01/09/2023] Open
Abstract
Herein, we evaluated the concordance of population inferences and conclusions resulting from the analysis of short mitochondrial fragments (i.e., partial or complete D-Loop nucleotide sequences) versus complete mitogenome sequences for 53 bobwhites representing six ecoregions across TX and OK (USA). Median joining (MJ) haplotype networks demonstrated that analyses performed using small mitochondrial fragments were insufficient for estimating the true (i.e., complete) mitogenome haplotype structure, corresponding levels of divergence, and maternal population history of our samples. Notably, discordant demographic inferences were observed when mismatch distributions of partial (i.e., partial D-Loop) versus complete mitogenome sequences were compared, with the reduction in mitochondrial genomic information content observed to encourage spurious inferences in our samples. A probabilistic approach to variant prediction for the complete bobwhite mitogenomes revealed 344 segregating sites corresponding to 347 total mutations, including 49 putative nonsynonymous single nucleotide variants (SNVs) distributed across 12 protein coding genes. Evidence of gross heteroplasmy was observed for 13 bobwhites, with 10 of the 13 heteroplasmies involving one moderate to high frequency SNV. Haplotype network and phylogenetic analyses for the complete bobwhite mitogenome sequences revealed two divergent maternal lineages (dXY = 0.00731; FST = 0.849; P < 0.05), thereby supporting the potential for two putative subspecies. However, the diverged lineage (n = 103 variants) almost exclusively involved bobwhites geographically classified as Colinus virginianus texanus, which is discordant with the expectations of previous geographic subspecies designations. Tests of adaptive evolution for functional divergence (MKT), frequency distribution tests (D, FS) and phylogenetic analyses (RAxML) provide no evidence for positive selection or hybridization with the sympatric scaled quail (Callipepla squamata) as being explanatory factors for the two bobwhite maternal lineages observed. Instead, our analyses support the supposition that two diverged maternal lineages have survived from pre-expansion to post-expansion population(s), with the segregation of some slightly deleterious nonsynonymous mutations.
Collapse
Affiliation(s)
- Yvette A. Halley
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - David L. Oldeschulte
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Eric K. Bhattarai
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Joshua Hill
- Genomics and Bioinformatics Core, Texas A&M AgriLife Research, College Station, Texas, United States of America
| | - Richard P. Metz
- Genomics and Bioinformatics Core, Texas A&M AgriLife Research, College Station, Texas, United States of America
| | - Charles D. Johnson
- Genomics and Bioinformatics Core, Texas A&M AgriLife Research, College Station, Texas, United States of America
| | - Steven M. Presley
- Department of Environmental Toxicology, Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas, United States of America
| | - Rebekah E. Ruzicka
- Texas A&M AgriLife Extension Service, Dallas, Texas, United States of America
| | - Dale Rollins
- Rolling Plains Quail Research Ranch, 1262 U.S. Highway 180 W., Rotan, Texas, United States of America
| | - Markus J. Peterson
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | - William J. Murphy
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Christopher M. Seabury
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|