1
|
Li S, Lei H, Ahmed Z, Duan H, Li J, Li H, Lei C, Zhang B, Yi K. Analysis of genetic diversity and selection signatures on the Zhashi Brown goat through whole genome sequencing data. Anim Genet 2025; 56:e70016. [PMID: 40365698 DOI: 10.1111/age.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 04/25/2025] [Indexed: 05/15/2025]
Abstract
The Zhashi Brown goat is native to Hengyang Municipality in Hunan Province in southern China and boasts a rich history. The goats exhibit exceptional traits, including heat and insect resistance, strong reproductive capabilities and superior meat production. Despite these merits, the currently limited population requires immediate conservation endeavors. In this study, we conducted whole-genome resequencing on 21 Zhashi Brown goats. Additionally, we performed a joint analysis using published whole-genome data from 119 goats, including Chengdu Brown goat, Matou goat, Wuxue goat, Xiangdong Black goat, Qaidam Cashmere goat, Ujumqin Cashmere goat and Shanbei Cashmere goat. The results revealed that the Zhashi Brown goat is genetically more pure than other Southern Chinese goat breeds. Furthermore, the genetic diversity (nucleotide diversity, linkage disequilibrium, runs of homozygosity and inbreeding coefficient) of the Zhashi Brown goat's genome is at a low level among the eight breeds, indicating the need for further conservation. Employing analytical methodologies such as composite likelihood ratio, nucleotide diversity, integrated haplotype score, the fixation index and cross-population extended haplotype homozygosity, we systematically scanned selective signals within the genomic landscape of Zhashi Brown goat. The outcomes underscore strong selection signals associated with genes implicated in immune response, heat tolerance, reproductive performance and meat quality. These findings make a significant contribution to our understanding of the genetics framework associated with adaptive traits in Zhashi Brown goat. Furthermore, this study explores the genetic diversity of the Zhashi Brown goat, which may contribute to the theoretical framework for conserving its genetic resources, while the identified trait-associated variations could inform future strategies to optimize selective breeding programs.
Collapse
Affiliation(s)
- Shuang Li
- Hunan Institute of Animal and Veterinary Science, Changsha, Hunan, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Hong Lei
- Hunan Institute of Animal and Veterinary Science, Changsha, Hunan, China
| | - Zulfiqar Ahmed
- Department of Livestock and Poultry Production, Faculty of Veterinary and Animal Science, University of Poonch Rawalakot, Azad Kashmir, Pakistan
| | - Hongfeng Duan
- Hunan Institute of Animal and Veterinary Science, Changsha, Hunan, China
| | - Jianbo Li
- Hunan Institute of Animal and Veterinary Science, Changsha, Hunan, China
| | - Haobang Li
- Hunan Institute of Animal and Veterinary Science, Changsha, Hunan, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Baizhong Zhang
- Hunan Institute of Animal and Veterinary Science, Changsha, Hunan, China
| | - Kangle Yi
- Hunan Institute of Animal and Veterinary Science, Changsha, Hunan, China
| |
Collapse
|
2
|
Rostamzadeh Mahdabi E, Tian R, Tian J, Asadollahpour Nanaie H, Wang X, Zhao M, Li H, Dalai B, Sai Y, Guo W, Li Y, Zhang H, Esmailizadeh A. Uncovering genomic diversity and signatures of selection in red Angus × Chinese red steppe crossbred cattle population. Sci Rep 2025; 15:12977. [PMID: 40234714 PMCID: PMC12000499 DOI: 10.1038/s41598-025-98346-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/10/2025] [Indexed: 04/17/2025] Open
Abstract
Crossbreeding is a cornerstone of modern livestock improvement, combining desirable traits to enhance productivity and environmental resilience. This study conducts the first comprehensive genomic analysis of Red Angus × Chinese Red Steppe (RACS) crossbred cattle, evaluating their genetic architecture, diversity, and selection signatures relative to founder breeds (Red Angus and Chinese Red Steppe) and global populations. A total of 119 cattle, comprising 104 RACS crossbreds and 15 Chinese Red Steppes cattle, were genotyped using the GGP Bovine 100k SNP array. Additionally, the public available genotypic data generated using the BovineSNP50 chip from 550 animals across eight beef breeds (Angus, Hereford, Limousin, Charolais, Mongolian, Shorthorn, Red Angus, and Simmental) and one dairy breed (Holstein) were incorporated into the analysis. We aimed to (1) define the population structure of RACS cattle, (2) quantify their genomic diversity and inbreeding levels, and (3) pinpoint regions under selection linked to adaptive and economic traits. We employed runs of homozygosity (ROH) and population differentiation (Fst) analyses to detect selection signals. The results revealed that the crossbred (RACS), Angus, and Red Angus breeds exhibited similar clustering patterns in principal component analysis (PCA), but the crossbred population showed the highest nucleotide diversity and lowest inbreeding coefficients compared to other breeds. Notably, candidate regions associated with immune response, cold adaptation, and carcass traits were identified within the RACS population. These findings enhance our understanding of the genetic makeup of crossbred beef cattle and highlight their potential for genetic improvement, informing future selection and breeding strategies aimed at optimizing beef production in challenging environments.
Collapse
Affiliation(s)
- Elaheh Rostamzadeh Mahdabi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, PO BOX 76169-133, Kerman, Iran
| | - Rugang Tian
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China.
| | - Jing Tian
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | | | - Xiao Wang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Meng Zhao
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Hui Li
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Baolige Dalai
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Yin Sai
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Wenhua Guo
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Yuan Li
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Hao Zhang
- Forestry and Grassland Bureau of Siziwang Banner, Wulanchabu, China
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, PO BOX 76169-133, Kerman, Iran.
| |
Collapse
|
3
|
Teodoro M, Maiorano AM, Campos GS, de Albuquerque LG, de Oliveira HN. Genetic parameters, genomic prediction, and identification of regulatory regions located on chromosome 14 for weight traits in Nellore cattle. J Anim Breed Genet 2025; 142:184-199. [PMID: 39189106 DOI: 10.1111/jbg.12895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/06/2024] [Accepted: 08/11/2024] [Indexed: 08/28/2024]
Abstract
This study aimed to investigate functional variants in chromosome 14 (BTA14) and its impact in genomic selection for birth weight (BW), weaning weight (WW), and yearling weight (YW) in Nellore cattle. Genetic parameter estimation and the weighted single-step genomic best linear unbiased prediction (WssGBLUP) analyses were performed. Direct additive heritability estimates were high for WW and YW, and moderate for BW. Trait-associated variants distributed across multiple regions on BTA14 were observed in the weighted single-step genome-wide association studies (WssGWAS) results, implying a polygenic genetic architecture for weight in different ages. Several genes have been found in association with the weight traits, including the CUB And Sushi multiple domains 3 (CSMD3), thyroglobulin (TG), and diacylglycerol O-acyltransferase 1 (DGAT1) genes. The variance explained per SNP was higher in six functional classes of gene regulatory regions (5UTR, CpG islands, downstream, upstream, long non-coding RNA, and transcription factor binding sites (TFBS)), highlighting their importance for weight traits in Nellore cattle. A marginal increase in accuracy was observed when the selected functional variants (SV) information was considered in the WssGBLUP method, probably because of the small number of SV available on BTA14. The identified genes, pathways, and functions contribute to a better understanding of the genetic and physiological mechanisms regulating weight traits in the Nellore breed.
Collapse
Affiliation(s)
- Miller Teodoro
- Department of Animal Science, São Paulo State University, Jaboticabal, Brazil
| | | | | | | | | |
Collapse
|
4
|
Haque MA, Kim NK, Yeji R, Lee B, Ha JH, Lee YM, Kim JJ. Genomic prediction and genome-wide association studies of morphological traits and distraction index in Korean Sapsaree dogs. PLoS One 2024; 19:e0312583. [PMID: 39570887 PMCID: PMC11581321 DOI: 10.1371/journal.pone.0312583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/10/2024] [Indexed: 11/24/2024] Open
Abstract
The Korean Sapsaree dog is a native breed known for its distinctive appearance and historical significance in Korean culture. The accurate estimation of breeding values is essential for the genetic improvement and conservation of such indigenous breeds. This study aimed to evaluate the accuracy of breeding values for body height, body length, chest width, hair length, and distraction index (DI) traits in Korean Sapsaree dogs. Additionally, a genome-wide association study (GWAS) was conducted to identify the genomic regions and nearby candidate genes influencing these traits. Phenotypic data were collected from 378 Korean Sapsaree dogs, and of these, 234 individuals were genotyped using the 170k Illumina CanineHD BeadChip. The accuracy of genomic predictions was evaluated using the traditional BLUP method with phenotypes only on genotyped animals (PBLUP-G), another traditional BLUP method using a pedigree-based relationship matrix (PBLUP) for all individuals, a GBLUP method based on a genomic relationship matrix, and a single-step GBLUP (ssGBLUP) method. Heritability estimates for body height, body length, chest width, hair length, and DI were 0.45, 0.39, 0.32, 0.55, and 0.50, respectively. Accuracy values varied across methods, with ranges of 0.22 to 0.31 for PBLUP-G, 0.30 to 0.57 for PBLUP, 0.31 to 0.54 for GBLUP, and 0.39 to 0.67 for ssGBLUP. Through GWAS, 194 genome-wide significant SNPs associated with studied Sapsaree traits were identified. The selection of the most promising candidate genes was based on gene ontology (GO) terms and functions previously identified to influence traits. Notable genes included CCKAR and DCAF16 for body height, PDZRN3 and CNTN1 for body length, TRIM63, KDELR2, and SUPT3H for chest width, RSPO2, EIF3E, PKHD1L1, TRPS1, and EXT1 for hair length, and DDHD1, BMP4, SEMA3C, and FOXP1 for the DI. These findings suggest that significant QTL, combined with functional candidate genes, can be leveraged to improve the genetic quality of the Sapsaree population. This study provides a foundation for more effective breeding strategies aimed at preserving and enhancing the unique traits of this Korean dog breed.
Collapse
Affiliation(s)
- Md Azizul Haque
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Na-Kuang Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Ryu Yeji
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Bugeun Lee
- Sapsaree Breeding Research Institute, Gyeongsan, Republic of Korea
| | - Ji-Hong Ha
- Sapsaree Breeding Research Institute, Gyeongsan, Republic of Korea
| | - Yun-Mi Lee
- Department of Veterinary Nursing, Daekyeung University, Gyeongsan, Republic of Korea
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
5
|
Zhang M, Wang Y, Chen Q, Wang D, Zhang X, Huang X, Xu L. Genome-Wide Association Study on Body Conformation Traits in Xinjiang Brown Cattle. Int J Mol Sci 2024; 25:10557. [PMID: 39408884 PMCID: PMC11476655 DOI: 10.3390/ijms251910557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/11/2024] [Accepted: 08/18/2024] [Indexed: 10/20/2024] Open
Abstract
Body conformation traits are linked to the health, longevity, reproductivity, and production performance of cattle. These traits are also crucial for herd selection and developing new breeds. This study utilized pedigree information and phenotypic (1185 records) and genomic (The resequencing of 496 Xinjiang Brown cattle generated approximately 74.9 billion reads.) data of Xinjiang Brown cattle to estimate the genetic parameters, perform factor analysis, and conduct a genome-wide association study (GWAS) for these traits. Our results indicated that most traits exhibit moderate to high heritability. The principal factors, which explained 59.12% of the total variance, effectively represented body frame, muscularity, rump, feet and legs, and mammary system traits. Their heritability estimates range from 0.17 to 0.73, with genetic correlations ranging from -0.53 to 0.33. The GWAS identified 102 significant SNPs associated with 12 body conformation traits. A few of the SNPs were located near previously reported genes and quantitative trait loci (QTLs), while others were novel. The key candidate genes such as LCORL, NCAPG, and FAM184B were annotated within 500 Kb upstream and downstream of the significant SNPs. Therefore, factor analysis can be used to simplify multidimensional conformation traits into new variables, thus reducing the computational burden. The identified candidate genes from GWAS can be incorporated into the genomic selection of Xinjiang Brown cattle, enhancing the reliability of breeding programs.
Collapse
Affiliation(s)
- Menghua Zhang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (M.Z.); (Q.C.); (D.W.); (X.Z.)
| | - Yachun Wang
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Qiuming Chen
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (M.Z.); (Q.C.); (D.W.); (X.Z.)
| | - Dan Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (M.Z.); (Q.C.); (D.W.); (X.Z.)
| | - Xiaoxue Zhang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (M.Z.); (Q.C.); (D.W.); (X.Z.)
| | - Xixia Huang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (M.Z.); (Q.C.); (D.W.); (X.Z.)
| | - Lei Xu
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (M.Z.); (Q.C.); (D.W.); (X.Z.)
| |
Collapse
|
6
|
Silva EFP, Gaia RC, Mulim HA, Pinto LFB, Iung LHS, Brito LF, Pedrosa VB. Genome-Wide Association Study of Conformation Traits in Brazilian Holstein Cattle. Animals (Basel) 2024; 14:2472. [PMID: 39272257 PMCID: PMC11394126 DOI: 10.3390/ani14172472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
The linear conformation of animals exerts an influence on health, reproduction, production, and welfare, in addition to longevity, which directly affects the profitability of milk-producing farms. The objectives of this study were (1) to perform genome-wide association studies (GWASs) of conformation traits, namely the Rump, Feet and Legs, Mammary System, Dairy Strength, and Final Classification traits, and (2) to identify genes and related pathways involved in physiological processes associated with conformation traits in Brazilian Holstein cattle. Phenotypic and genotypic data from 2339 Holstein animals distributed across the states of Rio Grande do Sul, Paraná, São Paulo, and Minas Gerais were used. The genotypic data were obtained with a 100 K SNP marker panel. The single-step genome-wide association study (ssGWAS) method was employed in the analyses. Genes close to a significant SNP were identified in an interval of 100 kb up- and downstream using the Ensembl database available in the BioMart tool. The DAVID database was used to identify the main metabolic pathways and the STRING program was employed to create the gene regulatory network. In total, 36 significant SNPs were found on 15 chromosomes; 27 of these SNPs were linked to genes that may influence the traits studied. Fourteen genes most closely related to the studied traits were identified, as well as four genes that showed interactions in important metabolic pathways such as myogenesis, adipogenesis, and angiogenesis. Among the total genes, four were associated with myogenesis (TMOD2, TMOD3, CCND2, and CTBP2), three with angiogenesis (FGF23, FGF1, and SCG3), and four with adipogenesis and body size and development (C5H12orf4, CCND2, EMILIN1, and FGF6). These results contribute to a better understanding of the biological mechanisms underlying phenotypic variability in conformation traits in Brazilian Holstein cattle.
Collapse
Affiliation(s)
- Emanueli F P Silva
- Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa 84010-330, PR, Brazil
| | - Rita C Gaia
- Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa 84010-330, PR, Brazil
| | - Henrique A Mulim
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | - Laiza H S Iung
- Neogen Corporation, Pindamonhangaba 12412-800, SP, Brazil
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Victor B Pedrosa
- Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa 84010-330, PR, Brazil
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
- Neogen Corporation, Biotechnology Research, Lincoln, NE 68504, USA
| |
Collapse
|
7
|
Yu JZ, Zhou J, Yang FX, Hao JP, Hou ZC, Zhu F. Genome-Wide Association Analysis Identifies Important Haplotypes and Candidate Gene XKR4 for Body Size Traits in Pekin Ducks. Animals (Basel) 2024; 14:2349. [PMID: 39199882 PMCID: PMC11350698 DOI: 10.3390/ani14162349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Body size is an important growth indicator in ducks and is a primary selection criterion for physical improvement. An excessively rapid growth rate in meat ducks can result in excessive body size, which may hinder subsequent processing and slaughter operations. However, only a few molecular markers related to body size have been studied in meat ducks. In this study, we performed a genome-wide association study (GWAS) to identify candidate genes and QTLs affecting body length (BL), keel bone length (KBL), neck length (NL), and breast width (BrW) in Pekin ducks (Anas platyrhynchos domestica). Our results indicate the significant SNP for NL is located within a pseudogene, whereas the significant SNP for BrW is located in an intergenic region. More importantly, our analysis identified a haplotype that was significantly associated with both BL and KBL. This haplotype, containing 48 single-nucleotide polymorphisms (SNPs), is localized within the XKR4 gene. The identification of this haplotype suggests that XKR4 may be a key candidate gene influencing BL and KBL in Pekin ducks. These findings have important implications for the breeding and genetic improvement of Pekin ducks, and provide valuable insights into the genetic architecture of body size traits in this species.
Collapse
Affiliation(s)
- Jiang-Zhou Yu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.-Z.Y.); (J.Z.); (Z.-C.H.)
| | - Jun Zhou
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.-Z.Y.); (J.Z.); (Z.-C.H.)
| | - Fang-Xi Yang
- Beijing Nankou Duck Breeding Technology Co., Ltd., Beijing 102202, China; (F.-X.Y.); (J.-P.H.)
| | - Jin-Ping Hao
- Beijing Nankou Duck Breeding Technology Co., Ltd., Beijing 102202, China; (F.-X.Y.); (J.-P.H.)
| | - Zhuo-Cheng Hou
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.-Z.Y.); (J.Z.); (Z.-C.H.)
| | - Feng Zhu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.-Z.Y.); (J.Z.); (Z.-C.H.)
| |
Collapse
|
8
|
Li S, Liu L, Ahmed Z, Wang F, Lei C, Sun F. Identification of Heilongjiang crossbred beef cattle pedigrees and reveals functional genes related to economic traits based on whole-genome SNP data. Front Genet 2024; 15:1435793. [PMID: 39119576 PMCID: PMC11306169 DOI: 10.3389/fgene.2024.1435793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction: To enhance the beef cattle industry, Heilongjiang Province has developed a new Crossbred beef cattle variety through crossbreeding with exotic commercial breeds. This new variety exhibits relatively excellent meat quality, and efficient reproductive performance, catering to market demands. Method: This study employed whole genome resequencing technology to analyze the genetic pedigree and diversity of 19 Heilongjiang Crossbred beef cattle, alongside 59 published genomes from East Asian, Eurasian, and European taurine cattle as controls. In addition, genes related to production traits were also searched by identifying Runs of Homozygosity (ROH) islands and important fragments from ancestors. Results: A total of 14,427,729 biallelic SNPs were discovered, with the majority located in intergenic and intron regions and a small percentage in exon regions, impacting protein function. Population genetic analyses including Principal Component Analysis (PCA), Neighbor-Joining (NJ) tree, and ADMIXTURE identified Angus, Holstein, and Mishima as the main ancestors of Crossbred beef cattle. In genetic diversity analysis, nucleotide diversity, linkage disequilibrium, and inbreeding coefficient analysis reveal that the genetic diversity of Crossbred beef cattle is at a moderate level, and a higher inbreeding coefficient indicates the need for careful breeding management. In addition, some genes related to economic traits are identified through the identification of Runs of Homozygosity (ROH) islands and important fragments from ancestors. Conclusion: This comprehensive genomic characterization supports the targeted improvement of economically important traits in Crossbred beef cattle, facilitating advanced breeding strategies.
Collapse
Affiliation(s)
- Shuang Li
- Key Laboratory of Combining Farming and Animal Husbandry of Ministry of Agriculture, Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Li Liu
- Key Laboratory of Combining Farming and Animal Husbandry of Ministry of Agriculture, Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Zulfiqar Ahmed
- Department of Livestock and Poultry Production, Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Azad Kashmir, Pakistan
| | - Fuwen Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Fang Sun
- Key Laboratory of Combining Farming and Animal Husbandry of Ministry of Agriculture, Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
9
|
Gao Z, Lu Y, Chong Y, Li M, Hong J, Wu J, Wu D, Xi D, Deng W. Beef Cattle Genome Project: Advances in Genome Sequencing, Assembly, and Functional Genes Discovery. Int J Mol Sci 2024; 25:7147. [PMID: 39000250 PMCID: PMC11240973 DOI: 10.3390/ijms25137147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Beef is a major global source of protein, playing an essential role in the human diet. The worldwide production and consumption of beef continue to rise, reflecting a significant trend. However, despite the critical importance of beef cattle resources in agriculture, the diversity of cattle breeds faces severe challenges, with many breeds at risk of extinction. The initiation of the Beef Cattle Genome Project is crucial. By constructing a high-precision functional annotation map of their genome, it becomes possible to analyze the genetic mechanisms underlying important traits in beef cattle, laying a solid foundation for breeding more efficient and productive cattle breeds. This review details advances in genome sequencing and assembly technologies, iterative upgrades of the beef cattle reference genome, and its application in pan-genome research. Additionally, it summarizes relevant studies on the discovery of functional genes associated with key traits in beef cattle, such as growth, meat quality, reproduction, polled traits, disease resistance, and environmental adaptability. Finally, the review explores the potential of telomere-to-telomere (T2T) genome assembly, structural variations (SVs), and multi-omics techniques in future beef cattle genetic breeding. These advancements collectively offer promising avenues for enhancing beef cattle breeding and improving genetic traits.
Collapse
Affiliation(s)
- Zhendong Gao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Ying Lu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yuqing Chong
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Mengfei Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jieyun Hong
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jiao Wu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Dongwang Wu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Dongmei Xi
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Weidong Deng
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Kunming 650201, China
| |
Collapse
|
10
|
Colombi D, Rovelli G, Luigi-Sierra MG, Ceccobelli S, Guan D, Perini F, Sbarra F, Quaglia A, Sarti FM, Pasquini M, Amills M, Lasagna E. Population structure and identification of genomic regions associated with productive traits in five Italian beef cattle breeds. Sci Rep 2024; 14:8529. [PMID: 38609445 PMCID: PMC11014930 DOI: 10.1038/s41598-024-59269-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/09/2024] [Indexed: 04/14/2024] Open
Abstract
Italy has a long history in beef production, with local breeds such as Marchigiana, Chianina, Romagnola, Maremmana, and Podolica which produce high-quality meat. Selection has improved meat production, precocity, growth ability and muscle development, but the genetic determinism of such traits is mostly unknown. Using 33K SNPs-data from young bulls (N = 4064) belonging to these five Italian breeds, we demonstrated that the Maremmana and Podolica rustic breeds are closely related, while the specialised Marchigiana, Chianina, and Romagnola breeds are more differentiated. A genome-wide association study for growth and muscle development traits (average daily gain during the performance test, weight at 1 year old, muscularity) was conducted in the five Italian breeds. Results indicated a region on chromosome 2, containing the myostatin gene (MSTN), which displayed significant genome-wide associations with muscularity in Marchigiana cattle, a breed in which the muscle hypertrophy phenotype is segregating. Moreover, a significant SNP on chromosome 14 was associated, in the Chianina breed, to muscularity. The identification of diverse genomic regions associated with conformation traits might increase our knowledge about the genomic basis of such traits in Italian beef cattle and, eventually, such information could be used to implement marker-assisted selection of young bulls tested in the performance test.
Collapse
Affiliation(s)
- Daniele Colombi
- Department of Agricultural, Food and Environmental Sciences (DSA3), University of Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy
| | - Giacomo Rovelli
- Department of Agricultural, Food and Environmental Sciences (DSA3), University of Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autonòma de Barcelona, Carrer de la Vall Moronta, 08193, Bellaterra de Cerdanyola del Vallés, Spain
| | - Maria Gracia Luigi-Sierra
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autonòma de Barcelona, Carrer de la Vall Moronta, 08193, Bellaterra de Cerdanyola del Vallés, Spain
| | - Simone Ceccobelli
- Department of Agricultural, Food and Environmental Sciences (D3A), Università Politecnica delle Marche, 60131, Ancona, Italy
| | - Dailu Guan
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autonòma de Barcelona, Carrer de la Vall Moronta, 08193, Bellaterra de Cerdanyola del Vallés, Spain
- Department of Animal Science, University of California, Davis, CA, 2251, USA
| | - Francesco Perini
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020, Legnaro, Italy
| | - Fiorella Sbarra
- National Association of Italian Beef-Cattle Breeders (ANABIC), 06132, San Martino in Colle, Perugia, Italy
| | - Andrea Quaglia
- National Association of Italian Beef-Cattle Breeders (ANABIC), 06132, San Martino in Colle, Perugia, Italy
| | - Francesca Maria Sarti
- Department of Agricultural, Food and Environmental Sciences (DSA3), University of Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy
| | - Marina Pasquini
- Department of Agricultural, Food and Environmental Sciences (D3A), Università Politecnica delle Marche, 60131, Ancona, Italy
| | - Marcel Amills
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autonòma de Barcelona, Carrer de la Vall Moronta, 08193, Bellaterra de Cerdanyola del Vallés, Spain.
- Department of Animal and Food Science, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| | - Emiliano Lasagna
- Department of Agricultural, Food and Environmental Sciences (DSA3), University of Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy.
| |
Collapse
|
11
|
Wesołek-Leszczyńska A, Pastusiak K, Bogdański P, Szulińska M. Can Adipokine FAM19A5 Be a Biomarker of Metabolic Disorders? Diabetes Metab Syndr Obes 2024; 17:1651-1666. [PMID: 38616989 PMCID: PMC11016272 DOI: 10.2147/dmso.s460226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/19/2024] [Indexed: 04/16/2024] Open
Abstract
Aim One of the most critical functions of adipose tissue is the production of adipokines, ie, numerous active substances that regulate metabolism. One is the newly discovered FAM19A5, whose older name is TAFA-5. Purpose The study aimed to review the literature on the FAM19A5 protein. Methods The review was conducted in December 2023 using the PubMed (Medline) search engine. Sixty-four papers were included in the review. Results This protein exhibits the characteristics of an adipokine with positive features for maintaining homeostasis. The results showed that FAM19A5 was highly expressed in adipose tissue, with mild to moderate expression in the brain and ovary. FAM19A5 may also inhibit vascular smooth muscle cell proliferation and migration through the perivascular adipose tissue paracrine pathway. Serum levels of FAM19A5 were decreased in obese children compared with healthy controls. There are negative correlations between FAM19A5, body mass index, and fasting insulin. Serum FAM19A5 level is correlated with type 2 diabetes, waist circumference, waist-to-hip ratio, glutamic pyruvic transferase, fasting plasma glucose, HbA1c, and mean shoulder pulse wave velocity. FAM19A5 expression was reduced in mice with obesity. However, the data available needs to be clarified or contradictory. Conclusion Considering today's knowledge about FAM19A5, we cannot consider this protein as a biomarker of the metabolic syndrome. According to current knowledge, FAM19A5 cannot be considered a marker of metabolic disorders because the results of studies conducted in this area are unclear.
Collapse
Affiliation(s)
- Agnieszka Wesołek-Leszczyńska
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznań, Poland
- Doctoral School, Poznan University Of Medical Sciences, Poznań, Poland
| | - Katarzyna Pastusiak
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznań, Poland
| | - Paweł Bogdański
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznań, Poland
| | - Monika Szulińska
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
12
|
Sousa LPB, Pinto LFB, Cruz VAR, Oliveira GA, Rojas de Oliveira H, Chud TS, Pedrosa VB, Miglior F, Schenkel FS, Brito LF. Genome-wide association and functional genomic analyses for various hoof health traits in North American Holstein cattle. J Dairy Sci 2024; 107:2207-2230. [PMID: 37939841 DOI: 10.3168/jds.2023-23806] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023]
Abstract
Hoof diseases are a major welfare and economic issue in the global dairy cattle production industry, which can be minimized through improved management and breeding practices. Optimal genetic improvement of hoof health could benefit from a deep understanding of the genetic background and biological underpinning of indicators of hoof health. Therefore, the primary objectives of this study were to perform genome-wide association studies, using imputed high-density genetic markers data from North American Holstein cattle, for 8 hoof-related traits: digital dermatitis, sole ulcer, sole hemorrhage, white line lesion, heel horn erosion, interdigital dermatitis, interdigital hyperplasia, and toe ulcer, and a hoof health index. De-regressed estimated breeding values from 25,580 Holstein animals were used as pseudo-phenotypes for the association analyses. The genomic quality control, genotype phasing, and genotype imputation were performed using the PLINK (version 1.9), Eagle (version 2.4.1), and Minimac4 software, respectively. The functional genomic analyses were performed using the GALLO R package and the DAVID platform. We identified 22, 34, 14, 22, 28, 33, 24, 43, and 15 significant markers for digital dermatitis, heel horn erosion, interdigital dermatitis, interdigital hyperplasia, sole hemorrhage, sole ulcer, toe ulcer, white line lesion disease, and the hoof health index, respectively. The significant markers were located across all autosomes, except BTA10, BTA12, BTA20, BTA26, BTA27, and BTA28. Moreover, the genomic regions identified overlap with various previously reported quantitative trait loci for exterior, health, meat and carcass, milk, production, and reproduction traits. The enrichment analyses identified 44 significant gene ontology terms. These enriched genomic regions harbor various candidate genes previously associated with bone development, metabolism, and infectious and immunological diseases. These findings indicate that hoof health traits are highly polygenic and influenced by a wide range of biological processes.
Collapse
Affiliation(s)
- Luis Paulo B Sousa
- Department of Animal Sciences, Federal University of Bahia, Salvador, BA, 40170-110, Brazil
| | - Luis Fernando B Pinto
- Department of Animal Sciences, Federal University of Bahia, Salvador, BA, 40170-110, Brazil
| | - Valdecy A R Cruz
- Department of Animal Sciences, Federal University of Bahia, Salvador, BA, 40170-110, Brazil
| | - Gerson A Oliveira
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Hinayah Rojas de Oliveira
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada; Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - Tatiane S Chud
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada; PEAK, Madison, WI 53718
| | - Victor B Pedrosa
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - Filippo Miglior
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada; Lactanet Canada, Guelph, ON, N1K 1E5, Canada
| | - Flávio S Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Luiz F Brito
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada; Department of Animal Sciences, Purdue University, West Lafayette, IN 47907.
| |
Collapse
|
13
|
Worku D, Verma A. Genetic variation in bovine LAP3 and SIRT1 genes associated with fertility traits in dairy cattle. BMC Genom Data 2024; 25:32. [PMID: 38500063 PMCID: PMC10949778 DOI: 10.1186/s12863-024-01209-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/15/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND The genetic progress of fertility and reproduction traits in dairy cattle has been constrained by the low heritability of these traits. Identifying candidate genes and variants associated with fertility and reproduction could enhance the accuracy of genetic selection and expedite breeding process of dairy cattle with low-heritability traits. While the bovine LAP3 and SIRT1 genes exhibit well-documented associations with milk production traits in dairy cattle, their effect on cow fertility have not yet been explored. Eleven single nucleotide polymorphisms (SNPs), comprising five in the promoter (rs717156555: C > G, rs720373055: T > C, rs516876447: A > G, rs461857269: C > T and rs720349928: G > A), two in 5'UTR (rs722359733: C > T and rs462932574: T > G), two in intron 12 (rs110932626: A > G and rs43702363: C > T), and one in 3'UTR of exon 13 (rs41255599: C > T) in LAP3 and one in SIRT1 (rs718329990:T > C) genes, have previously been reported to be associated with various traits of milk production and clinical mastitis in Sahiwal and Karan Fries dairy cattle. In this study, the analysis primarily aimed to assess the impact of SNPs within LAP3 and SIRT1 genes on fertility traits in Sahiwal and Karan Fries cattle. Association studies were conducted using mixed linear models, involving 125 Sahiwal and 138 Karan Fries animals in each breed. The analysis utilized a designated PCR-RFLP panel. RESULTS In the promoter region of the LAP3 gene, all variants demonstrated significant (P < 0.05) associations with AFC, except for rs722359733: C > T. However, specific variants with the LAP3 gene's promoter region, namely rs722359733: C > T, rs110932626: A > G, rs43702363: C > T, and rs41255599: C > T, showed significant associations with CI and DO in Sahiwal and Karan Fries cows, respectively. The SNP rs718329990: T > C in the promoter region of SIRT1 gene exhibited a significant association with CI and DO in Sahiwal cattle. Haplotype-based association analysis revealed significant associations between haplotype combinations and AFC, CI and DO in the studied dairy cattle population. Animals with H2H3 and H2H4 haplotype combination exhibited higher AFC, CI and DO than other combinations. CONCLUSIONS These results affirm the involvement of the LAP3 and SIRT1 genes in female fertility traits, indicating that polymorphisms within these genes are linked to the studied traits. Overall, the significant SNPs and haplotypes identified in this study could have the potential to enhance herd profitability and ensure long-term sustainability on dairy farms by enabling the selection of animals with early age first calving and enhance reproductive performance in the dairy cattle breeding program.
Collapse
Affiliation(s)
- Destaw Worku
- Department of Animal Science, College of Agriculture, Food and Climate Science, Injibara University, Injibara, Ethiopia.
| | - Archana Verma
- Animal Genetics and Breeding Division, ICAR -National Dairy Research Institute, Karnal, India
| |
Collapse
|
14
|
Ma Z, Yan XM, Geng J, Gao L, Du W, Li HB, Yuan LX, Zhou ZY, Zhang JS, Zhang Y, Chen L. Genome-wide identification and analysis of TMT-based proteomes in longissimus dorsi tissue from Kazakh cattle and Xinjiang brown cattle. Anim Biotechnol 2023; 34:1261-1272. [PMID: 34965845 DOI: 10.1080/10495398.2021.2019756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
With the gradual completion of the human genome project, proteomes have gained extremely important value in the fields of human disease and biological process research. In our previous research, we performed transcriptomic analyses of longissimus dorsi tissue from Kazakh cattle and Xinjiang brown cattle and conducted in-depth studies on the muscles of both species through epigenetics. However, it is unclear whether differentially expressed proteins in Kazakh cattle and Xinjiang brown cattle regulate muscle production and development. In this study, a proteomic analysis was performed on Xinjiang brown cattle and Kazakh cattle by using TMT markers, HPLC classification, LC/MS and bioinformatics analysis. A total of 13,078 peptides were identified, including 11,258 unique peptides. We identified a total of 1874 proteins, among which 1565 were quantifiable. Compared to Kazakh cattle, Xinjiang brown cattle exhibited 75 upregulated proteins and 44 downregulated proteins. These differentially expressed proteins were enriched for the functions of adrenergic signaling in cardiomyocytes, fatty acid degradation and glutathione metabolism. In our research, we found differentially expressed proteins in longissimus dorsi tissue between Kazakh cattle and Xinjiang brown cattle. We predict that these proteins regulate muscle production and development through select enriched signaling pathways. This study provides novel insights into the roles of proteomes in cattle genetics and breeding.
Collapse
Affiliation(s)
- Zhen Ma
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi, China
| | - Xiang-Min Yan
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi, China
| | - Juan Geng
- Xinjiang Animal Husbandry General Station, Urumqi, China
| | - Liang Gao
- Yili Vocational and Technical College, Yili, China
| | - Wei Du
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi, China
| | - Hong-Bo Li
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi, China
| | - Li-Xing Yuan
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi, China
| | - Zhen-Yong Zhou
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi, China
| | - Jin-Shan Zhang
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi, China
| | - Yang Zhang
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi, China
| | - Lei Chen
- School of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
15
|
Bejarano DH, Martínez RA, Rocha JF. Genome-wide association study for growth traits in Blanco Orejinegro and Romosinuano cattle. Trop Anim Health Prod 2023; 55:358. [PMID: 37848724 PMCID: PMC10581918 DOI: 10.1007/s11250-023-03743-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 09/12/2023] [Indexed: 10/19/2023]
Abstract
Growth traits are economically important characteristics for the genetic improvement of local cattle breeds. Genome-wide association studies (GWAS) provide valuable information to enhance the understanding on the genetics of complex traits. The aim of this study was to perform a GWAS to identify genomic regions and genes associated to birth weight, weaning weight adjusted for 240 days, 16 months, and 24 months weight in Romosinuano (ROMO) and Blanco Orejinegro (BON) cattle. A single-step genomic-BLUP was implemented using 596 BON and 569 ROMO individuals that were genotyped with an Illumina BovineSNP50 BeadChip. There were 25 regions of interest identified on different chromosomes, with few of them simultaneously associated with two or more growth traits and some were common to both breeds. The gene mapping allowed to find 173 annotations on these regions, from which 49 represent potential candidate genes with known growth-related functions in cattle and other species. Among the regions that were associated with several growth traits, that at 24 - 27 MB of BTA14, has important candidate genes such as LYPLA1, XKR4, TMEM68 and PLAG1. Another region of interest at 0.40-0.77 Mb of BTA23 was identified in both breeds, containing KHDRBS2 as a potential candidate gene influencing body weight. Future studies targeting these regions could provide more knowledge to uncover the genetic architecture underlying growth traits in BON and ROMO cattle. The genomic regions and genes identified in this study could be used to improve the prediction of genetic merit for growth traits in these creole cattle breeds.
Collapse
Affiliation(s)
- Diego H Bejarano
- Corporación Colombiana de Investigación Agropecuaria -AGROSAVIA. Centro de Investigación Tibaitatá, Km. 14, Mosquera, Cundinamarca, Colombia
| | - Rodrigo A Martínez
- Corporación Colombiana de Investigación Agropecuaria -AGROSAVIA. Centro de Investigación Tibaitatá, Km. 14, Mosquera, Cundinamarca, Colombia
| | - Juan F Rocha
- Corporación Colombiana de Investigación Agropecuaria -AGROSAVIA. Centro de Investigación Tibaitatá, Km. 14, Mosquera, Cundinamarca, Colombia.
| |
Collapse
|
16
|
Sood V, Rodas-González A, Valente TS, Virtuoso MCS, Li C, Lam S, López-Campos Ó, Segura J, Basarab J, Juárez M. Genome-wide association study for primal cut lean traits in Canadian beef cattle. Meat Sci 2023; 204:109274. [PMID: 37437385 DOI: 10.1016/j.meatsci.2023.109274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/07/2023] [Accepted: 07/02/2023] [Indexed: 07/14/2023]
Abstract
This study identified genomic variants and underlying candidate genes related to the whole carcass and individual primal cut lean content in Canadian commercial crossbred beef cattle. Genotyping information of 1035 crossbred beef cattle were available alongside estimated and actual carcass lean meat yield and individual primal cut lean content in all carcasses. Significant fixed effects and covariates were identified and included in the animal model. Genome-wide association analysis were implemented using the weighted single-step genomic best linear unbiased prediction (WssGBLUP). A number of candidate genes identified linked to lean tissue production were unrelated to estimated lean meat yield and were specific to the actual lean traits. Among these, 41 genes were common for actual lean traits, on specific regions of BTA4, BTA13 and BTA25 indicating potential involvement in lean mass synthesis. Therefore, the results suggested the inclusion of primal cut lean traits as a selection objective in breeding programs with consideration of further functional studies of the identified genes could help in optimizing lean yield for maximal carcass value.
Collapse
Affiliation(s)
- Vipasha Sood
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada; Department of Food and Human Nutritional Science, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Argenis Rodas-González
- Department of Animal Science, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Tiago S Valente
- Department of Agricultural, Food and Nutritional Sciences, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - Marcos Claudio S Virtuoso
- Department of Agricultural, Food and Nutritional Sciences, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - Changxi Li
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada; Department of Agricultural, Food and Nutritional Sciences, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - Stephanie Lam
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | - Óscar López-Campos
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | - Jose Segura
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | - John Basarab
- Department of Agricultural, Food and Nutritional Sciences, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - Manuel Juárez
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada.
| |
Collapse
|
17
|
Xie L, Qin J, Yao T, Tang X, Cui D, Chen L, Rao L, Xiao S, Zhang Z, Huang L. Genetic dissection of 26 meat cut, meat quality and carcass traits in four pig populations. Genet Sel Evol 2023; 55:43. [PMID: 37386365 DOI: 10.1186/s12711-023-00817-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/16/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Currently, meat cut traits are integrated in pig breeding objectives to gain extra profit. However, little is known about the heritability of meat cut proportions (MCP) and their correlations with other traits. The aims of this study were to assess the heritability and genetic correlation of MCP with carcass and meat quality traits using single nucleotide polymorphism chips and conduct a genome-wide association study (GWAS) to identify candidate genes for MCP. RESULTS Seventeen MCP, 12 carcass, and seven meat quality traits were measured in 2012 pigs from four populations (Landrace; Yorkshire; Landrace and Yorkshire hybrid pigs; Duroc, and Landrace and Yorkshire hybrid pigs). Estimates of the heritability for MCP ranged from 0.10 to 0.55, with most estimates being moderate to high and highly consistent across populations. In the combined population, the heritability estimates for the proportions of scapula bone, loin, back fat, leg bones, and boneless picnic shoulder were 0.44 ± 0.04, 0.36 ± 0.04, 0.44 ± 0.04, 0.38 ± 0.04, and 0.39 ± 0.04, respectively. Proportion of middle cuts was genetically significantly positively correlated with intramuscular fat content and backfat depth. Proportion of ribs was genetically positively correlated with carcass oblique length and straight length (0.35 ± 0.08 to 0.45 ± 0.07) and negatively correlated with backfat depth (- 0.26 ± 0.10 to - 0.45 ± 0.10). However, weak or nonsignificant genetic correlations were observed between most MCP, indicating their independence. Twenty-eight quantitative trait loci (QTL) for MCP were detected by GWAS, and 24 new candidate genes related to MCP were identified, which are involved with growth, height, and skeletal development. Most importantly, we found that the development of the bones in different parts of the body may be regulated by different genes, among which HMGA1 may be the strongest candidate gene affecting forelimb bone development. Moreover, as previously shown, VRTN is a causal gene affecting vertebra number, and BMP2 may be the strongest candidate gene affecting hindlimb bone development. CONCLUSIONS Our results indicate that breeding programs for MCP have the potential to enhance carcass composition by increasing the proportion of expensive cuts and decreasing the proportion of inexpensive cuts. Since MCP are post-slaughter traits, the QTL and candidate genes related to these traits can be used for marker-assisted and genomic selection.
Collapse
Affiliation(s)
- Lei Xie
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jiangtao Qin
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Tianxiong Yao
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xi Tang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Dengshuai Cui
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Liqing Chen
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lin Rao
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shijun Xiao
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhiyan Zhang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Lusheng Huang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| |
Collapse
|
18
|
Xiong X, Liu J, Rao Y. Whole Genome Resequencing Helps Study Important Traits in Chickens. Genes (Basel) 2023; 14:1198. [PMID: 37372379 DOI: 10.3390/genes14061198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
The emergence of high-throughput sequencing technology promotes life science development, provides technical support to analyze many life mechanisms, and presents new solutions to previously unsolved problems in genomic research. Resequencing technology has been widely used for genome selection and research on chicken population structure, genetic diversity, evolutionary mechanisms, and important economic traits caused by genome sequence differences since the release of chicken genome sequence information. This article elaborates on the factors influencing whole genome resequencing and the differences between these factors and whole genome sequencing. It reviews the important research progress in chicken qualitative traits (e.g., frizzle feather and comb), quantitative traits (e.g., meat quality and growth traits), adaptability, and disease resistance, and provides a theoretical basis to study whole genome resequencing in chickens.
Collapse
Affiliation(s)
- Xinwei Xiong
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang Normal University, Nanchang 330032, China
| | - Jianxiang Liu
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang Normal University, Nanchang 330032, China
| | - Yousheng Rao
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang Normal University, Nanchang 330032, China
| |
Collapse
|
19
|
Bitaraf Sani M, Karimi O, Burger PA, Javanmard A, Roudbari Z, Mohajer M, Asadzadeh N, Zareh Harofteh J, Kazemi A, Naderi AS. A genome-wide association study of morphometric traits in dromedaries. Vet Med Sci 2023. [PMID: 37139670 DOI: 10.1002/vms3.1151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/15/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Investigating genomic regions associated with morphometric traits in camels is valuable, because it allows a better understanding of adaptive and productive features to implement a sustainable management and a customised breeding program for dromedaries. OBJECTIVES With a genome-wide association study (GWAS) including 96 Iranian dromedaries phenotyped for 12 morphometric traits and genotyped-by-sequencing (GBS) with 14,522 SNPs, we aimed at identifying associated candidate genes. METHODS The association between SNPs and morphometric traits was investigated using a linear mixed model with principal component analysis (PCA) and kinship matrix. RESULTS With this approach, we detected 59 SNPs located in 37 candidate genes potentially associated to morphometric traits in dromedaries. The top associated SNPs were related to pin width, whither to pin length, height at whither, muzzle girth, and tail length. Interestingly, the results highlight the association between whither height, muzzle circumference, tail length, whither to pin length. The identified candidate genes were associated with growth, body size, and immune system in other species. CONCLUSIONS We identified three key hub genes in the gene network analysis including ACTB, SOCS1 and ARFGEF1. In the central position of gene network, ACTB was detected as the most important gene related to muscle function. With this initial GWAS using GBS on dromedary camels for morphometric traits, we show that this SNP panel can be effective for genetic evaluation of growth in dromedaries. However, we suggest a higher-density SNP array may greatly improve the reliability of the results.
Collapse
Affiliation(s)
- Morteza Bitaraf Sani
- Animal Science Research Department, Yazd Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education & Extension Organization (AREEO), Yazd, Iran
| | - Omid Karimi
- Department of Animal Viral Diseases Research, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Pamela Anna Burger
- Research Institute of Wildlife Ecology, Vetmeduni Vienna, Vienna, Austria
| | - Arash Javanmard
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Zahra Roudbari
- Department of Animal Science, Faculty of Agriculture, University of Jiroft, Jiroft, Iran
| | - Mokhtar Mohajer
- Animal Science Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Nader Asadzadeh
- Animal Science Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Javad Zareh Harofteh
- Animal Science Research Department, Yazd Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education & Extension Organization (AREEO), Yazd, Iran
| | - Ali Kazemi
- Animal Breeding Canter of Iran, Karaj, Iran
| | - Ali Shafei Naderi
- Animal Science Research Department, Yazd Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education & Extension Organization (AREEO), Yazd, Iran
| |
Collapse
|
20
|
Chang C, Yang Y, Zhou L, Baiyin B, Liu Z, Guo L, Ma F, Wang J, Chai Y, Shi C, Zhang W. Candidate Genes and Gene Networks Change with Age in Japanese Black Cattle by Blood Transcriptome Analysis. Genes (Basel) 2023; 14:504. [PMID: 36833431 PMCID: PMC9956108 DOI: 10.3390/genes14020504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Age is an important physiological factor that affects the metabolism and immune function of beef cattle. While there have been many studies using the blood transcriptome to study the effects of age on gene expression, few have been reported on beef cattle. To this end, we used the blood transcriptomes of Japanese black cattle at different ages as the study subjects and screened 1055, 345, and 1058 differential expressed genes (DEGs) in the calf vs. adult, adult vs. old, and calf vs. old comparison groups, respectively. The weighted co-expression network consisted of 1731 genes. Finally, blue, brown, and yellow age-specific modules were obtained, in which genes were enriched in signaling pathways related to growth and development and immune metabolic dysfunction, respectively. Protein-protein interaction (PPI) analysis showed gene interactions in each specific module, and 20 of the highest connectivity genes were chosen as potential hub genes. Finally, we identified 495, 244, and 1007 genes by exon-wide selection signature (EWSS) analysis of different comparison groups. Combining the results of hub genes, we found that VWF, PARVB, PRKCA, and TGFB1I1 could be used as candidate genes for growth and development stages of beef cattle. CORO2B and SDK1 could be used as candidate marker genes associated with aging. In conclusion, by comparing the blood transcriptome of calves, adult cattle, and old cattle, the candidate genes related to immunity and metabolism affected by age were identified, and the gene co-expression network of different age stages was constructed. It provides a data basis for exploring the growth, development, and aging of beef cattle.
Collapse
Affiliation(s)
- Chencheng Chang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yanda Yang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Le Zhou
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Batu Baiyin
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zaixia Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lili Guo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Fengying Ma
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jie Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yuan Chai
- College of Agronomy Animal Husbandry and Bioengineering, Xing’an Vocational and Technical College, Ulanhot 137400, China
| | - Caixia Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Wenguang Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- College of Life Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China
| |
Collapse
|
21
|
Liang M, An B, Deng T, Du L, Li K, Cao S, Du Y, Xu L, Zhang L, Gao X, Cao Y, Zhao Y, Li J, Gao H. Incorporating genome-wide and transcriptome-wide association studies to identify genetic elements of longissimus dorsi muscle in Huaxi cattle. Front Genet 2023; 13:982433. [PMID: 36685878 PMCID: PMC9852892 DOI: 10.3389/fgene.2022.982433] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/07/2022] [Indexed: 01/07/2023] Open
Abstract
Locating the genetic variation of important livestock and poultry economic traits is essential for genetic improvement in breeding programs. Identifying the candidate genes for the productive ability of Huaxi cattle was one crucial element for practical breeding. Based on the genotype and phenotype data of 1,478 individuals and the RNA-seq data of 120 individuals contained in 1,478 individuals, we implemented genome-wide association studies (GWAS), transcriptome-wide association studies (TWAS), and Fisher's combined test (FCT) to identify the candidate genes for the carcass trait, the weight of longissimus dorsi muscle (LDM). The results indicated that GWAS, TWAS, and FCT identified seven candidate genes for LDM altogether: PENK was located by GWAS and FCT, PPAT was located by TWAS and FCT, and XKR4, MTMR3, FGFRL1, DHRS4, and LAP3 were only located by one of the methods. After functional analysis of these candidate genes and referring to the reported studies, we found that they were mainly functional in the progress of the development of the body and the growth of muscle cells. Combining advanced breeding techniques such as gene editing with our study will significantly accelerate the genetic improvement for the future breeding of Huaxi cattle.
Collapse
Affiliation(s)
- Mang Liang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bingxing An
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianyu Deng
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lili Du
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Keanning Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sheng Cao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yueying Du
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lingyang Xu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lupei Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xue Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang Cao
- Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yuming Zhao
- Jilin Academy of Agricultural Sciences, Changchun, China
| | - Junya Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huijiang Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China,*Correspondence: Huijiang Gao,
| |
Collapse
|
22
|
Neumann GB, Korkuć P, Arends D, Wolf MJ, May K, König S, Brockmann GA. Genomic diversity and relationship analyses of endangered German Black Pied cattle (DSN) to 68 other taurine breeds based on whole-genome sequencing. Front Genet 2023; 13:993959. [PMID: 36712857 PMCID: PMC9875303 DOI: 10.3389/fgene.2022.993959] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/28/2022] [Indexed: 01/05/2023] Open
Abstract
German Black Pied cattle (Deutsches Schwarzbuntes Niederungsrind, DSN) are an endangered dual-purpose cattle breed originating from the North Sea region. The population comprises about 2,500 cattle and is considered one of the ancestral populations of the modern Holstein breed. The current study aimed at defining the breeds closest related to DSN cattle, characterizing their genomic diversity and inbreeding. In addition, the detection of selection signatures between DSN and Holstein was a goal. Relationship analyses using fixation index (FST), phylogenetic, and admixture analyses were performed between DSN and 68 other breeds from the 1000 Bull Genomes Project. Nucleotide diversity, observed heterozygosity, and expected heterozygosity were calculated as metrics for genomic diversity. Inbreeding was measured as excess of homozygosity (FHom) and genomic inbreeding (FRoH) through runs of homozygosity (RoHs). Region-wide FST and cross-population-extended haplotype homozygosity (XP-EHH) between DSN and Holstein were used to detect selection signatures between the two breeds, and RoH islands were used to detect selection signatures within DSN and Holstein. DSN showed a close genetic relationship with breeds from the Netherlands, Belgium, Northern Germany, and Scandinavia, such as Dutch Friesian Red, Dutch Improved Red, Belgian Red White Campine, Red White Dual Purpose, Modern Angler, Modern Danish Red, and Holstein. The nucleotide diversity in DSN (0.151%) was higher than in Holstein (0.147%) and other breeds, e.g., Norwegian Red (0.149%), Red White Dual Purpose (0.149%), Swedish Red (0.149%), Hereford (0.145%), Angus (0.143%), and Jersey (0.136%). The FHom and FRoH values in DSN were among the lowest. Regions with high FST between DSN and Holstein, significant XP-EHH regions, and RoH islands detected in both breeds harbor candidate genes that were previously reported for milk, meat, fertility, production, and health traits, including one QTL detected in DSN for endoparasite infection resistance. The selection signatures between DSN and Holstein provide evidence of regions responsible for the dual-purpose properties of DSN and the milk type of Holstein. Despite the small population size, DSN has a high level of diversity and low inbreeding. FST supports its relatedness to breeds from the same geographic origin and provides information on potential gene pools that could be used to maintain diversity in DSN.
Collapse
Affiliation(s)
- Guilherme B. Neumann
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Paula Korkuć
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Danny Arends
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany,Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, United Kingdom
| | - Manuel J. Wolf
- Institute of Animal Breeding and Genetics, Justus-Liebig-Universität, Giessen, Germany
| | - Katharina May
- Institute of Animal Breeding and Genetics, Justus-Liebig-Universität, Giessen, Germany
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-Universität, Giessen, Germany
| | - Gudrun A. Brockmann
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany,*Correspondence: Gudrun A. Brockmann,
| |
Collapse
|
23
|
Selionova M, Aibazov M, Mamontova T, Malorodov V, Sermyagin A, Zinovyeva N, Easa AA. Genome-wide association study of live body weight and body conformation traits in young Karachai goats. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
24
|
Wang P, Li X, Zhu Y, Wei J, Zhang C, Kong Q, Nie X, Zhang Q, Wang Z. Genome-wide association analysis of milk production, somatic cell score, and body conformation traits in Holstein cows. Front Vet Sci 2022; 9:932034. [PMID: 36268046 PMCID: PMC9578681 DOI: 10.3389/fvets.2022.932034] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/09/2022] [Indexed: 11/04/2022] Open
Abstract
Milk production and body conformation traits are critical economic traits for dairy cows. To understand the basic genetic structure for those traits, a genome wide association study was performed on milk yield, milk fat yield, milk fat percentage, milk protein yield, milk protein percentage, somatic cell score, body form composite index, daily capacity composite index, feed, and leg conformation traits, based on the Illumina Bovine HD100k BeadChip. A total of 57, 12 and 26 SNPs were found to be related to the milk production, somatic cell score and body conformation traits in the Holstein cattle. Genes with pleiotropic effect were also found in this study. Seven significant SNPs were associated with multi-traits and were located on the PLEC, PLEKHA5, TONSL, PTGER4, and LCORL genes. In addition, some important candidate genes, like GPAT3, CEBPB, AGO2, SLC37A1, and FNDC3B, were found to participate in fat metabolism or mammary gland development. These results can be used as candidate genes for milk production, somatic cell score, and body conformation traits of Holstein cows, and are helpful for further gene function analysis to improve milk production and quality.
Collapse
Affiliation(s)
- Peng Wang
- Heilongjiang Animal Husbandry Service, Harbin, China
| | - Xue Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China,Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Yihao Zhu
- Heilongjiang Animal Husbandry Service, Harbin, China
| | - Jiani Wei
- School of mathematics, University of Edinburgh, Edinburgh, United Kingdom
| | - Chaoxin Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China,Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Qingfang Kong
- Heilongjiang Animal Husbandry Service, Harbin, China
| | - Xu Nie
- Heilongjiang Animal Husbandry Service, Harbin, China
| | - Qi Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhipeng Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China,Bioinformatics Center, Northeast Agricultural University, Harbin, China,*Correspondence: Zhipeng Wang
| |
Collapse
|
25
|
Genetic Architecture and Signatures of Selection in the Caqueteño Creole (Colombian Native Cattle). DIVERSITY 2022. [DOI: 10.3390/d14100828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Evolutionary mechanisms have shaped the genomic architecture of Colombian Creole cattle breeds. The mating and selection processes have impacted several traits, promoting differences within and between populations. Studies of population structure and selection signatures in Colombian Creole breeds are scarce, and need more attention to better understand genetic differentiation, gene flow, and genetic distance. This study aimed to analyze the population structure and identify selection imprints in the Criollo Caqueteño (CAQ) population. It used 127 CAQ animals genotyped with Chip HD 777,000 SNPs. The population structure analyses used discriminant principal component analysis (DAPC), integrated haplotype scoring (iHS), and index-fixing (Fst) methodologies to detect selection signals. We can highlight SNP regions on the genes TMPRSS15, PGAM2, and EGFR, identified by the Fst method. Additionally, the iHS regions for cluster 1 identified candidate genes on BTA 3 (CMPK1 and FOXD2), BTA 11 (RCAN1), and BTA 22 (ARPP21). In group 2, we can highlight the genes on BTA 4 (SLC13A4, BRAF), BTA 9 (ULBP), BTA 14 (CSMD3) and BTA 19 (KRTAP9-2). These candidate genes have been associated with fertility traits, precocity, growth, and environmental and disease resistance, indicating a genetic potential in CAQ animals. All this promotes a better understanding of the diversity and genetic structure in the CAQ population. Based on that, our study can significantly assist the sustainable development and conservation of the breed in the Colombian Amazon.
Collapse
|
26
|
Ge L, Su P, Wang S, Gu Y, Cao X, Lv X, Wang S, Getachew T, Mwacharo JM, Haile A, Yuan Z, Sun W. New Insight into the Role of the Leucine Aminopeptidase 3 ( LAP3) in Cell Proliferation and Myogenic Differentiation in Sheep Embryonic Myoblasts. Genes (Basel) 2022; 13:genes13081438. [PMID: 36011349 PMCID: PMC9408374 DOI: 10.3390/genes13081438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022] Open
Abstract
Previous genome-wide association studies (GWAS) have found that LAP3 may have the potential function to impact sheep muscle development. In order to further explore whether LAP3 expression has an important role in the development of sheep embryonic myoblasts, we conducted the spatiotemporal expression profile analysis of LAP3 at the tissue and cellular level. Then we used small interfering RNA and eukaryotic recombinant vectors to perform gain/loss-of-function analysis of LAP3. CCK-8 detection, EdU staining, and flow cytometry were used to investigate the impact of LAP3 knockdown or overexpression on the proliferation of embryonic myoblasts. In addition, cell phenotype observation, MyHC indirect immunofluorescence, and quantitative detection of the expression changes of myogenic regulatory factors (MRFs) were used to explore the effect of LAP3 on myogenic differentiation. The results showed that the LAP3 expression level in muscle tissue of fetuses was significantly higher than that in newborn lambs and adult sheep, and its expression level on day 3 of differentiation was also significantly higher than that in the proliferation phase and other differentiation time points. LAP3 silencing could significantly increase cell viability and EdU-positive cells, as well as prolonging the length of S phase of myoblasts to promote proliferation, while the results were reversed when LAP3 was overexpressed. Moreover, LAP3 silencing significantly hindered myotube formation and down-regulated the expression levels of MRFs from day 5 to day 7 of terminal differentiation, while the results were reversed when LAP3 was highly expressed. Overall, our results suggested that the expression of LAP3 impacts on the development of sheep embryonic myoblasts which provides an important theoretical basis for molecular breeding of meat production in sheep.
Collapse
Affiliation(s)
- Ling Ge
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| | - Pengwei Su
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| | - Shan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| | - Yifei Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| | - Xiukai Cao
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou 225000, China
| | - Xiaoyang Lv
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou 225000, China
| | - Shanhe Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| | - Tesfaye Getachew
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia
| | - Joram M. Mwacharo
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia
| | - Aynalem Haile
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia
| | - Zehu Yuan
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou 225000, China
- Correspondence: (Z.Y.); (W.S.)
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou 225000, China
- Correspondence: (Z.Y.); (W.S.)
| |
Collapse
|
27
|
Smith JL, Wilson ML, Nilson SM, Rowan TN, Schnabel RD, Decker JE, Seabury CM. Genome-wide association and genotype by environment interactions for growth traits in U.S. Red Angus cattle. BMC Genomics 2022; 23:517. [PMID: 35842584 PMCID: PMC9287884 DOI: 10.1186/s12864-022-08667-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 05/27/2022] [Indexed: 11/10/2022] Open
Abstract
Background Genotypic information produced from single nucleotide polymorphism (SNP) arrays has routinely been used to identify genomic regions associated with complex traits in beef and dairy cattle. Herein, we assembled a dataset consisting of 15,815 Red Angus beef cattle distributed across the continental U.S. and a union set of 836,118 imputed SNPs to conduct genome-wide association analyses (GWAA) for growth traits using univariate linear mixed models (LMM); including birth weight, weaning weight, and yearling weight. Genomic relationship matrix heritability estimates were produced for all growth traits, and genotype-by-environment (GxE) interactions were investigated. Results Moderate to high heritabilities with small standard errors were estimated for birth weight (0.51 ± 0.01), weaning weight (0.25 ± 0.01), and yearling weight (0.42 ± 0.01). GWAA revealed 12 pleiotropic QTL (BTA6, BTA14, BTA20) influencing Red Angus birth weight, weaning weight, and yearling weight which met a nominal significance threshold (P ≤ 1e-05) for polygenic traits using 836K imputed SNPs. Moreover, positional candidate genes associated with Red Angus growth traits in this study (i.e., LCORL, LOC782905, NCAPG, HERC6, FAM184B, SLIT2, MMRN1, KCNIP4, CCSER1, GRID2, ARRDC3, PLAG1, IMPAD1, NSMAF, PENK, LOC112449660, MOS, SH3PXD2B, STC2, CPEB4) were also previously associated with feed efficiency, growth, and carcass traits in beef cattle. Collectively, 14 significant GxE interactions were also detected, but were less consistent among the investigated traits at a nominal significance threshold (P ≤ 1e-05); with one pleiotropic GxE interaction detected on BTA28 (24 Mb) for Red Angus weaning weight and yearling weight. Conclusions Sixteen well-supported QTL regions detected from the GWAA and GxE GWAA for growth traits (birth weight, weaning weight, yearling weight) in U.S. Red Angus cattle were found to be pleiotropic. Twelve of these pleiotropic QTL were also identified in previous studies focusing on feed efficiency and growth traits in multiple beef breeds and/or their composites. In agreement with other beef cattle GxE studies our results implicate the role of vasodilation, metabolism, and the nervous system in the genetic sensitivity to environmental stress. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08667-6.
Collapse
Affiliation(s)
- Johanna L Smith
- Department of Veterinary Pathobiology, Texas A&M University, College Station, 77843, USA
| | - Miranda L Wilson
- Department of Veterinary Pathobiology, Texas A&M University, College Station, 77843, USA
| | - Sara M Nilson
- Division of Animal Sciences, University of Missouri, Columbia, 65211, USA
| | - Troy N Rowan
- Division of Animal Sciences, University of Missouri, Columbia, 65211, USA.,Genetics Area Program, University of Missouri, Columbia, 65211, USA
| | - Robert D Schnabel
- Division of Animal Sciences, University of Missouri, Columbia, 65211, USA.,Genetics Area Program, University of Missouri, Columbia, 65211, USA.,Informatics Institute, University of Missouri, Columbia, 65211, USA
| | - Jared E Decker
- Division of Animal Sciences, University of Missouri, Columbia, 65211, USA.,Genetics Area Program, University of Missouri, Columbia, 65211, USA.,Informatics Institute, University of Missouri, Columbia, 65211, USA
| | - Christopher M Seabury
- Department of Veterinary Pathobiology, Texas A&M University, College Station, 77843, USA.
| |
Collapse
|
28
|
Luo X, Li J, Xiao C, Sun L, Xiang W, Chen N, Lei C, Lei H, Long Y, Long T, Suolang Q, Yi K. Whole-Genome Resequencing of Xiangxi Cattle Identifies Genomic Diversity and Selection Signatures. Front Genet 2022; 13:816379. [PMID: 35711927 PMCID: PMC9196905 DOI: 10.3389/fgene.2022.816379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/13/2022] [Indexed: 01/11/2023] Open
Abstract
Understanding the genetic diversity in Xiangxi cattle may facilitate our efforts toward further breeding programs. Here we compared 23 Xiangxi cattle with 78 published genomes of 6 worldwide representative breeds to characterize the genomic variations of Xiangxi cattle. Based on clustering models in population structure analysis, we displayed that Xiangxi cattle had a mutual genome ancestor with Chinese indicine, Indian indicine, and East Asian taurine. Population genetic diversity was analyzed by four methods (nucleotide diversity, inbreeding coefficient, linkage disequilibrium decay and runs of homozygosity), and we found that Xiangxi cattle had higher genomic diversity and weaker artificial selection than commercial breed cattle. Using four testing methods (θπ, CLR, FST, and XP-EHH), we explored positive selection regions harboring genes in Xiangxi cattle, which were related to reproduction, growth, meat quality, heat tolerance, and immune response. Our findings revealed the extent of sequence variation in Xiangxi cattle at the genome-wide level. All of our fruitful results can bring about a valuable genomic resource for genetic studies and breed protection in the future.
Collapse
Affiliation(s)
- Xiaoyu Luo
- Hunan Institute of Animal and Veterinary Science, Changsha, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Jianbo Li
- Hunan Institute of Animal and Veterinary Science, Changsha, China.,Xiangxi Cattle Engineering Technology Center of Hunan Province, Huayuan, China
| | - Chentong Xiao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Luyang Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Weixuan Xiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China.,School of Life Science, University of Bristol, Bristol, United Kingdom
| | - Ningbo Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Hong Lei
- Hunan Institute of Animal and Veterinary Science, Changsha, China.,Xiangxi Cattle Engineering Technology Center of Hunan Province, Huayuan, China
| | - Yun Long
- Xiangxi Cattle Engineering Technology Center of Hunan Province, Huayuan, China.,Hunan De Nong Animal Husbandry Group Co. Ltd., Huayuan, China
| | - Ting Long
- Xiangxi Cattle Engineering Technology Center of Hunan Province, Huayuan, China.,Hunan De Nong Animal Husbandry Group Co. Ltd., Huayuan, China
| | - Quji Suolang
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa, China
| | - Kangle Yi
- Hunan Institute of Animal and Veterinary Science, Changsha, China.,Xiangxi Cattle Engineering Technology Center of Hunan Province, Huayuan, China
| |
Collapse
|
29
|
Palma-Vera SE, Reyer H, Langhammer M, Reinsch N, Derezanin L, Fickel J, Qanbari S, Weitzel JM, Franzenburg S, Hemmrich-Stanisak G, Schoen J. Genomic characterization of the world's longest selection experiment in mouse reveals the complexity of polygenic traits. BMC Biol 2022; 20:52. [PMID: 35189878 PMCID: PMC8862358 DOI: 10.1186/s12915-022-01248-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 02/07/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Long-term selection experiments are a powerful tool to understand the genetic background of complex traits. The longest of such experiments has been conducted in the Research Institute for Farm Animal Biology (FBN), generating extreme mouse lines with increased fertility, body mass, protein mass and endurance. For >140 generations, these lines have been maintained alongside an unselected control line, representing a valuable resource for understanding the genetic basis of polygenic traits. However, their history and genomes have not been reported in a comprehensive manner yet. Therefore, the aim of this study is to provide a summary of the breeding history and phenotypic traits of these lines along with their genomic characteristics. We further attempt to decipher the effects of the observed line-specific patterns of genetic variation on each of the selected traits. RESULTS Over the course of >140 generations, selection on the control line has given rise to two extremely fertile lines (>20 pups per litter each), two giant growth lines (one lean, one obese) and one long-distance running line. Whole genome sequencing analysis on 25 animals per line revealed line-specific patterns of genetic variation among lines, as well as high levels of homozygosity within lines. This high degree of distinctiveness results from the combined effects of long-term continuous selection, genetic drift, population bottleneck and isolation. Detection of line-specific patterns of genetic differentiation and structural variation revealed multiple candidate genes behind the improvement of the selected traits. CONCLUSIONS The genomes of the Dummerstorf trait-selected mouse lines display distinct patterns of genomic variation harbouring multiple trait-relevant genes. Low levels of within-line genetic diversity indicate that many of the beneficial alleles have arrived to fixation alongside with neutral alleles. This study represents the first step in deciphering the influence of selection and neutral evolutionary forces on the genomes of these extreme mouse lines and depicts the genetic complexity underlying polygenic traits.
Collapse
Affiliation(s)
- Sergio E Palma-Vera
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.
| | - Henry Reyer
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Martina Langhammer
- Institute of Genetics and Biometry, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Norbert Reinsch
- Institute of Genetics and Biometry, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Lorena Derezanin
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- Department of Evolutionary Genetics, Research Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Joerns Fickel
- Department of Evolutionary Genetics, Research Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
- University of Potsdam, Institute for Biochemistry and Biology, Potsdam, Germany
| | - Saber Qanbari
- Institute of Genetics and Biometry, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Joachim M Weitzel
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | | | | | - Jennifer Schoen
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- Department of Reproduction Biology, Research Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| |
Collapse
|
30
|
Selection and Drift: A Comparison between Historic and Recent Dutch Friesian Cattle and Recent Holstein Friesian Using WGS Data. Animals (Basel) 2022; 12:ani12030329. [PMID: 35158654 PMCID: PMC8833835 DOI: 10.3390/ani12030329] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Over the last century, genetic diversity in the cattle species has been affected by the replacement of many local, dual-purpose breeds with a few specialized, high-output dairy breeds. This replacement caused a sharp decline in the population size of local breeds. In the Netherlands, the local Dutch Friesian breed has gradually been replaced by the Holstein Friesian. This resulted in a rapid decrease in numbers of the Dutch Friesian breed with an associated risk of loss of genetic diversity due to drift. The objective of this study is to investigate genomewide genetic diversity between a group of historic and recent Dutch Friesian bulls and a group of recently used Holstein Friesian bulls. Our findings showed that a large amount of diversity is shared between the three groups, but each of them has some unique genetic identity (12% of the single nucleotide polymorphism were group-specific). The genetic diversity of the Dutch Friesians reduced over time, but this did not lead to higher inbreeding levels—especially, inbreeding due to recent ancestors has not increased. Genetically, the recent Dutch Friesians were slightly more different from Holstein Friesians than the historic Dutch Friesians. Our results also highlighted the presence of several genomic regions that differentiated between the groups. Abstract Over the last century, genetic diversity in many cattle breeds has been affected by the replacement of traditional local breeds with just a few milk-producing breeds. In the Netherlands, the local Dutch Friesian breed (DF) has gradually been replaced by the Holstein Friesian breed (HF). The objective of this study is to investigate genomewide genetic diversity between a group of historically and recently used DF bulls and a group of recently used HF bulls. Genetic material of 12 historic (hDF), 12 recent DF bulls (rDF), and 12 recent HF bulls (rHF) in the Netherlands was sequenced. Based on the genomic information, different parameters—e.g., allele frequencies, inbreeding coefficient, and runs of homozygosity (ROH)—were calculated. Our findings showed that a large amount of diversity is shared between the three groups, but each of them has a unique genetic identity (12% of the single nucleotide polymorphisms were group-specific). The rDF is slightly more diverged from rHF than hDF. The inbreeding coefficient based on runs of homozygosity (Froh) was higher for rDF (0.24) than for hDF (0.17) or rHF (0.13). Our results also displayed the presence of several genomic regions that differentiated between the groups. In addition, thirteen, forty-five, and six ROH islands were identified in hDF, rDF, and rHF, respectively. The genetic diversity of the DF breed reduced over time, but this did not lead to higher inbreeding levels—especially, inbreeding due to recent ancestors was not increased.
Collapse
|
31
|
Niu Q, Zhang T, Xu L, Wang T, Wang Z, Zhu B, Gao X, Chen Y, Zhang L, Gao H, Li J, Xu L. Identification of Candidate Variants Associated With Bone Weight Using Whole Genome Sequence in Beef Cattle. Front Genet 2021; 12:750746. [PMID: 34912371 PMCID: PMC8667311 DOI: 10.3389/fgene.2021.750746] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Bone weight is critical to affect body conformation and stature in cattle. In this study, we conducted a genome-wide association study for bone weight in Chinese Simmental beef cattle based on the imputed sequence variants. We identified 364 variants associated with bone weight, while 350 of them were not included in the Illumina BovineHD SNP array, and several candidate genes and GO terms were captured to be associated with bone weight. Remarkably, we identified four potential variants in a candidate region on BTA6 using Bayesian fine-mapping. Several important candidate genes were captured, including LAP3, MED28, NCAPG, LCORL, SLIT2, and IBSP, which have been previously reported to be associated with carcass traits, body measurements, and growth traits. Notably, we found that the transcription factors related to MED28 and LCORL showed high conservation across multiple species. Our findings provide some valuable information for understanding the genetic basis of body stature in beef cattle.
Collapse
Affiliation(s)
- Qunhao Niu
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianliu Zhang
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ling Xu
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianzhen Wang
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zezhao Wang
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bo Zhu
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xue Gao
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Chen
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lupei Zhang
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huijiang Gao
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junya Li
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lingyang Xu
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
32
|
Zinovieva NA, Dotsev AV, Sermyagin AA, Deniskova TE, Abdelmanova AS, Kharzinova VR, Sölkner J, Reyer H, Wimmers K, Brem G. Selection signatures in two oldest Russian native cattle breeds revealed using high-density single nucleotide polymorphism analysis. PLoS One 2020; 15:e0242200. [PMID: 33196682 PMCID: PMC7668599 DOI: 10.1371/journal.pone.0242200] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
Native cattle breeds can carry specific signatures of selection reflecting their adaptation to the local environmental conditions and response to the breeding strategy used. In this study, we comprehensively analysed high-density single nucleotide polymorphism (SNP) genotypes to characterise the population structure and detect the selection signatures in Russian native Yaroslavl and Kholmogor dairy cattle breeds, which have been little influenced by introgression with transboundary breeds. Fifty-six samples of pedigree-recorded purebred animals, originating from different breeding farms and representing different sire lines, of the two studied breeds were genotyped using a genome-wide bovine genotyping array (Bovine HD BeadChip). Three statistical analyses—calculation of fixation index (FST) for each SNP for the comparison of the pairs of breeds, hapFLK analysis, and estimation of the runs of homozygosity (ROH) islands shared in more than 50% of animals—were combined for detecting the selection signatures in the genome of the studied cattle breeds. We confirmed nine and six known regions under putative selection in the genomes of Yaroslavl and Kholmogor cattle, respectively; the flanking positions of most of these regions were elucidated. Only two of the selected regions (localised on BTA 14 at 24.4–25.1 Mbp and on BTA 16 at 42.5–43.5 Mb) overlapped in Yaroslavl, Kholmogor and Holstein breeds. In addition, we detected three novel selection sweeps in the genome of Yaroslavl (BTA 4 at 4.74–5.36 Mbp, BTA 15 at 17.80–18.77 Mbp, and BTA 17 at 45.59–45.61 Mbp) and Kholmogor breeds (BTA 12 at 82.40–81.69 Mbp, BTA 15 at 16.04–16.62 Mbp, and BTA 18 at 0.19–1.46 Mbp) by using at least two of the above-mentioned methods. We expanded the list of candidate genes associated with the selected genomic regions and performed their functional annotation. We discussed the possible involvement of the identified candidate genes in artificial selection in connection with the origin and development of the breeds. Our findings on the Yaroslavl and Kholmogor breeds obtained using high-density SNP genotyping and three different statistical methods allowed the detection of novel putative genomic regions and candidate genes that might be under selection. These results might be useful for the sustainable development and conservation of these two oldest Russian native cattle breeds.
Collapse
Affiliation(s)
- Natalia Anatolievna Zinovieva
- L.K. Ernst Federal Science Center for Animal Husbandry, Federal Agency of Scientific Organizations, settl. Dubrovitzy, Podolsk Region, Moscow Province, Russia
- * E-mail:
| | - Arsen Vladimirovich Dotsev
- L.K. Ernst Federal Science Center for Animal Husbandry, Federal Agency of Scientific Organizations, settl. Dubrovitzy, Podolsk Region, Moscow Province, Russia
| | - Alexander Alexandrovich Sermyagin
- L.K. Ernst Federal Science Center for Animal Husbandry, Federal Agency of Scientific Organizations, settl. Dubrovitzy, Podolsk Region, Moscow Province, Russia
| | - Tatiana Evgenievna Deniskova
- L.K. Ernst Federal Science Center for Animal Husbandry, Federal Agency of Scientific Organizations, settl. Dubrovitzy, Podolsk Region, Moscow Province, Russia
| | - Alexandra Sergeevna Abdelmanova
- L.K. Ernst Federal Science Center for Animal Husbandry, Federal Agency of Scientific Organizations, settl. Dubrovitzy, Podolsk Region, Moscow Province, Russia
| | - Veronika Ruslanovna Kharzinova
- L.K. Ernst Federal Science Center for Animal Husbandry, Federal Agency of Scientific Organizations, settl. Dubrovitzy, Podolsk Region, Moscow Province, Russia
| | - Johann Sölkner
- Division of Livestock Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Henry Reyer
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology [FBN], Dummerstorf, Germany
| | - Klaus Wimmers
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology [FBN], Dummerstorf, Germany
| | - Gottfried Brem
- L.K. Ernst Federal Science Center for Animal Husbandry, Federal Agency of Scientific Organizations, settl. Dubrovitzy, Podolsk Region, Moscow Province, Russia
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine [VMU], Vienna, Austria
| |
Collapse
|
33
|
Vanvanhossou SFU, Scheper C, Dossa LH, Yin T, Brügemann K, König S. A multi-breed GWAS for morphometric traits in four Beninese indigenous cattle breeds reveals loci associated with conformation, carcass and adaptive traits. BMC Genomics 2020; 21:783. [PMID: 33176675 PMCID: PMC7656759 DOI: 10.1186/s12864-020-07170-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Specific adaptive features including disease resistance and growth abilities in harsh environments are attributed to indigenous cattle breeds of Benin, but these breeds are endangered due to crossbreeding. So far, there is a lack of systematic trait recording, being the basis for breed characterizations, and for structured breeding program designs aiming on conservation. Bridging this gap, own phenotyping for morphological traits considered measurements for height at withers (HAW), sacrum height (SH), heart girth (HG), hip width (HW), body length (BL) and ear length (EL), including 449 cattle from the four indigenous Benin breeds Lagune, Somba, Borgou and Pabli. In order to utilize recent genomic tools for breed characterizations and genetic evaluations, phenotypes for novel traits were merged with high-density SNP marker data. Multi-breed genetic parameter estimations and genome-wide association studies (GWAS) for the six morphometric traits were carried out. Continuatively, we aimed on inferring genomic regions and functional loci potentially associated with conformation, carcass and adaptive traits. RESULTS SNP-based heritability estimates for the morphometric traits ranged between 0.46 ± 0.14 (HG) and 0.74 ± 0.13 (HW). Phenotypic and genetic correlations ranged from 0.25 ± 0.05 (HW-BL) to 0.89 ± 0.01 (HAW-SH), and from 0.14 ± 0.10 (HW-BL) to 0.85 ± 0.02 (HAW-SH), respectively. Three genome-wide and 25 chromosome-wide significant SNP positioned on different chromosomes were detected, located in very close chromosomal distance (±25 kb) to 15 genes (or located within the genes). The genes PIK3R6 and PIK3R1 showed direct functional associations with height and body size. We inferred the potential candidate genes VEPH1, CNTNAP5, GYPC for conformation, growth and carcass traits including body weight and body fat deposition. According to their functional annotations, detected potential candidate genes were associated with stress or immune response (genes PTAFR, PBRM1, ADAMTS12) and with feed efficiency (genes MEGF11 SLC16A4, CCDC117). CONCLUSIONS Accurate measurements contributed to large SNP heritabilities for some morphological traits, even for a small mixed-breed sample size. Multi-breed GWAS detected different loci associated with conformation or carcass traits. The identified potential candidate genes for immune response or feed efficiency indicators reflect the evolutionary development and adaptability features of the breeds.
Collapse
Affiliation(s)
| | - Carsten Scheper
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen, Germany
| | - Luc Hippolyte Dossa
- School of Science and Technics of Animal Production, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou, Benin
| | - Tong Yin
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen, Germany
| | - Kerstin Brügemann
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen, Germany
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen, Germany.
| |
Collapse
|
34
|
Ghoreishifar SM, Eriksson S, Johansson AM, Khansefid M, Moghaddaszadeh-Ahrabi S, Parna N, Davoudi P, Javanmard A. Signatures of selection reveal candidate genes involved in economic traits and cold acclimation in five Swedish cattle breeds. Genet Sel Evol 2020; 52:52. [PMID: 32887549 PMCID: PMC7487911 DOI: 10.1186/s12711-020-00571-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/21/2020] [Indexed: 02/01/2023] Open
Abstract
Background Thousands of years of natural and artificial selection have resulted in indigenous cattle breeds that are well-adapted to the environmental challenges of their local habitat and thereby are considered as valuable genetic resources. Understanding the genetic background of such adaptation processes can help us design effective breeding objectives to preserve local breeds and improve commercial cattle. To identify regions under putative selection, GGP HD 150 K single nucleotide polymorphism (SNP) arrays were used to genotype 106 individuals representing five Swedish breeds i.e. native to different regions and covering areas with a subarctic cold climate in the north and mountainous west, to those with a continental climate in the more densely populated south regions. Results Five statistics were incorporated within a framework, known as de-correlated composite of multiple signals (DCMS) to detect signatures of selection. The obtained p-values were adjusted for multiple testing (FDR < 5%), and significant genomic regions were identified. Annotation of genes in these regions revealed various verified and novel candidate genes that are associated with a diverse range of traits, including e.g. high altitude adaptation and response to hypoxia (DCAF8, PPP1R12A, SLC16A3, UCP2, UCP3, TIGAR), cold acclimation (AQP3, AQP7, HSPB8), body size and stature (PLAG1, KCNA6, NDUFA9, AKAP3, C5H12orf4, RAD51AP1, FGF6, TIGAR, CCND2, CSMD3), resistance to disease and bacterial infection (CHI3L2, GBP6, PPFIBP1, REP15, CYP4F2, TIGD2, PYURF, SLC10A2, FCHSD2, ARHGEF17, RELT, PRDM2, KDM5B), reproduction (PPP1R12A, ZFP36L2, CSPP1), milk yield and components (NPC1L1, NUDCD3, ACSS1, FCHSD2), growth and feed efficiency (TMEM68, TGS1, LYN, XKR4, FOXA2, GBP2, GBP5, FGD6), and polled phenotype (URB1, EVA1C). Conclusions We identified genomic regions that may provide background knowledge to understand the mechanisms that are involved in economic traits and adaptation to cold climate in cattle. Incorporating p-values of different statistics in a single DCMS framework may help select and prioritize candidate genes for further analyses.
Collapse
Affiliation(s)
- Seyed Mohammad Ghoreishifar
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-11167, Iran
| | - Susanne Eriksson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-75007, Uppsala, Sweden.
| | - Anna M Johansson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-75007, Uppsala, Sweden
| | - Majid Khansefid
- AgriBio Centre for AgriBioscience, Agriculture Victoria, Bundoora, VIC, 3083, Australia
| | - Sima Moghaddaszadeh-Ahrabi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Nahid Parna
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-11167, Iran
| | - Pourya Davoudi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, B2N5E3, Canada
| | - Arash Javanmard
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| |
Collapse
|
35
|
Wang Q, Li D, Guo A, Li M, Li L, Zhou J, Mishra SK, Li G, Duan Y, Li Q. Whole-genome resequencing of Dulong Chicken reveal signatures of selection. Br Poult Sci 2020; 61:624-631. [PMID: 32627575 DOI: 10.1080/00071668.2020.1792832] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1. Dulong Chickens (DLCs) live at high altitude (~3000 m) and humidity (~90%), are endemic to the Yunnan province, and have gradually developed unique physiological characteristics, but their genetic basis is still unclear. Using the fixation index (FST ) approach, based on whole-genome resequencing, DLCs were analysed to uncover the genomic architecture of the population and candidate genes involved in selection during domestication. 2. A total of 469 candidate genes were obtained to be putatively under selection in DLCs. Further investigations revealed the genic footprint for local adaptation (high-altitude and high-humidity) as the genic signatures that are involved in economic traits (related to egg production). 3. Candidate genes were identified that may be associated with disease resistance, aggressiveness, small body size and positive selection of vision in DLCs. 4. These data revealed loci of selective signals that operate during selection for production at high altitude and humidity.
Collapse
Affiliation(s)
- Q Wang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China (Southwest Forestry University), Ministry of Education , Kunming, China.,Life Science College, Southwest Forestry University , Kunming, China
| | - D Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University , Chengdu, China
| | - A Guo
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China (Southwest Forestry University), Ministry of Education , Kunming, China.,Life Science College, Southwest Forestry University , Kunming, China
| | - M Li
- School of Mathematics and Computer Science, Yunnan Nationalities University , Kunming, China
| | - L Li
- Life Science College, Southwest Forestry University , Kunming, China
| | - J Zhou
- Life Science College, Southwest Forestry University , Kunming, China
| | - S K Mishra
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University , Chengdu, China
| | - G Li
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China (Southwest Forestry University), Ministry of Education , Kunming, China.,Life Science College, Southwest Forestry University , Kunming, China
| | - Y Duan
- Technology Center, China Tobacco Yunnan Industrial Co., Ltd ., Kunming, China
| | - Q Li
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China (Southwest Forestry University), Ministry of Education , Kunming, China.,Life Science College, Southwest Forestry University , Kunming, China.,Kunming Xianghao Technology Co. Ltd ., Kunming, China
| |
Collapse
|
36
|
Asadollahpour Nanaei H, Esmailizadeh A, Ayatollahi Mehrgardi A, Han J, Wu DD, Li Y, Zhang YP. Comparative population genomic analysis uncovers novel genomic footprints and genes associated with small body size in Chinese pony. BMC Genomics 2020; 21:496. [PMID: 32689947 PMCID: PMC7370493 DOI: 10.1186/s12864-020-06887-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022] Open
Abstract
Background Body size is considered as one of the most fundamental properties of an organism. Due to intensive breeding and artificial selection throughout the domestication history, horses exhibit striking variations for heights at withers and body sizes. Debao pony (DBP), a famous Chinese horse, is known for its small body size and lives in Guangxi mountains of southern China. In this study, we employed comparative population genomics to study the genetic basis underlying the small body size of DBP breed based on the whole genome sequencing data. To detect genomic signatures of positive selection, we applied three methods based on population comparison, fixation index (FST), cross population composite likelihood ratio (XP-CLR) and nucleotide diversity (θπ), and further analyzed the results to find genomic regions under selection for body size-related traits. Results A number of protein-coding genes in windows with the top 1% values of FST (367 genes), XP-CLR (681 genes), and log2 (θπ ratio) (332 genes) were identified. The most significant signal of positive selection was mapped to the NELL1 gene, probably underlies the body size and development traits, and may also have been selected for short stature in the DBP population. In addition, some other loci on different chromosomes were identified to be potentially involved in the development of body size. Conclusions Results of our study identified some positively selected genes across the horse genome, which are possibly involved in body size traits. These novel candidate genes may be useful targets for clarifying our understanding of the molecular basis of body size and as such they should be of great interest for future research into the genetic architecture of relevant traits in horse breeding program.
Collapse
Affiliation(s)
- Hojjat Asadollahpour Nanaei
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB, 76169-133, Iran
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB, 76169-133, Iran. .,State Key Laboratory of Genetic Resources and Evolution and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, No. 32 Jiaochang Donglu, Kunming, Yunnan, China.
| | - Ahmad Ayatollahi Mehrgardi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB, 76169-133, Iran
| | - Jianlin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, No. 32 Jiaochang Donglu, Kunming, Yunnan, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Yan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, No. 32 Jiaochang Donglu, Kunming, Yunnan, China. .,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.
| |
Collapse
|
37
|
Singh B, Mal G, Kues WA, Yadav PS. The domesticated buffalo - An emerging model for experimental and therapeutic use of extraembryonic tissues. Theriogenology 2020; 151:95-102. [PMID: 32320839 DOI: 10.1016/j.theriogenology.2020.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/12/2020] [Accepted: 04/04/2020] [Indexed: 12/16/2022]
Abstract
Large animals play important roles as model animals for biomedical sciences and translational research. The water buffalo (Bubalus bubalis) is an economically important, multipurpose livestock species. Important assisted reproduction techniques, such as in vitro fertilization, cryo-conservation of sperm and embryos, embryo transfer, somatic cell nuclear transfer, genetic engineering, and genome editing have been successfully applied to buffaloes. Recently, detailed whole genome data and transcriptome maps have been generated. In addition, rapid progress has been made in stem cell biology of the buffalo. Apart from embryonic stem cells, bubaline extra-embryonic stem cells have gained particular interest. The multipotency of non-embryonic stem cells has been revealed, and their utility in basic and applied research is currently investigated. In particular, success achieved in bubaline extra-embryonic stem cells may have important roles in experimental biology and therapeutic regenerative medicine. Progress in other farm animals in assisted reproduction techniques, stem cell biology and genetic engineering, which could be of importance for buffalo, will also be briefly summarized.
Collapse
Affiliation(s)
- Birbal Singh
- ICAR-Indian Veterinary Research Institute, Regional Station Palampur, 176 061, India
| | - Gorakh Mal
- ICAR-Indian Veterinary Research Institute, Regional Station Palampur, 176 061, India
| | | | - Prem S Yadav
- ICAR-Central Institute for Research on Buffaloes, Hisar, 125001, India.
| |
Collapse
|
38
|
Grigoletto L, Ferraz JBS, Oliveira HR, Eler JP, Bussiman FO, Abreu Silva BC, Baldi F, Brito LF. Genetic Architecture of Carcass and Meat Quality Traits in Montana Tropical ® Composite Beef Cattle. Front Genet 2020; 11:123. [PMID: 32180796 PMCID: PMC7057717 DOI: 10.3389/fgene.2020.00123] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/03/2020] [Indexed: 12/16/2022] Open
Abstract
The Montana Tropical® Composite is a recently developed beef cattle population that is rapidly expanding in Brazil and other tropical countries. This is mainly due to its improved meat quality and adaptation to tropical climate conditions compared to Zebu and Taurine cattle breeds, respectively. This study aimed to investigate the genetic architecture of ultrasound-based carcass and meat quality traits in Montana Tropical® Composite beef cattle. Therefore, we estimated variance components and genetic parameters and performed genome-wide association studies using the weighted single-step Genomic Best Linear Unbiased Prediction (GBLUP) approach. A pedigree dataset containing 28,480 animals was used, in which 1,436 were genotyped using a moderate-density Single Nucleotide Polymorphism panel (30K; 30,105 SNPs). A total of 9,358, 5,768, 7,996, and 1,972 phenotypic records for the traits Longissimus muscle area (LMA), backfat thickness (BFT), rump fat thickness (RFT), and for marbling score (MARB), respectively, were used for the analyses. Moderate to high heritability estimates were obtained and ranged from 0.16 ± 0.03 (RFT) to 0.33 ± 0.05 (MARB). A high genetic correlation was observed between BFT and RFT (0.97 ± 0.02), suggesting that a similar set of genes affects both traits. The most relevant genomic regions associated with LMA, BFT, RFT, and MARB were found on BTA10 (5.4–5.8 Mb), BTA27 (25.2–25.5 Mb), BTA18 (60.6–61.0 Mb), and BTA21 (14.8–15.4 Mb). Two overlapping genomic regions were identified for RFT and MARB (BTA13:47.9–48.1 Mb) and for BFT and RFT (BTA13:61.5–62.3 Mb). Candidate genes identified in this study, including PLAG1, LYN, WWOX, and PLAGL2, were previously reported to be associated with growth, stature, skeletal muscle growth, fat thickness, and fatty acid composition. Our results indicate that ultrasound-based carcass and meat quality traits in the Montana Tropical® Composite beef cattle are heritable, and therefore, can be improved through selective breeding. In addition, various novel and already known genomic regions related to these traits were identified, which contribute to a better understanding of the underlying genetic background of LMA, BFT, RFT, and MARB in the Montana Tropical Composite population.
Collapse
Affiliation(s)
- Laís Grigoletto
- Department of Animal Sciences, College of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil.,Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - José B S Ferraz
- Department of Animal Sciences, College of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Hinayah R Oliveira
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Joanir P Eler
- Department of Animal Sciences, College of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Fernando O Bussiman
- Department of Animal Sciences, College of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Barbara C Abreu Silva
- Department of Animal Sciences, College of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Fernando Baldi
- Department of Animal Sciences, College of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, Brazil
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|