1
|
Jiménez-Montenegro L, Alfonso L, Soret B, Mendizabal JA, Urrutia O. Preservation of milk in liquid nitrogen during sample collection does not affect the RNA quality for RNA-seq analysis. BMC Genomics 2025; 26:525. [PMID: 40413378 DOI: 10.1186/s12864-025-11707-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 05/14/2025] [Indexed: 05/27/2025] Open
Abstract
BACKGROUND Standard procedures for milk sample collection for transcriptome analysis use ice as preservation method, which can affect the RNA stability and requires immediate sample processing. These problems would be eased if the milk samples could be snap-frozen in liquid nitrogen. This study describes the applicability of a new method for milk sample collection and subsequent RNA extraction from milk fat globules, determining whether the quality, integrity and quantity of the RNA extracts met the minimum requirements for downstream RNA-seq. RESULTS The quality of the extracts measured by A260/280 ratio and the Integrity and Quality (IQ) values obtained fulfilled the reference values of 1.9 - 2.1 (P1 < 0.05 and P2 < 0.05) and ≥ 9 (P < 0.05), respectively. However, the RNA Integrity Number (RIN), based on rRNA 18S and 28S analysis, was 3.59 (P > 0.05) and failed to meet the RIN ≥ 7 benchmark for RNA-seq (P > 0.05). Milk fat globules contain low molecular-weight RNA fragments and minimal 18S and 28S rRNA, suggesting low RIN values were inherent to sample type. Likewise, the RNA concentration from milk fat globules were generally low (120.43 ± 22.27 ng/µL, 102.87 ± 15.64 ng/µL and 109.43 ± 22.69 ng/µL, measured by Nanodrop, Qubit HS and QuanTI Ribogreen, respectively). Nevertheless, RNA-seq yielded 52.7 million paired-end reads per sample. The raw reads passed all quality control parameters having the same sequence-read lengths (151 bp), 100% base-coverage, 49% GC base content, and base quality scores of 36, enabling successful transcriptome profiling. Moreover, milk proteins were identified as the most abundant transcripts in MFG in the analysis of the most expressed genes, indicating that the sequenced reads would accurately reflect the transcriptome of this milk fraction. CONCLUSIONS Milk preservation in liquid nitrogen is a suitable sample collection method that overcomes the limitations of immediate sample processing required if ice is used. Thus, this procedure, together with the subsequent RNA isolation from milk fat globules and its sequencing by RNA-seq, would provide a practical and a non-invasive method for measuring the mammary epithelial cell transcriptome, improving the feasibility of conducting studies related to mammary gland and lactation physiology.
Collapse
Affiliation(s)
- Lucía Jiménez-Montenegro
- IS-FOOD, School of Agricultural Engineering and Biosciences, Public University of Navarre (UPNA), Campus de Arrosadia, Pamplona, 31006, Spain
| | - Leopoldo Alfonso
- IS-FOOD, School of Agricultural Engineering and Biosciences, Public University of Navarre (UPNA), Campus de Arrosadia, Pamplona, 31006, Spain
| | - Beatriz Soret
- IS-FOOD, School of Agricultural Engineering and Biosciences, Public University of Navarre (UPNA), Campus de Arrosadia, Pamplona, 31006, Spain
| | - José A Mendizabal
- IS-FOOD, School of Agricultural Engineering and Biosciences, Public University of Navarre (UPNA), Campus de Arrosadia, Pamplona, 31006, Spain
| | - Olaia Urrutia
- IS-FOOD, School of Agricultural Engineering and Biosciences, Public University of Navarre (UPNA), Campus de Arrosadia, Pamplona, 31006, Spain.
| |
Collapse
|
2
|
Zhang X, Teng J, Chen Z, Zhao C, Jiang L, Zhang Q. S100A9 Affects Milk Protein Content by Regulating Amino Acid Transporters and the PI3K-Akt, WNT, and mTOR Signaling Pathways. Genes (Basel) 2024; 15:1486. [PMID: 39596686 PMCID: PMC11594203 DOI: 10.3390/genes15111486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Calgranulin B (S100A9) was found to be strongly associated with milk protein percentage in dairy cattle in our previous genome-wide association study. METHODS SNPs in S100A9 were identified via pooled sequencing, and genotyping of 1054 cows was performed individually using MassArray with MALDI-TOFMS technology. Association analyses between the S100A9 SNPs and five milk production traits were conducted using SAS 9.2 software. Functional studies of S100A9 were conducted using quantitative PCR, Western blot, CCK-8, and immunofluorescence assays. RESULTS In the present study, we further verified that two SNPs in S100A9, g.17115387 C>A and g.17115176 C>A, were significantly associated with milk protein percentage. We found that S100A9 could affect the expressions of caseins CSN1S1, CSN2, and CSN3 in MAC-T cells by regulating the expressions of amino acid transporter genes. We investigated the effects of S100A9 on the PI3K-Akt, WNT, and mTOR pathways, which are well known to play important roles in mammary gland development and milk protein synthesis. Our results suggest that S100A9 regulates the expressions of the relevant genes in these pathways, and thus potentially influences the protein synthesis in the mammary gland. CONCLUSIONS This study demonstrates the important role of the S100A9 gene in the milk protein trait of dairy cattle and provides new insights into the molecular mechanism of milk protein content.
Collapse
Affiliation(s)
- Xinyi Zhang
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science, Shandong Agricultural University, Tai’an 271018, China; (X.Z.); (J.T.); (Z.C.); (C.Z.)
| | - Jun Teng
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science, Shandong Agricultural University, Tai’an 271018, China; (X.Z.); (J.T.); (Z.C.); (C.Z.)
| | - Zhujun Chen
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science, Shandong Agricultural University, Tai’an 271018, China; (X.Z.); (J.T.); (Z.C.); (C.Z.)
| | - Changheng Zhao
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science, Shandong Agricultural University, Tai’an 271018, China; (X.Z.); (J.T.); (Z.C.); (C.Z.)
| | - Li Jiang
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Qin Zhang
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science, Shandong Agricultural University, Tai’an 271018, China; (X.Z.); (J.T.); (Z.C.); (C.Z.)
| |
Collapse
|
3
|
Ayalew W, Wu X, Tarekegn GM, Sisay Tessema T, Naboulsi R, Van Damme R, Bongcam-Rudloff E, Edea Z, Chu M, Enquahone S, Liang C, Yan P. Whole Genome Scan Uncovers Candidate Genes Related to Milk Production Traits in Barka Cattle. Int J Mol Sci 2024; 25:6142. [PMID: 38892330 PMCID: PMC11172929 DOI: 10.3390/ijms25116142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
In this study, our primary aim was to explore the genomic landscape of Barka cattle, a breed recognized for high milk production in a semi-arid environment, by focusing on genes with known roles in milk production traits. We employed genome-wide analysis and three selective sweep detection methods (ZFST, θπ ratio, and ZHp) to identify candidate genes associated with milk production and composition traits. Notably, ACAA1, P4HTM, and SLC4A4 were consistently identified by all methods. Functional annotation highlighted their roles in crucial biological processes such as fatty acid metabolism, mammary gland development, and milk protein synthesis. These findings contribute to understanding the genetic basis of milk production in Barka cattle, presenting opportunities for enhancing dairy cattle production in tropical climates. Further validation through genome-wide association studies and transcriptomic analyses is essential to fully exploit these candidate genes for selective breeding and genetic improvement in tropical dairy cattle.
Collapse
Affiliation(s)
- Wondossen Ayalew
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (W.A.); (X.W.); (M.C.)
- Institute of Biotechnology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia
| | - Xiaoyun Wu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (W.A.); (X.W.); (M.C.)
| | - Getinet Mekuriaw Tarekegn
- Institute of Biotechnology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia
- Scotland’s Rural College (SRUC), Easter Bush Campus, Roslin Institute Building, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Tesfaye Sisay Tessema
- Institute of Biotechnology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia
| | - Rakan Naboulsi
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institute, Tomtebodavägen 18A, 17177 Stockholm, Sweden
| | - Renaud Van Damme
- Department of Animal Biosciences, Bioinformatics Section, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden (E.B.-R.)
| | - Erik Bongcam-Rudloff
- Department of Animal Biosciences, Bioinformatics Section, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden (E.B.-R.)
| | - Zewdu Edea
- Ethiopian Bio and Emerging Technology Institute, Addis Ababa P.O. Box 5954, Ethiopia;
| | - Min Chu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (W.A.); (X.W.); (M.C.)
| | - Solomon Enquahone
- Institute of Biotechnology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (W.A.); (X.W.); (M.C.)
| | - Ping Yan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (W.A.); (X.W.); (M.C.)
| |
Collapse
|
4
|
Abbasi-Moshaii B, Moradi MH, Yin T, Rahimi-Mianji G, Nejati-Javaremi A, König S. Genome-wide scan for selective sweeps identifies novel loci associated with resistance to mastitis in German Holstein cattle. J Anim Breed Genet 2023; 140:92-105. [PMID: 35988016 DOI: 10.1111/jbg.12737] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 08/02/2022] [Indexed: 12/13/2022]
Abstract
Domestication and selection significantly changed phenotypic and behavioural traits in modern domestic animals. In this study, to identify the genomic regions associated with mastitis, genomic data of German Holstein dairy cattle were analysed. The samples were genotyped using the Bovine 50 K SNP chip. For each defined healthy and sick group, 133 samples from 13,276 genotyped dairy cows were selected based on mastitis random residual effects. Grouping was done to infer selection signatures based on XP-EHH statistic. The results revealed that for the top 0.01 percentile of the obtained XP-EHH values, five genomic regions on chromosomes 8, 11, 12, 14 and 26 of the control group, and four regions on chromosomes 3, 4 (two regions) and 22 of the case group, have been under selection. Also, consideration of the top 0.1 percentile of the XP-EHH values, clarified 21 and 15 selective sweeps in the control and case group, respectively. This study identified some genomic regions containing potential candidate genes associated with resistance and susceptibility to mastitis, immune system and inflammation, milk traits, udder morphology and different types of cancers. In addition, these regions overlap with some quantitative trait loci linked to clinical mastitis, immunoglobulin levels, somatic cell score, udder traits, milk fat and protein, milk yield, milking speed and veterinary treatments. It is noteworthy that we found two regions in the healthy group (on chromosomes 12 and 14) with strong signals, which were not described previously. It is likely that future research could link these identified genomic regions to mastitis. The results of the current study contribute to the identification of causal mutations, genomic regions and genes affecting mastitis incidence in dairy cows.
Collapse
Affiliation(s)
- Bita Abbasi-Moshaii
- Institute of Animal Breeding and Genetics, Justus-Liebig University Giessen, Giessen, Germany.,Department of Animal Science and Fisheries, Sari Agricultural Science and Natural Resources University, Sari, Iran
| | | | - Tong Yin
- Institute of Animal Breeding and Genetics, Justus-Liebig University Giessen, Giessen, Germany
| | - Ghodratollah Rahimi-Mianji
- Department of Animal Science and Fisheries, Sari Agricultural Science and Natural Resources University, Sari, Iran
| | - Ardeshir Nejati-Javaremi
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig University Giessen, Giessen, Germany
| |
Collapse
|
5
|
Krishna N, Vishwakarma S, Katara P. Identification and annotation of milk associated genes from milk somatic cells using expression and RNA-seq data. Bioinformation 2022; 18:703-709. [PMID: 37323558 PMCID: PMC10266364 DOI: 10.6026/97320630018703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 09/20/2023] Open
Abstract
It is of interest to identify and annotate milk associated genes using expression profiling and RNA-Seq data from milk somatic cells. RNA-Seq data was pre-processed and mapping was done to identify differentially expressed genes (DEG). The functional insights about the up and down regulated genes were gleaned using the protein-protein interaction Network in the STRING database followed by CytoHubba analysis in Cytoscope. Gene ontology, annotation and pathway enrichment was completed using ShinyGO, David tool and QTL analysis. These analysis shows that 21 genes are linked with the secretion of milk.
Collapse
Affiliation(s)
- Neelam Krishna
- Computational Omics Lab, Centre of Bioinformatics, University of Allahabad, Prayagraj - 211002, India
| | - Shraddha Vishwakarma
- Computational Omics Lab, Centre of Bioinformatics, University of Allahabad, Prayagraj - 211002, India
| | - Pramod Katara
- Computational Omics Lab, Centre of Bioinformatics, University of Allahabad, Prayagraj - 211002, India
| |
Collapse
|
6
|
Denoyelle L, de Villemereuil P, Boyer F, Khelifi M, Gaffet C, Alberto F, Benjelloun B, Pompanon F. Genetic Variations and Differential DNA Methylation to Face Contrasted Climates in Small Ruminants: An Analysis on Traditionally-Managed Sheep and Goats. Front Genet 2021; 12:745284. [PMID: 34650601 PMCID: PMC8508783 DOI: 10.3389/fgene.2021.745284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
The way in which living organisms mobilize a combination of long-term adaptive mechanisms and short-term phenotypic plasticity to face environmental variations is still largely unknown. In the context of climate change, understanding the genetic and epigenetic bases for adaptation and plasticity is a major stake for preserving genomic resources and the resilience capacity of livestock populations. We characterized both epigenetic and genetic variations by contrasting 22 sheep and 21 goats from both sides of a climate gradient, focusing on free-ranging populations from Morocco. We produced for each individual Whole-Genome Sequence at 12X coverage and MeDIP-Seq data, to identify regions under selection and those differentially methylated. For both species, the analysis of genetic differences (FST) along the genome between animals from localities with high vs. low temperature annual variations detected candidate genes under selection in relation to environmental perception (5 genes), immunity (4 genes), reproduction (8 genes) and production (11 genes). Moreover, we found for each species one differentially methylated gene, namely AGPTA4 in goat and SLIT3 in sheep, which were both related, among other functions, to milk production and muscle development. In both sheep and goats, the comparison between genomic regions impacted by genetic and epigenetic variations suggests that climatic variations impacted similar biological pathways but different genes.
Collapse
Affiliation(s)
- Laure Denoyelle
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France.,GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | - Pierre de Villemereuil
- Institut de Systématique, Évolution, Biodiversité (ISYEB), École Pratique des Hautes Études
- PSL, MNHN, CNRS, SU, UA, Paris, France
| | - Frédéric Boyer
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Meidhi Khelifi
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Clément Gaffet
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Florian Alberto
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Badr Benjelloun
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France.,Institut National de la Recherche Agronomique Maroc (INRA-Maroc), Centre Régional de Beni Mellal, Beni Mellal, Morocco
| | - François Pompanon
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| |
Collapse
|
7
|
Michailidou S, Gelasakis A, Banos G, Arsenos G, Argiriou A. Comparative Transcriptome Analysis of Milk Somatic Cells During Lactation Between Two Intensively Reared Dairy Sheep Breeds. Front Genet 2021; 12:700489. [PMID: 34349787 PMCID: PMC8326974 DOI: 10.3389/fgene.2021.700489] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022] Open
Abstract
In dairy sheep industry, milk production dictates the value of a ewe. Milk production is directly related to the morphology and physiology of the mammary gland; both being designated targets of breeding strategies. Although within a flock breeding parameters are mutual, large differences in milk production among individual ewes are usually observed. In this work, we tested two of the most productive dairy sheep breeds reared intensively in Greece, one local the Chios breed and one foreign the Lacaune breed. We used transcriptome sequencing to reveal molecular mechanisms that render the mammary gland highly productive or not. While highly expressed genes (caseins and major whey protein genes) were common among breeds, differences were observed in differentially expressed genes. ENSOARG00000008077, as a member of ribosomal protein 14 family, together with LPCAT2, CCR3, GPSM2, ZNF131, and ASIP were among the genes significantly differentiating mammary gland's productivity in high yielding ewes. Gene ontology terms were mainly linked to the inherent transcriptional activity of the mammary gland (GO:0005524, GO:0030552, GO:0016740, GO:0004842), lipid transfer activity (GO:0005319) and innate immunity (GO:0002376, GO:0075528, GO:0002520). In addition, clusters of genes affecting zinc and iron trafficking into mitochondria were highlighted for high yielding ewes (GO:0071294, GO:0010043). Our analyses provide insights into the molecular pathways involved in lactation between ewes of different performances. Results revealed management issues that should be addressed by breeders in order to move toward increased milk yields through selection of the desired phenotypes. Our results will also contribute toward the selection of the most resilient and productive ewes, thus, will strengthen the existing breeding systems against a spectrum of environmental threats.
Collapse
Affiliation(s)
- Sofia Michailidou
- Institute of Applied Biosciences, Center for Research and Technology Hellas, Thessaloniki, Greece
- Laboratory of Animal Husbandry, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios Gelasakis
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Athens, Greece
| | - Georgios Banos
- Laboratory of Animal Husbandry, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Scotland’s Rural College, Easter Bush, Edinburgh, United Kingdom
| | - George Arsenos
- Laboratory of Animal Husbandry, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anagnostis Argiriou
- Institute of Applied Biosciences, Center for Research and Technology Hellas, Thessaloniki, Greece
- Department of Food Science and Nutrition, University of the Aegean, Lemnos, Greece
| |
Collapse
|
8
|
Integrative analysis of miRNAs and mRNAs revealed regulation of lipid metabolism in dairy cattle. Funct Integr Genomics 2021; 21:393-404. [PMID: 33963462 DOI: 10.1007/s10142-021-00786-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
Lipid metabolism in bovine mammary epithelial cells has been the primary focus of the research of milk fat percentage of dairy cattle. Functional microRNAs can affect lipid metabolism by regulating the expression of candidate genes. The purpose of the study was to screen and identify differentially expressed miRNAs, candidate genes, and co-regulatory pathways related to the metabolism of milk fat. To achieve this aim, we used miRNA and transcriptome data from the mammary epithelial cells of dairy cattle with high (H, 4.85%) and low milk fat percentages (L, 3.41%) during mid-lactation. One hundred ninety differentially expressed genes and 33 differentially expressed miRNAs were significantly enriched in related regulatory networks, of which 27 candidate genes regulated by 18 differentially expressed miRNAs significantly enriched in pathways related to lipid metabolism (p < 0.05). Target relationships between PDE4D and bta-miR-148a, PEG10 and bta-miR-877, SOD3 and bta-miR-2382-5p, and ADAMTS1 and bta-miR-2425-5p were verified using luciferase reporter assays and quantitative RT-PCR. The detection of triglyceride production in BMECs showed that bta-miR-21-3p and bta-miR-148a promote triglyceride synthesis, whereas bta-miR-124a, bta-miR-877, bta-miR-2382-5p, and bta-miR-2425-5p inhibit triglyceride synthesis. The conjoint analysis could identify functional miRNAs and regulatory candidate genes involved in lipid metabolism within the co-expression networks of the dairy cattle mammary system, which contributes to the understanding of potential regulatory mechanisms of genetic element and gene signaling networks involved in milk fat metabolism.
Collapse
|
9
|
Gutierrez-Reinoso MA, Aponte PM, Garcia-Herreros M. Genomic Analysis, Progress and Future Perspectives in Dairy Cattle Selection: A Review. Animals (Basel) 2021; 11:599. [PMID: 33668747 PMCID: PMC7996307 DOI: 10.3390/ani11030599] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
Genomics comprises a set of current and valuable technologies implemented as selection tools in dairy cattle commercial breeding programs. The intensive progeny testing for production and reproductive traits based on genomic breeding values (GEBVs) has been crucial to increasing dairy cattle productivity. The knowledge of key genes and haplotypes, including their regulation mechanisms, as markers for productivity traits, may improve the strategies on the present and future for dairy cattle selection. Genome-wide association studies (GWAS) such as quantitative trait loci (QTL), single nucleotide polymorphisms (SNPs), or single-step genomic best linear unbiased prediction (ssGBLUP) methods have already been included in global dairy programs for the estimation of marker-assisted selection-derived effects. The increase in genetic progress based on genomic predicting accuracy has also contributed to the understanding of genetic effects in dairy cattle offspring. However, the crossing within inbred-lines critically increased homozygosis with accumulated negative effects of inbreeding like a decline in reproductive performance. Thus, inaccurate-biased estimations based on empirical-conventional models of dairy production systems face an increased risk of providing suboptimal results derived from errors in the selection of candidates of high genetic merit-based just on low-heritability phenotypic traits. This extends the generation intervals and increases costs due to the significant reduction of genetic gains. The remarkable progress of genomic prediction increases the accurate selection of superior candidates. The scope of the present review is to summarize and discuss the advances and challenges of genomic tools for dairy cattle selection for optimizing breeding programs and controlling negative inbreeding depression effects on productivity and consequently, achieving economic-effective advances in food production efficiency. Particular attention is given to the potential genomic selection-derived results to facilitate precision management on modern dairy farms, including an overview of novel genome editing methodologies as perspectives toward the future.
Collapse
Affiliation(s)
- Miguel A. Gutierrez-Reinoso
- Facultad de Ciencias Agropecuarias y Recursos Naturales, Carrera de Medicina Veterinaria, Universidad Técnica de Cotopaxi (UTC), Latacunga 05-0150, Ecuador
- Laboratorio de Biotecnología Animal, Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción (UdeC), Chillán 3780000, Chile
| | - Pedro M. Aponte
- Colegio de Ciencias Biológicas y Ambientales (COCIBA), Universidad San Francisco de Quito (USFQ), Quito 170157, Ecuador
- Campus Cumbayá, Instituto de Investigaciones en Biomedicina “One-health”, Universidad San Francisco de Quito (USFQ), Quito 170157, Ecuador
| | - Manuel Garcia-Herreros
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV), 2005-048 Santarém, Portugal
| |
Collapse
|
10
|
Dong W, Yang J, Zhang Y, Liu S, Ning C, Ding X, Wang W, Zhang Y, Zhang Q, Jiang L. Integrative analysis of genome-wide DNA methylation and gene expression profiles reveals important epigenetic genes related to milk production traits in dairy cattle. J Anim Breed Genet 2021; 138:562-573. [PMID: 33620112 DOI: 10.1111/jbg.12530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/17/2020] [Accepted: 12/04/2020] [Indexed: 02/03/2023]
Abstract
Epigenetic modification plays a critical role in establishing and maintaining cell differentiation, embryo development, tumorigenesis and many complex diseases. However, little is known about the epigenetic regulatory mechanisms for milk production in dairy cattle. Here, we conducted an epigenome-wide study, together with gene expression profiles to identify important epigenetic candidate genes related to the milk production traits in dairy cattle. Whole-genome bisulphite sequencing and RNA sequencing were employed to detect differentially methylated genes (DMG) and differentially expressed genes (DEG) in blood samples in dry period and lactation period between two groups of cows with extremely high and low milk production performance. A total of 10,877 and 6,617 differentially methylated regions were identified between the two groups in the two periods, which corresponded to 3,601 and 2,802 DMGs, respectively. Furthermore, 156 DEGs overlap with DMGs in comparison of the two groups, and 131 DEGs overlap with DMGs in comparison of the two periods. By integrating methylome, transcriptome and GWAS data, some potential candidate genes for milk production traits in dairy cattle were suggested, such as DOCK1, PTK2 and PIK3R1. Our studies may contribute to a better understanding of epigenetic modification on milk production traits of dairy cattle.
Collapse
Affiliation(s)
- Wanting Dong
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jie Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yu Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuli Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chao Ning
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Xiangdong Ding
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wenwen Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Yi Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.,College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Li Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Farhadian M, Rafat SA, Panahi B, Mayack C. Weighted gene co-expression network analysis identifies modules and functionally enriched pathways in the lactation process. Sci Rep 2021; 11:2367. [PMID: 33504890 PMCID: PMC7840764 DOI: 10.1038/s41598-021-81888-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 01/13/2021] [Indexed: 01/02/2023] Open
Abstract
The exponential growth in knowledge has resulted in a better understanding of the lactation process in a wide variety of animals. However, the underlying genetic mechanisms are not yet clearly known. In order to identify the mechanisms involved in the lactation process, various mehods, including meta-analysis, weighted gene co-express network analysis (WGCNA), hub genes identification, gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment at before peak (BP), peak (P), and after peak (AP) stages of the lactation processes have been employed. A total of 104, 85, and 26 differentially expressed genes were identified based on PB vs. P, BP vs. AP, and P vs. AP comparisons, respectively. GO and KEGG pathway enrichment analysis revealed that DEGs were significantly enriched in the "ubiquitin-dependent ERAD" and the "chaperone cofactor-dependent protein refolding" in BP vs. P and P vs. P, respectively. WGCNA identified five significant functional modules related to the lactation process. Moreover, GJA1, AP2A2, and NPAS3 were defined as hub genes in the identified modules, highlighting the importance of their regulatory impacts on the lactation process. The findings of this study provide new insights into the complex regulatory networks of the lactation process at three distinct stages, while suggesting several candidate genes that may be useful for future animal breeding programs. Furthermore, this study supports the notion that in combination with a meta-analysis, the WGCNA represents an opportunity to achieve a higher resolution analysis that can better predict the most important functional genes that might provide a more robust bio-signature for phenotypic traits, thus providing more suitable biomarker candidates for future studies.
Collapse
Affiliation(s)
- Mohammad Farhadian
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Seyed Abbas Rafat
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Bahman Panahi
- Department of Genomics, Branch for Northwest & West Region, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Christopher Mayack
- Molecular Biology, Genetics, and Bioengineering, Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, 34956, Turkey
| |
Collapse
|
12
|
Dorji J, MacLeod IM, Chamberlain AJ, Vander Jagt CJ, Ho PN, Khansefid M, Mason BA, Prowse-Wilkins CP, Marett LC, Wales WJ, Cocks BG, Pryce JE, Daetwyler HD. Mitochondrial protein gene expression and the oxidative phosphorylation pathway associated with feed efficiency and energy balance in dairy cattle. J Dairy Sci 2020; 104:575-587. [PMID: 33162069 DOI: 10.3168/jds.2020-18503] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
Feed efficiency and energy balance are important traits underpinning profitability and environmental sustainability in animal production. They are complex traits, and our understanding of their underlying biology is currently limited. One measure of feed efficiency is residual feed intake (RFI), which is the difference between actual and predicted intake. Variation in RFI among individuals is attributable to the metabolic efficiency of energy utilization. High RFI (H_RFI) animals require more energy per unit of weight gain or milk produced compared with low RFI (L_RFI) animals. Energy balance (EB) is a closely related trait calculated very similarly to RFI. Cellular energy metabolism in mitochondria involves mitochondrial protein (MiP) encoded by both nuclear (NuMiP) and mitochondrial (MtMiP) genomes. We hypothesized that MiP genes are differentially expressed (DE) between H_RFI and L_RFI animal groups and similarly between negative and positive EB groups. Our study aimed to characterize MiP gene expression in white blood cells of H_RFI and L_RFI cows using RNA sequencing to identify genes and biological pathways associated with feed efficiency in dairy cattle. We used the top and bottom 14 cows ranked for RFI and EB out of 109 animals as H_RFI and L_RFI, and positive and negative EB groups, respectively. The gene expression counts across all nuclear and mitochondrial genes for animals in each group were used for differential gene expression analyses, weighted gene correlation network analysis, functional enrichment, and identification of hub genes. Out of 244 DE genes between RFI groups, 38 were MiP genes. The DE genes were enriched for the oxidative phosphorylation (OXPHOS) and ribosome pathways. The DE MiP genes were underexpressed in L_RFI (and negative EB) compared with the H_RFI (and positive EB) groups, suggestive of reduced mitochondrial activity in the L_RFI group. None of the MtMiP genes were among the DE MiP genes between the groups, which suggests a non-rate limiting role of MtMiP genes in feed efficiency and warrants further investigation. The role of MiP, particularly the NuMiP and OXPHOS pathways in RFI, was also supported by our gene correlation network analysis and the hub gene identification. We validated the findings in an independent data set. Overall, our study suggested that differences in feed efficiency in dairy cows may be linked to differences in cellular energy demand. This study broadens our knowledge of the biology of feed efficiency in dairy cattle.
Collapse
Affiliation(s)
- Jigme Dorji
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia, 3083; Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia, 3083.
| | - Iona M MacLeod
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia, 3083
| | - Amanda J Chamberlain
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia, 3083
| | - Christy J Vander Jagt
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia, 3083
| | - Phuong N Ho
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia, 3083
| | - Majid Khansefid
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia, 3083
| | - Brett A Mason
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia, 3083
| | - Claire P Prowse-Wilkins
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia, 3083; Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, Australia, 3010
| | - Leah C Marett
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, Australia, 3010; Agriculture Victoria, Ellinbank Dairy Centre, Ellinbank, Victoria, Australia, 3821
| | - William J Wales
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, Australia, 3010; Agriculture Victoria, Ellinbank Dairy Centre, Ellinbank, Victoria, Australia, 3821
| | - Benjamin G Cocks
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia, 3083; Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia, 3083
| | - Jennie E Pryce
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia, 3083; Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia, 3083
| | - Hans D Daetwyler
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia, 3083; Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia, 3083
| |
Collapse
|
13
|
Chen W, Lv X, Wang Y, Zhang X, Wang S, Hussain Z, Chen L, Su R, Sun W. Transcriptional Profiles of Long Non-coding RNA and mRNA in Sheep Mammary Gland During Lactation Period. Front Genet 2020; 11:946. [PMID: 33101361 PMCID: PMC7546800 DOI: 10.3389/fgene.2020.00946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Sheep milk and related products have been growing in popularity around the world in recent years. However, the sheep milk industry is limited by low milk yield, and the molecular regulators of ovine lactation remain largely unknown. To investigate the transcriptomic basis of sheep lactation, RNA-Sequencing was used to explore the expression profiles of lncRNA and mRNA of the mammary gland in Hu sheep at three key time points during the lactation stage: 5 days before the expected date of parturition perinatal period (PP), 6 days after parturition early lactation (EL), and 25 days after parturition peak lactation (PL). A total of 1111, 688, and 54 differentially expressed (DE) lncRNAs as well as 1360, 660, and 17 DE mRNAs were detected in the EL vs PP, PL vs PP, and PL vs EL comparisons, respectively. Several prominent mRNAs (e.g., CSN1S1, CSN1S2, PAEP, CSN2, CSN3, and COL3A1) and lncRNAs (e.g., LNC_018483, LNC_005678, LNC_012936, and LNC_004856) were identified. Functional enrichment analysis revealed that several DE mRNAs and target genes of DE lncRNAs were involved in lactation-related pathways, such as MAPK, PPAR, and ECM-receptor interaction. This study enhances our understanding of how transcriptomic profiles change during the lactation period and pave the way for future studies examining sheep lactation.
Collapse
Affiliation(s)
- Weihao Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiaoyang Lv
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yue Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xinjun Zhang
- Animal Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Shanhe Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zahid Hussain
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ling Chen
- Animal Science and Veterinary Medicine Bureau of Suzhou City, Suzhou, China
| | - Rui Su
- Suzhou Taihu Dongshang Sheep Industry Development Co., Ltd., Suzhou, China
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.,College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
14
|
Milk somatic cell derived transcriptome analysis identifies regulatory genes and pathways during lactation in Indian Sahiwal cattle (Bos indicus). Mol Biol Rep 2020; 47:7029-7038. [PMID: 32880836 DOI: 10.1007/s11033-020-05764-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND The present study is an effort to understand the genomic drivers of lactation in Sahiwal (Bos indicus), the best milch cattle breed of the tropics. METHODS RNA sequencing of four animals from early, mid and late lactation stages was performed using milk somatic cells as source of RNA. RESULTS The genes encoding the milk casein and whey proteins showed highest expression in early and mid lactation, with a declining trend towards the late stage. The enhanced expression of PLIN2, FABP5 and FABP3 genes in mid lactation suggests enrichment of the PPARα pathway which is linked to fatty acid metabolism. A gradual decline in the percentage of genes involved in metabolism of proteins, mRNA and insulin synthesis from early to late lactation reflected transition from lactogenesis to involution. Major biological pathways maintained throughout lactation were adaptive immune system, FGF signaling, EGFR signaling, activated TLR4 signaling, NFkB and MAP kinases activation mediated by TLR4 signaling repertoire. Differential expression analysis revealed 547, 1010 and 1313 differentially expressed genes (p < 0.05) between early-late, early-mid and mid-late stages, respectively. The topmost regulatory genes identified by network analysis from the differentially expressed genes, were involved in Chemokine receptor, GPCR and EGFR1 pathways. CONCLUSION The genes and pathways delineated in this study have regulatory implications in cell morphogenesis, lipid droplet formation and protein synthesis in the course of lactation. The study provides an insight into the expression profile of genes influencing milk properties and lactation in Sahiwal cattle.
Collapse
|
15
|
Farhadian M, Rafat SA, Panahi B, Ebrahimie E. Transcriptome signature of two lactation stages in Ghezel sheep identifies using RNA-Sequencing. Anim Biotechnol 2020; 33:223-233. [PMID: 32633600 DOI: 10.1080/10495398.2020.1784185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The expression of genes and their regulation during lactation in Ghezel sheep breed remains less understood. To explore the underlying molecular mechanism of the lactation process in the mammary gland, transcriptome profiles of Iranian fat-tailed Ghezel sheep breed milk at two stages, before (BF) and after peak (AF) stages of lactation were investigated. Functional impacts of differentially expressed genes (DEGs) between BF and AF stages were surveyed using Gene Ontology (GO) and Protein-Protein Interaction (PPI) network analysis. Totally, 75 DEGs were identified between BF and AF stages of lactation. The RNA-Seq results were validated by Q-RT-PCR. Gene ontology of DEGs mainly enriched in metabolic process and oxidative phosphorylation. PPI network analysis also highlighted the contribution of peroxisome proliferator-activated receptors (PPAR) signaling, oxidative phosphorylation and metabolic pathways in the lactation process. Intriguingly, the genes involved in fat metabolism dominantly down-regulated at AF stage. Our results provide new insight into transcriptional changes and add to growing body of knowledge on the lactation process in fat-tailed sheep breeds.
Collapse
Affiliation(s)
- Mohammad Farhadian
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Seyed Aabbas Rafat
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Bahman Panahi
- Department of Genomics, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Esmaeil Ebrahimie
- Genomics Research Platform, School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia.,School of Animal and Veterinary Sciences, The University of Adelaide, South Australia, Australia
| |
Collapse
|
16
|
Khan MZ, Khan A, Xiao J, Dou J, Liu L, Yu Y. Overview of Folic Acid Supplementation Alone or in Combination with Vitamin B12 in Dairy Cattle during Periparturient Period. Metabolites 2020; 10:metabo10060263. [PMID: 32630405 PMCID: PMC7344520 DOI: 10.3390/metabo10060263] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 11/19/2022] Open
Abstract
The periparturient period is the period from three weeks before calving to three weeks post-calving. This period is important in terms of health, productivity and profitability, and is fundamental to successful lactation. During this period, the animal experiences stress because of hormonal changes due to pregnancy and the significant rise in milk production. In addition, a negative energy balance usually occurs, because the demand for nutrients to sustain milk production increases by more than the nutrient supply during the periparturient period. The immunity of dairy cattle is suppressed around parturition, which increases their susceptibility to infections. Special care regarding nutrition can reduce the risks of metabolism and immunity depression, which dairy cattle face during the periparturient span. Folic acid is relevant in this regard because of its critical role in the metabolism to maintain lactational performance and to improve health. Being a donor of one-carbon units, folic acid has a vital role in DNA and RNA biosynthesis. Generally, the folic acid requirements of dairy cattle can be met by the microbial synthesis in the rumen; however, in special cases, such as during the periparturient period, the requirement for this vitamin strictly increases. Vitamin B12 also has a critical role in the metabolism as a coenzyme of the enzyme methionine synthase for the transfer of a methyl group from folic acid to homocysteine for the regeneration of methionine. In the current review, we highlight the issues facing periparturient dairy cattle, and relevant knowledge and practices, and point out future research directions for utilization of the associated vitamins in ruminants, especially during the periparturient period.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (A.K.); (J.D.); (L.L.)
| | - Adnan Khan
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (A.K.); (J.D.); (L.L.)
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research, Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Jinhuan Dou
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (A.K.); (J.D.); (L.L.)
| | - Lei Liu
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (A.K.); (J.D.); (L.L.)
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (A.K.); (J.D.); (L.L.)
- Correspondence: ; Tel.: +86-10-627324611
| |
Collapse
|
17
|
Use of gene expression profile to identify potentially relevant transcripts to myofibrillar fragmentation index trait. Funct Integr Genomics 2020; 20:609-619. [PMID: 32285226 DOI: 10.1007/s10142-020-00738-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 03/14/2020] [Accepted: 03/17/2020] [Indexed: 12/22/2022]
Abstract
The myofibrillar fragmentation index (MFI) is an indicative trait for meat tenderness. Longissimus thoracis muscle samples from the 20 most extreme bulls (out of 80 bulls set) for MFI (high (n = 10) and low (n = 10) groups) trait were used to perform transcriptomic analysis, using RNA Sequencing (RNA-Seq). An average of 24.616 genes was expressed in the Nellore muscle transcriptome analysis. A total of 96 genes were differentially expressed (p value ≤ 0.001) between the two groups of divergent bulls for MFI. The HEBP2 and BDH1 genes were overexpressed in animals with high MFI. The MYBPH and MYL6, myosin encoders, were identified. The differentially expressed genes were related to increase mitochondria efficiency, especially in cells under oxidative stress conditions, and these also were related to zinc and calcium binding, membrane transport, and muscle constituent proteins, such as actin and myosin. Most of those genes were involved in metabolic pathways of oxidation-reduction, transport of lactate in the plasma membrane, and muscle contraction. This is the first study applying MFI phenotypes in transcriptomic studies to identify and understand differentially expressed genes for beef tenderness. These results suggest that differences detected in gene expression between high and low MFI animals are related to reactive mechanisms and structural components of oxidative fibers under the condition of cellular stress. Some genes may be selected as positional candidate genes to beef tenderness, MYL6, MYBPH, TRIM63, TRIM55, TRIOBP, and CHRNG genes. The use of MFI phenotypes could enhance results of meat tenderness studies.
Collapse
|
18
|
Guan D, Landi V, Luigi-Sierra MG, Delgado JV, Such X, Castelló A, Cabrera B, Mármol-Sánchez E, Fernández-Alvarez J, de la Torre Casañas JLR, Martínez A, Jordana J, Amills M. Analyzing the genomic and transcriptomic architecture of milk traits in Murciano-Granadina goats. J Anim Sci Biotechnol 2020; 11:35. [PMID: 32175082 PMCID: PMC7065321 DOI: 10.1186/s40104-020-00435-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/17/2020] [Indexed: 12/19/2022] Open
Abstract
Background In this study, we aimed to investigate the molecular basis of lactation as well as to identify the genetic factors that influence milk yield and composition in goats. To achieve these two goals, we have analyzed how the mRNA profile of the mammary gland changes in seven Murciano-Granadina goats at each of three different time points, i.e. 78 d (T1, early lactation), 216 d (T2, late lactation) and 285 d (T3, dry period) after parturition. Moreover, we have performed a genome-wide association study (GWAS) for seven dairy traits recorded in the 1st lactation of 822 Murciano-Granadina goats. Results The expression profiles of the mammary gland in the early (T1) and late (T2) lactation were quite similar (42 differentially expressed genes), while strong transcriptomic differences (more than one thousand differentially expressed genes) were observed between the lactating (T1/T2) and non-lactating (T3) mammary glands. A large number of differentially expressed genes were involved in pathways related with the biosynthesis of amino acids, cholesterol, triglycerides and steroids as well as with glycerophospholipid metabolism, adipocytokine signaling, lipid binding, regulation of ion transmembrane transport, calcium ion binding, metalloendopeptidase activity and complement and coagulation cascades. With regard to the second goal of the study, the performance of the GWAS allowed us to detect 24 quantitative trait loci (QTLs), including three genome-wide significant associations: QTL1 (chromosome 2, 130.72-131.01 Mb) for lactose percentage, QTL6 (chromosome 6, 78.90-93.48 Mb) for protein percentage and QTL17 (chromosome 17, 11.20 Mb) for both protein and dry matter percentages. Interestingly, QTL6 shows positional coincidence with the casein genes, which encode 80% of milk proteins. Conclusions The abrogation of lactation involves dramatic changes in the expression of genes participating in a broad array of physiological processes such as protein, lipid and carbohydrate metabolism, calcium homeostasis, cell death and tissue remodeling, as well as immunity. We also conclude that genetic variation at the casein genes has a major impact on the milk protein content of Murciano-Granadina goats.
Collapse
Affiliation(s)
- Dailu Guan
- 1Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Vincenzo Landi
- 2Departamento de Genética, Universidad de Córdoba, 14071 Córdoba, Spain
| | - María Gracia Luigi-Sierra
- 1Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | - Xavier Such
- 3Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Anna Castelló
- 1Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,3Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Betlem Cabrera
- 1Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,3Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Emilio Mármol-Sánchez
- 1Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Javier Fernández-Alvarez
- Asociación Nacional de Criadores de Caprino de Raza Murciano-Granadina (CAPRIGRAN), 18340 Granada, Spain
| | | | - Amparo Martínez
- 2Departamento de Genética, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Jordi Jordana
- 3Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Marcel Amills
- 1Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,3Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
19
|
Khan MZ, Liu L, Zhang Z, Khan A, Wang D, Mi S, Usman T, Liu G, Guo G, Li X, Wang Y, Yu Y. Folic acid supplementation regulates milk production variables, metabolic associated genes and pathways in perinatal Holsteins. J Anim Physiol Anim Nutr (Berl) 2020; 104:483-492. [PMID: 31994802 DOI: 10.1111/jpn.13313] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/14/2019] [Accepted: 12/16/2019] [Indexed: 02/01/2023]
Abstract
Perinatal period is the critical time in dairy cattle due to negative energy balance and high milk production stress. Being a key role in biosynthesis and methylation cycle, folic acid is considered essential for lactational and metabolic performance in dairy cattle. Thus, the current study was designed to evaluate the effect of folic acid supplementation on milk production phenotypic traits in periparturient cows. Transcriptomic screening was performed for milk production and metabolism-associated differentially expressed genes. The 123 cows having similar parity, weight and expected date of calving were randomly selected and divided into three groups; A (n = 41, folic acid 240 mg/500 kg cow/day), B (n = 40, FA 120 mg/500 kg cow/day) and C (Control, n = 42). Folic acid was supplemented for 21 days (14 days pre- and seven days post-calving), and three samples of blood lymphocytes were taken on day seven post-calving from each folic acid-treated and control group. In addition, the milk samples for each folic acid-treated group have been collected at 2nd, 3rd and 4th month of lactation. The increase in average milk yield noticed in group B were significantly (p-value < .05) higher than C and A. However, the data showed no noteworthy differences for milk fat and milk protein among the three groups. The transcriptomic analysis revealed that folic acid treatment regulated many key metabolic-related genes (DGAT2, ALOX5, LAP3, GPAT3, GGH, ALDOA, TKT) and pathways (glycolysis, folate biosynthesis, glutathione metabolism, etc.) in periparturient dairy cattle. It was concluded from the above findings that 120 mg/500 kg of folic acid quantity could be considered as a standard during the periparturient period to enhance the milk production performance of dairy cows. The transcriptomic profile revealed several metabolic and milk production-associated genes which could be a useful addition to the marker selection for the enhancement of metabolism and milk production of periparturient dairy cows.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lei Liu
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhichao Zhang
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Adnan Khan
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Di Wang
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Siyuan Mi
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tahir Usman
- College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University, Mardan, Pakistan
| | - Gang Liu
- Hebei Shoulon Modern Agricultural Science and Technology Co. Ltd, Dingzhou, China
| | - Gang Guo
- Hebei Shoulon Modern Agricultural Science and Technology Co. Ltd, Dingzhou, China
| | - Xizhi Li
- Capital Agribusiness Group, Beijing Sanyuan Breeding Technology Co. Ltd, Beijing, China
| | - Yachun Wang
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
20
|
Schubach KM, Cooke RF, Brandão AP, Schumaher TF, Pohler KG, Bohnert DW, Marques RS. Impacts of postweaning growth rate of replacement beef heifers on their reproductive development and productivity as primiparous cows1. J Anim Sci 2019; 97:4171-4181. [PMID: 31410478 PMCID: PMC6776286 DOI: 10.1093/jas/skz262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/03/2019] [Indexed: 02/07/2023] Open
Abstract
This experiment evaluated the effects of postweaning body weight (BW) gain of replacement beef heifers on their reproductive development and productivity as primiparous cows. Seventy-two Angus × Hereford heifers were ranked on day -6 of experiment (17 d after weaning) by age and BW (218 ± 1.6 d of age and 234 ± 3 kg of BW), and assigned to receive 1 of 3 supplementation programs from days 0 to 182: 1) no supplementation to maintain limited BW gain (LGAIN), 2) supplementation to promote moderate BW gain (MGAIN), or 3) supplementation to promote elevated BW gain (HGAIN). Heifers were maintained in 2 pastures (36 heifers/pasture, 12 heifers/treatment in each pasture) with free-choice alfalfa-grass hay, and supplements were offered individually 6 d per week. Heifer shrunk BW was recorded on days -6 and 183 for average daily gain (ADG) calculation. Blood samples were collected for puberty evaluation via plasma progesterone weekly from days 0 to 182. On day 183, heifers were combined into a single group and received the same nutritional management until the end of the experimental period (day 718). From days 183 to 253, heifers were assigned to a fixed-time artificial insemination program combined with natural service. Average daily gain from days 0 to 182 was greater (P < 0.01) in HGAIN vs. MGAIN and LGAIN (0.78, 0.60, and 0.37 kg/d, respectively; SEM = 0.02), and greater (P < 0.01) in MGAIN vs. LGAIN heifers. Puberty attainment by the beginning of the breeding season was also greater in HGAIN vs. MGAIN and LGAIN (87.5%, 62.5%, and 56.5%, respectively; SEM = 7.1) but similar (P = 0.68) between MGAIN vs. LGAIN heifers. A treatment × day interaction was detected (P < 0.01) for calving rate, as HGAIN heifers calved earlier compared with MGAIN and LGAIN heifers. Ten heifers per treatment were assessed for milk production via weigh-suckle-weigh at 56.8 ± 1.5 d postpartum, followed by milk sample collection 24 h later. No treatment differences were detected (P ≥ 0.16) for milk yield and composition. However, mRNA expression of GLUT1 in milk fat globules was less (P ≤ 0.02) in LGAIN vs. MGAIN and HGAIN heifers, and expression of GLUT8 mRNA was also less (P = 0.04) in LGAIN vs. HGAIN heifers. No treatment differences were detected (P ≥ 0.44) for offspring weaning BW. Collectively, results from this experiment indicate that HGAIN hastened the reproductive development of replacement heifers, without negatively affecting their milk productivity and offspring weaning weight as primiparous cows.
Collapse
Affiliation(s)
- Kelsey M Schubach
- Department of Animal Science – Texas A&M University, College Station, TX
| | - Reinaldo F Cooke
- Department of Animal Science – Texas A&M University, College Station, TX
| | - Alice P Brandão
- Department of Animal Science – Texas A&M University, College Station, TX
| | - Thiago F Schumaher
- São Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Botucatu, Brazil
| | - Ky G Pohler
- Department of Animal Science – Texas A&M University, College Station, TX
| | - David W Bohnert
- Eastern Oregon Agricultural Research Center – Oregon State University, Burns, OR
| | - Rodrigo S Marques
- Eastern Oregon Agricultural Research Center – Oregon State University, Burns, OR
| |
Collapse
|
21
|
Refoyo-Martínez A, da Fonseca RR, Halldórsdóttir K, Árnason E, Mailund T, Racimo F. Identifying loci under positive selection in complex population histories. Genome Res 2019; 29:1506-1520. [PMID: 31362936 PMCID: PMC6724678 DOI: 10.1101/gr.246777.118] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 07/23/2019] [Indexed: 12/24/2022]
Abstract
Detailed modeling of a species' history is of prime importance for understanding how natural selection operates over time. Most methods designed to detect positive selection along sequenced genomes, however, use simplified representations of past histories as null models of genetic drift. Here, we present the first method that can detect signatures of strong local adaptation across the genome using arbitrarily complex admixture graphs, which are typically used to describe the history of past divergence and admixture events among any number of populations. The method-called graph-aware retrieval of selective sweeps (GRoSS)-has good power to detect loci in the genome with strong evidence for past selective sweeps and can also identify which branch of the graph was most affected by the sweep. As evidence of its utility, we apply the method to bovine, codfish, and human population genomic data containing panels of multiple populations related in complex ways. We find new candidate genes for important adaptive functions, including immunity and metabolism in understudied human populations, as well as muscle mass, milk production, and tameness in specific bovine breeds. We are also able to pinpoint the emergence of large regions of differentiation owing to inversions in the history of Atlantic codfish.
Collapse
Affiliation(s)
- Alba Refoyo-Martínez
- Lundbeck GeoGenetics Centre, The Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 1350, Denmark
| | - Rute R da Fonseca
- Centre for Macroecology, Evolution and Climate, The Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copehnagen 2100, Denmark
| | - Katrín Halldórsdóttir
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavík 107, Iceland
| | - Einar Árnason
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavík 107, Iceland
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Thomas Mailund
- Bioinformatics Research Centre, Aarhus University, Aarhus 8000, Denmark
| | - Fernando Racimo
- Lundbeck GeoGenetics Centre, The Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 1350, Denmark
| |
Collapse
|
22
|
Vijayakumar P, Bakyaraj S, Singaravadivelan A, Vasanthakumar T, Suresh R. Meta-analysis of mammary RNA seq datasets reveals the molecular understanding of bovine lactation biology. Genome 2019; 62:489-501. [PMID: 31071269 DOI: 10.1139/gen-2018-0144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A better understanding of the biology of lactation, both in terms of gene expression and the identification of candidate genes for the production of milk and its components, is made possible by recent advances in RNA seq technology. The purpose of this study was to understand the synthesis of milk components and the molecular pathways involved, as well as to identify candidate genes for milk production traits within whole mammary transcriptomic datasets. We performed a meta-analysis of publically available RNA seq transcriptome datasets of mammary tissue/milk somatic cells. In total, 11 562 genes were commonly identified from all RNA seq based mammary gland transcriptomes. Functional annotation of commonly expressed genes revealed the molecular processes that contribute to the synthesis of fats, proteins, and lactose in mammary secretory cells and the molecular pathways responsible for milk synthesis. In addition, we identified several candidate genes responsible for milk production traits and constructed a gene regulatory network for RNA seq data. In conclusion, this study provides a basic understanding of the lactation biology of cows at the gene expression level.
Collapse
Affiliation(s)
- Periyasamy Vijayakumar
- a Veterinary College and Research Institute, TANUVAS, Orathanadu-614 625, Thanjavur, Tamil Nadu, India
| | - Sanniyasi Bakyaraj
- b College of Poultry Production and Management, TANUVAS, Hosur-635 110, Krishnagiri, Tamil Nadu, India
| | | | - Thangavelu Vasanthakumar
- a Veterinary College and Research Institute, TANUVAS, Orathanadu-614 625, Thanjavur, Tamil Nadu, India
| | - Ramalingam Suresh
- a Veterinary College and Research Institute, TANUVAS, Orathanadu-614 625, Thanjavur, Tamil Nadu, India
| |
Collapse
|
23
|
Sun HZ, Plastow G, Guan LL. Invited review: Advances and challenges in application of feedomics to improve dairy cow production and health. J Dairy Sci 2019; 102:5853-5870. [PMID: 31030919 DOI: 10.3168/jds.2018-16126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 03/02/2019] [Indexed: 12/22/2022]
Abstract
Dairy cattle science has evolved greatly over the past century, contributing significantly to the improvement in milk production achieved today. However, a new approach is needed to meet the increasing demand for milk production and address the increased concerns about animal health and welfare. It is now easy to collect and access large and complex data sets consisting of molecular, physiological, and metabolic data as well as animal-level data (such as behavior). This provides new opportunities to better understand the mechanisms regulating cow performance. The recently proposed concept of feedomics could help achieve this goal by increasing our understanding of interactions between the different components or levels and their impact on animal production. Feedomics is an emerging field that integrates a range of omics technologies (e.g., genomics, epigenomics, transcriptomics, proteomics, metabolomics, metagenomics, and metatranscriptomics) to provide these insights. In this way, we can identify the best strategies to improve overall animal productivity, product quality, welfare, and health. This approach can help research communities elucidate the complex interactions among nutrition, environment, management, animal genetics, metabolism, physiology, and the symbiotic microbiota. In this review, we summarize the outcomes of the most recent research on omics in dairy cows and highlight how an integrated feedomics approach could be applied in the future to improve dairy cow production and health. Specifically, we focus on 2 topics: (1) improving milk yield and milk quality, and (2) understanding metabolic physiology in transition dairy cows, which are 2 important challenges faced by the dairy industry worldwide.
Collapse
Affiliation(s)
- H Z Sun
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada, T6G 2P5
| | - G Plastow
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada, T6G 2P5
| | - L L Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada, T6G 2P5.
| |
Collapse
|
24
|
Arora R, Sharma A, Sharma U, Girdhar Y, Kaur M, Kapoor P, Ahlawat S, Vijh RK. Buffalo milk transcriptome: A comparative analysis of early, mid and late lactation. Sci Rep 2019; 9:5993. [PMID: 30979954 PMCID: PMC6461664 DOI: 10.1038/s41598-019-42513-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/02/2019] [Indexed: 01/01/2023] Open
Abstract
The expression of genes and their regulation during lactation in buffaloes remains less understood. To understand the interplay of various genes and pathways, the milk transcriptome from three lactation stages of Murrah buffalo was analyzed by RNA sequencing. The filtered reads were mapped to the Bubalus bubalis as well as Bos taurus reference assemblies. The average mapping rate to water buffalo and Btau 4.6 reference sequence, was 75.5% and 75.7% respectively. Highly expressed genes (RPKM > 3000), throughout lactation included CSN2, CSN1S1, CSN3, LALBA, SPP1 and TPT1. A total of 12833 transcripts were common across all the stages, while 271, 205 and 418 were unique to early, mid and late lactation respectively. Majority of the genes throughout lactation were linked to biological functions like protein metabolism, transport and immune response. A discernible shift from metabolism in early stage to metabolism and immune response in mid stage, and an increase in immune response functions in late lactation was observed. The results provide information of candidate genes and pathways involved in the different stages of lactation in buffalo. The study also identified 14 differentially expressed and highly connected genes across the three lactation stages, which can be used as candidates for future research.
Collapse
Affiliation(s)
- Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India.
| | - Anju Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| | - Upasna Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| | - Yashila Girdhar
- ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| | - Mandeep Kaur
- ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| | - Prerna Kapoor
- ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| | - Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| | - Ramesh Kumar Vijh
- ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| |
Collapse
|
25
|
Pareek CS, Sachajko M, Jaskowski JM, Herudzinska M, Skowronski M, Domagalski K, Szczepanek J, Czarnik U, Sobiech P, Wysocka D, Pierzchala M, Polawska E, Stepanow K, Ogłuszka M, Juszczuk-Kubiak E, Feng Y, Kumar D. Comparative Analysis of the Liver Transcriptome among Cattle Breeds Using RNA-seq. Vet Sci 2019; 6:vetsci6020036. [PMID: 30934933 PMCID: PMC6631511 DOI: 10.3390/vetsci6020036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/16/2019] [Accepted: 03/26/2019] [Indexed: 12/26/2022] Open
Abstract
Global gene expression in liver transcriptome varies among cattle breeds. The present investigation was aimed to identify the differentially expressed genes (DEGs), metabolic gene networks and metabolic pathways in bovine liver transcriptome of young bulls. In this study, we comparatively analyzed the bovine liver transcriptome of dairy (Polish Holstein Friesian (HF); n = 6), beef (Hereford; n = 6), and dual purpose (Polish-Red; n = 6) cattle breeds. This study identified 895, 338, and 571 significant (p < 0.01) differentially expressed (DE) gene-transcripts represented as 745, 265, and 498 hepatic DE genes through the Polish-Red versus Hereford, Polish-HF versus Hereford, and Polish-HF versus Polish-Red breeds comparisons, respectively. By combining all breeds comparisons, 75 hepatic DE genes (p < 0.01) were identified as commonly shared among all the three breed comparisons; 70, 160, and 38 hepatic DE genes were commonly shared between the following comparisons: (i) Polish-Red versus Hereford and Polish-HF versus Hereford; (ii) Polish-Red versus Hereford and Polish-HF versus Polish-Red; and (iii) Polish-HF versus Hereford and Polish-HF versus Polish-Red, respectively. A total of 440, 82, and 225 hepatic DE genes were uniquely observed for the Polish-Red versus Hereford, Polish-HF versus Hereford, and Polish-Red versus Polish-HF comparisons, respectively. Gene ontology (GO) analysis identified top-ranked enriched GO terms (p < 0.01) including 17, 16, and 31 functional groups and 151, 61, and 140 gene functions that were DE in all three breed liver transcriptome comparisons. Gene network analysis identified several potential metabolic pathways involved in glutamine family amino-acid, triglyceride synthesis, gluconeogenesis, p38MAPK cascade regulation, cholesterol biosynthesis (Polish-Red versus Hereford); IGF-receptor signaling, catecholamine transport, lipoprotein lipase, tyrosine kinase binding receptor (Polish-HF versus Hereford), and PGF-receptor binding, (Polish-HF versus Polish-Red). Validation results showed that the relative expression values were consistent to those obtained by RNA-seq, and significantly correlated between the quantitative reverse transcription PCR (RT-qPCR) and RNA-seq (Pearson’s r > 0.90). Our results provide new insights on bovine liver gene expressions among dairy versus dual versus beef breeds by identifying the large numbers of DEGs markers submitted to NCBI gene expression omnibus (GEO) accession number GSE114233, which can serve as useful genetic tools to develop the gene assays for trait-associated studies as well as, to effectively implement in genomics selection (GS) cattle breeding programs in Poland.
Collapse
Affiliation(s)
- Chandra Shekhar Pareek
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100 Torun, Poland.
- Centre of Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland.
| | - Mateusz Sachajko
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100 Torun, Poland.
- Centre of Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland.
| | - Jedrzej M Jaskowski
- Centre of Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland.
| | - Magdalena Herudzinska
- Centre of Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland.
| | - Mariusz Skowronski
- Centre of Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland.
| | - Krzysztof Domagalski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100 Torun, Poland.
| | - Joanna Szczepanek
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100 Torun, Poland.
| | - Urszula Czarnik
- Faculty of Animal Bio-engineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland.
| | - Przymeslaw Sobiech
- Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10719 Olsztyn, Poland.
| | - Dominika Wysocka
- Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10719 Olsztyn, Poland.
| | - Mariusz Pierzchala
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland.
| | - Ewa Polawska
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland.
| | - Kamila Stepanow
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland.
| | - Magdalena Ogłuszka
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland.
| | - Edyta Juszczuk-Kubiak
- Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Yaping Feng
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08 854, USA.
| | - Dibyendu Kumar
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08 854, USA.
| |
Collapse
|
26
|
Morenikeji OB, Akinyemi MO, Wheto M, Ogunshola OJ, Badejo AA, Chineke CA. Transcriptome profiling of four candidate milk genes in milk and tissue samples of temperate and tropical cattle. J Genet 2019. [DOI: 10.1007/s12041-019-1060-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Sharma A, Shandilya UK, Sodhi M, Jatav P, Mohanty A, Jain P, Verma P, Kataria RS, Kumari P, Mukesh M. Milk-derived mammary epithelial cells as non-invasive source to define stage-specific abundance of milk protein and fat synthesis transcripts in native Sahiwal cows and Murrah buffaloes. 3 Biotech 2019; 9:106. [PMID: 30863690 DOI: 10.1007/s13205-019-1642-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/20/2019] [Indexed: 01/28/2023] Open
Abstract
The molecular physiology of milk production of two important dairy species; Sahiwal cows (Bos indicus) and Murrah buffaloes (Bubalus bubalis) are not fully understood due to constraints in obtaining mammary tissue samples because of sacred and ethical reasons. The present study suggests the use of milk-derived mammary epithelial cells (MECs) as a non-invasive method to understand molecular aspects of lactation biology in dairy animals. A total of 76 MECs were collected from five different lactation periods viz. colostrum (0-2), early (5-20), peak (30-50), mid (90-140) and late lactation (> 215 days) stages from Sahiwal cows and Murrah buffaloes to study the transcription kinetics of milk protein, fat synthesis, and their regulatory genes. Significant changes were observed in milk composition of both dairy species with lactation stages. High mRNA abundance of all milk protein and fat synthesis genes was observed in MECs of Murrah buffaloes as compared to Sahiwal cows. The mRNA abundance of caseins (CSN1S1, CSN1S2, CSN2, and CSN3) and whey protein (LALBA, LF) were higher in early lactation stage. Similarly, the expression of milk fat synthesis genes (SCD, BTN1A1, ACACA, GPAM, FAPB3, FASN) was also high in early lactation stage. The relative abundance of 4 regulatory genes (JAK2, STAT5, SREBF1 and EIF4BP41) remained high during early lactation indicating their regulatory roles in lactogenesis process. Overall, results suggested a significant effect of lactation stages on milk composition and transcription abundance of milk protein and fat synthesis genes. The present study establishes the fact that milk-derived MECs could be utilized as a valuable source to understand mammary gland functioning of native cows and buffaloes.
Collapse
|
28
|
Das PP, Krishnan G, Doley J, Bhattacharya D, Deb SM, Chakravarty P, Das PJ. Establishing gene Amelogenin as sex-specific marker in yak by genomic approach. J Genet 2019; 98:7. [PMID: 30945688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Yak, an economically important bovine species considered as lifeline of the Himalaya. Indeed, this gigantic bovine is neglected because of the scientific intervention for its conservation as well as research documentation for a long time. Amelogenin is an essential protein for tooth enamel which eutherian mammals contain two copies in both X and Y chromosome each. In bovine, the deletion of a fragment of the nucleotide sequence in Y chromosome copy of exon 6 made Amelogenin an excellent sex-specific marker. Thus, an attempt was made to use the gene as an advanced molecular marker of sexing of the yak to improve breeding strategies and reproduction. The present study confirmed that the polymerase chain reaction amplification of the Amelogenin gene with a unique primer is useful in sex identification of the yak. The test is further refined with qPCR validation by quantifying the DNA copy number of the Amelogenin gene in male and female. We observed a high level of sequence polymorphisms of AMELX and AMELY in yak considered as novel identification. These tests can be further extended into several other specialized fields including forensics, meat production and processing, and quality control.
Collapse
Affiliation(s)
- P P Das
- Indian Council of Agricultural Research-National Research Centre on Yak, Dirang 790 101, India. ,
| | | | | | | | | | | | | |
Collapse
|
29
|
Ji Z, Chao T, Zhang C, Liu Z, Hou L, Wang J, Wang A, Wang Y, Zhou J, Xuan R, Wang G, Wang J. Transcriptome Analysis of Dairy Goat Mammary Gland Tissues from Different Lactation Stages. DNA Cell Biol 2019; 38:129-143. [DOI: 10.1089/dna.2018.4349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Zhibin Ji
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, P.R. China
| | - Tianle Chao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, P.R. China
| | - Chunlan Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, P.R. China
| | - Zhaohua Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, P.R. China
| | - Lei Hou
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, P.R. China
| | - Jin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, P.R. China
| | - Aili Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, P.R. China
| | - Yong Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, P.R. China
| | - Jie Zhou
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, P.R. China
| | - Rong Xuan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, P.R. China
| | - Guizhi Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, P.R. China
| | - Jianmin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, P.R. China
| |
Collapse
|
30
|
A novel FADS2 isoform identified in human milk fat globule suppresses FADS2 mediated Δ6-desaturation of omega-3 fatty acids. Prostaglandins Leukot Essent Fatty Acids 2018; 138:52-59. [PMID: 30041907 DOI: 10.1016/j.plefa.2018.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The only known non-pharmacological means to alter long chain polyunsaturated fatty acid (LCPUFA) abundance in mammalian tissue is by altering substrate fatty acid ratios. Alternative mRNA splicing is increasingly recognized as a modulator of protein structure and function. Here we report identification of a novel alternative transcript (AT) of fatty acid desaturase 2 (FADS2) that inhibits production of omega-3 but not omega-6 LCPUFA, discovered during study of ATs in human milk fat globules (MFG). METHODS Human breastmilk collected from a single donor was used to isolate MFG. An mRNA-sequencing library was constructed from the total RNA isolated from the MFG. The constructed library was sequenced using an Illumina HiSeq instrument operating in high output mode. Expression levels of evolutionary conserved FADSAT were measured using cDNA from MFG by semi-quantitative RT-PCR assay. RESULTS RNA sequencing revealed >15,000 transcripts, including moderate expression of the FADS2 classical transcript (CS). A novel FADS2 alternative transcript (FADS2AT2) with 386 amino acids was discovered. When FADS2AT2 was transiently transfected into MCF7 cells stably expressing FADS2, delta-6 desaturation (D6D) of alpha-linolenic acid 18:3n-3 → 18:4n-3 was suppressed as were downstream products 20:4n-3 and 20:5n-3. In contrast, no significant effect on D6D of linoleic acid 18:2n-6 → 18:3n-6 or downstream products was observed. FADS2, FADS2AT1 and 5 out of 8 known FADS3AT were expressed in MFG. FADS1, FADS3AT3, and FADS3AT5 are undetectable. CONCLUSION The novel, noncatalytic FADS2AT2 regulates FADS2CS-mediated Δ6-desaturation of omega-3 but not omega-6 PUFA biosynthesis. This spliced isoform mediated interaction is the first molecular mechanism by which desaturation of one PUFA family but not the other is modulated.
Collapse
|
31
|
Mucha S, Mrode R, Coffey M, Kizilaslan M, Desire S, Conington J. Genome-wide association study of conformation and milk yield in mixed-breed dairy goats. J Dairy Sci 2017; 101:2213-2225. [PMID: 29290434 DOI: 10.3168/jds.2017-12919] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 11/08/2017] [Indexed: 11/19/2022]
Abstract
Identification of genetic markers that affect economically important traits is of high value from a biological point of view, enabling the targeting of candidate genes and providing practical benefits for the industry such as wide-scale genomic selection. This study is one of the first to investigate the genetic background of economically important traits in dairy goats using the caprine 50K single nucleotide polymorphism (SNP) chip. The aim of the project was to perform a genome-wide association study for milk yield and conformation of udder, teat, and feet and legs. A total of 137,235 milk yield records on 4,563 goats each scored for 10 conformation traits were available. Out of these, 2,381 goats were genotyped with the Illumina Caprine 50K BeadChip (Illumina Inc., San Diego, CA). A range of pseudo-phenotypes were used including deregressed breeding values and pseudo-estimated breeding values. Genome-wide association studies were performed using the multi-locus mixed model (MLMM) algorithm implemented in SNP & Variation Suite v7.7.8 (Golden Helix Inc., Bozeman, MT). A genome-wise significant [-log10(P-value) > 5.95] SNP for milk yield was identified on chromosome 19, with additional chromosome-wise significant (-log10(P-value) > 4.46] SNP on chromosomes 4, 8, 14, and 29. Three genome-wise significant SNP for conformation of udder attachment, udder depth, and front legs were identified on chromosome 19, and chromosome-wise SNP were found on chromosomes 4, 5, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 21, 23, and 27. The proportion of variance explained by the significant SNP was between 0.4 and 7.0% for milk yield and between 0.1 and 13.8% for conformation traits. This study is the first attempt to identify SNP associated with milk yield and conformation in dairy goats. Two genome-wise significant SNP for milk yield and 3 SNP for conformation of udder attachment, udder depth, and front legs were found. Our results suggest that conformation traits have a polygenic background because, for most of them, we did not identify any quantitative trait loci with major effect.
Collapse
Affiliation(s)
- Sebastian Mucha
- Poznan University of Life Sciences, 33 Wolynska, 60-637 Poznan, Poland; Animal and Veterinary Sciences, Scotland's Rural College, Easter Bush, Midlothian EH25 9RG, United Kingdom
| | - Raphael Mrode
- Animal and Veterinary Sciences, Scotland's Rural College, Easter Bush, Midlothian EH25 9RG, United Kingdom
| | - Mike Coffey
- Animal and Veterinary Sciences, Scotland's Rural College, Easter Bush, Midlothian EH25 9RG, United Kingdom
| | - Mehmet Kizilaslan
- Animal and Veterinary Sciences, Scotland's Rural College, Easter Bush, Midlothian EH25 9RG, United Kingdom; International Center for Livestock Research and Training, Breeding and Genetics Department, 06852, Ankara, Turkey
| | - Suzanne Desire
- Animal and Veterinary Sciences, Scotland's Rural College, Easter Bush, Midlothian EH25 9RG, United Kingdom.
| | - Joanne Conington
- Animal and Veterinary Sciences, Scotland's Rural College, Easter Bush, Midlothian EH25 9RG, United Kingdom
| |
Collapse
|
32
|
Laodim T, Elzo MA, Koonawootrittriron S, Suwanasopee T, Jattawa D. Identification of SNP markers associated with milk and fat yields in multibreed dairy cattle using two genetic group structures. Livest Sci 2017. [DOI: 10.1016/j.livsci.2017.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
33
|
Liu X, Yang J, Zhang Q, Jiang L. Regulation of DNA methylation on EEF1D and RPL8 expression in cattle. Genetica 2017; 145:387-395. [PMID: 28667419 PMCID: PMC5594039 DOI: 10.1007/s10709-017-9974-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/23/2017] [Indexed: 01/01/2023]
Abstract
Dynamic changes to the epigenome play a critical role in a variety of biology processes and complex traits. Many important candidate genes have been identified through our previous genome wide association study (GWAS) on milk production traits in dairy cattle. However, the underlying mechanism of candidate genes have not yet been clearly understood. In this study, we analyzed the methylation variation of the candidate genes, EEF1D and RPL8, which were identified to be strongly associated with milk production traits in dairy cattle in our previous studies, and its effect on protein and mRNA expression. We compared DNA methylation profiles and gene expression levels of EEF1D and RPL8 in five different tissues (heart, liver, mammary gland, ovary and muscle) of three cows. Both genes showed the highest expression level in mammary gland. For RPL8, there was no difference in the DNA methylation pattern in the five tissues, suggesting no effect of DNA methylation on gene expression. For EEF1D, the DNA methylation levels of its first CpG island differed in the five tissues and were negatively correlated with the gene expression levels. To further investigate the function of DNA methylation on the expression of EEF1D, we collected blood samples of three cows at early stage of lactation and in dry period and analyzed its expression and the methylation status of the first CpG island in blood. As a result, the mRNA expression of EEF1D in the dry period was higher than that at the early stage of lactation, while the DNA methylation level in the dry period was lower than that at the early stage of lactation. Our result suggests that the DNA methylation of EEF1D plays an important role in the spatial and temporal regulation of its expression and possibly have an effect on the milk production traits.
Collapse
Affiliation(s)
- Xuan Liu
- National Engineering Laboratory for Animal Breeding, Beijing, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, Beijing, China.,College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jie Yang
- National Engineering Laboratory for Animal Breeding, Beijing, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, Beijing, China.,College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Qin Zhang
- National Engineering Laboratory for Animal Breeding, Beijing, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, Beijing, China.,College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Li Jiang
- National Engineering Laboratory for Animal Breeding, Beijing, China. .,Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, Beijing, China. .,College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
34
|
El-Halawany N, Abdel-Shafy H, Shawky AEMA, Abdel-Latif MA, Al-Tohamy AF, Abd El-Moneim OM. Genome-wide association study for milk production in Egyptian buffalo. Livest Sci 2017. [DOI: 10.1016/j.livsci.2017.01.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
35
|
Do DN, Li R, Dudemaine PL, Ibeagha-Awemu EM. MicroRNA roles in signalling during lactation: an insight from differential expression, time course and pathway analyses of deep sequence data. Sci Rep 2017; 7:44605. [PMID: 28317898 PMCID: PMC5357959 DOI: 10.1038/srep44605] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/09/2017] [Indexed: 01/30/2023] Open
Abstract
The study examined microRNA (miRNA) expression and regulatory patterns during an entire bovine lactation cycle. Total RNA from milk fat samples collected at the lactogenesis (LAC, day1 [D1] and D7), galactopoiesis (GAL, D30, D70, D130, D170 and D230) and involution (INV, D290 and when milk production dropped to 5 kg/day) stages from 9 cows was used for miRNA sequencing. A total of 475 known and 238 novel miRNAs were identified. Fifteen abundantly expressed miRNAs across lactation stages play regulatory roles in basic metabolic, cellular and immunological functions. About 344, 366 and 209 miRNAs were significantly differentially expressed (DE) between GAL and LAC, INV and GAL, and INV and LAC stages, respectively. MiR-29b/miR-363 and miR-874/miR-6254 are important mediators for transition signals from LAC to GAL and from GAL to INV, respectively. Moreover, 58 miRNAs were dynamically DE in all lactation stages and 19 miRNAs were significantly time-dependently DE throughout lactation. Relevant signalling pathways for transition between lactation stages are involved in apoptosis (PTEN and SAPK/JNK), intracellular signalling (protein kinase A, TGF-β and ERK5), cell cycle regulation (STAT3), cytokines, hormones and growth factors (prolactin, growth hormone and glucocorticoid receptor). Overall, our data suggest diverse, temporal and physiological signal-dependent regulatory and mediator functions for miRNAs during lactation.
Collapse
Affiliation(s)
- Duy N Do
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, 2000 College Street, Sherbrooke, Quebec, J1M 0C8, Canada.,Department of Animal Science, McGill University, 21111, Lakeshore Road, Ste-Anne-de Bellevue, Quebec, J1M 0C8, Canada
| | - Ran Li
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, 2000 College Street, Sherbrooke, Quebec, J1M 0C8, Canada.,College of Animal Science and Technology, Northwest A&F University, Xinong road 22, Shaanxi, 712100, China
| | - Pier-Luc Dudemaine
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, 2000 College Street, Sherbrooke, Quebec, J1M 0C8, Canada
| | - Eveline M Ibeagha-Awemu
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, 2000 College Street, Sherbrooke, Quebec, J1M 0C8, Canada
| |
Collapse
|