1
|
Wang Y, Wang M, He X, Dong R, Liu H, Yu G. Detection and Analysis of Genes Affecting the Number of Thoracic Vertebrae in Licha Black Pigs. Genes (Basel) 2024; 15:477. [PMID: 38674411 PMCID: PMC11050242 DOI: 10.3390/genes15040477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
The number of thoracic vertebrae (NTV) in pigs is an important economic trait that significantly influences pork production. While the Licha black pig is a well-known Chinese pig breed with multiple thoracic vertebrae, the genetic mechanism is still unknown. Here, we performed a selective signal analysis on the genome of Licha black pigs, comparing individuals with 15 NTV versus those with 16 NTV to better understand functional genes associated with NTV. A total of 2265 selection signal regions were detected across the genome, including 527 genes and 1073 QTL that overlapped with the selection signal regions. Functional enrichment analysis revealed that LRP5 and SP5 genes were involved in biological processes such as bone morphogenesis and Wnt protein binding. Furthermore, three genes, LRP8, DEF6, and SCUBE3, associated with osteoblast differentiation and bone formation, were located within or close to the QTL related to bone development and vertebrae number. These five genes were hypothesized to be potential candidates for regulating the NTV trait in Licha black pigs. Our findings revealed several candidate genes that play crucial roles in NTV regulation and provide a theoretical foundation to understand the genetic mechanism of the NTV trait in pig breeding.
Collapse
Affiliation(s)
- Yuan Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (M.W.); (X.H.); (R.D.)
| | - Min Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (M.W.); (X.H.); (R.D.)
| | - Xiaojin He
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (M.W.); (X.H.); (R.D.)
| | - Ruilan Dong
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (M.W.); (X.H.); (R.D.)
| | - Hongjiang Liu
- Bureau of Agriculture and Rural Affairs of Jiaozhou, Jiaozhou 266300, China;
| | - Guanghui Yu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (M.W.); (X.H.); (R.D.)
| |
Collapse
|
2
|
Zong W, Zhao R, Wang X, Zhou C, Wang J, Chen C, Niu N, Zheng Y, Chen L, Liu X, Hou X, Zhao F, Wang L, Wang L, Song C, Zhang L. Population genetic analysis based on the polymorphisms mediated by transposons in the genomes of pig. DNA Res 2024; 31:dsae008. [PMID: 38447059 PMCID: PMC11090087 DOI: 10.1093/dnares/dsae008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/08/2024] Open
Abstract
Transposable elements (TEs) mobility is capable of generating a large number of structural variants (SVs), which can have considerable potential as molecular markers for genetic analysis and molecular breeding in livestock. Our results showed that the pig genome contains mainly TE-SVs generated by short interspersed nuclear elements (51,873/76.49%), followed by long interspersed nuclear elements (11,131/16.41%), and more than 84% of the common TE-SVs (Minor allele frequency, MAF > 0.10) were validated to be polymorphic. Subsequently, we utilized the identified TE-SVs to gain insights into the population structure, resulting in clear differentiation among the three pig groups and facilitating the identification of relationships within Chinese local pig breeds. In addition, we investigated the frequencies of TEs in the gene coding regions of different pig groups and annotated the respective TE types, related genes, and functional pathways. Through genome-wide comparisons of Large White pigs and Chinese local pigs utilizing the Beijing Black pigs, we identified TE-mediated SVs associated with quantitative trait loci and observed that they were mainly involved in carcass traits and meat quality traits. Lastly, we present the first documented evidence of TE transduction in the pig genome.
Collapse
Affiliation(s)
- Wencheng Zong
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Runze Zhao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- College of Animal Science, Shanxi Agricultural University, Jinzhong, China
| | - Xiaoyan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Chenyu Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jinbu Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Cai Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Naiqi Niu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yao Zheng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Li Chen
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Chongqing Academy of Animal Science, Chongqing, China
| | - Xin Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xinhua Hou
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Fuping Zhao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Ligang Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Lixian Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Chengyi Song
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Longchao Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| |
Collapse
|
3
|
Zhou C, Zhang Y, Ma T, Wu D, Yang Y, Wang D, Li X, Guo S, Yang S, Song Y, Zhang Y, Zuo Y, Cao G. Whole-Genome Resequencing of Ujimqin Sheep Identifies Genes Associated with Vertebral Number. Animals (Basel) 2024; 14:677. [PMID: 38473062 DOI: 10.3390/ani14050677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The number of vertebrae is a crucial economic trait that can significantly impact the carcass length and meat production in animals. However, our understanding of the quantitative trait loci (QTLs) and candidate genes associated with the vertebral number in sheep (Ovis aries) remains limited. To identify these candidate genes and QTLs, we collected 73 Ujimqin sheep with increased numbers of vertebrae (T13L7, T14L6, and T14L7) and 23 sheep with normal numbers of vertebrae (T13L6). Through high-throughput genome resequencing, we obtained a total of 24,130,801 effective single-nucleotide polymorphisms (SNPs). By conducting a selective-sweep analysis, we discovered that the most significantly selective region was located on chromosome 7. Within this region, we identified several genes, including VRTN, SYNDIG1L, LTBP2, and ABCD4, known to regulate the spinal development and morphology. Further, a genome-wide association study (GWAS) performed on sheep with increased and normal vertebral numbers confirmed that ABCD4 is a candidate gene for determining the number of vertebrae in sheep. Additionally, the most significant SNP on chromosome 7 was identified as a candidate QTL. Moreover, we detected two missense mutations in the ABCD4 gene; one of these mutations (Chr7: 89393414, C > T) at position 22 leads to the conversion of arginine (Arg) to glutamine (Gln), which is expected to negatively affect the protein's function. Notably, a transcriptome expression profile in mouse embryonic development revealed that ABCD4 is highly expressed during the critical period of vertebral formation (4.5-7.5 days). Our study highlights ABCD4 as a potential major gene influencing the number of vertebrae in Ujimqin sheep, with promising prospects for future genome-assisted breeding improvements in sheep.
Collapse
Affiliation(s)
- Chuanqing Zhou
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010010, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Yue Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Teng Ma
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Dabala Wu
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010070, China
| | - Yanyan Yang
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010070, China
| | - Daqing Wang
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010070, China
| | - Xiunan Li
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010070, China
| | - Shuchun Guo
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010070, China
| | - Siqi Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Yongli Song
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Yong Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yongchun Zuo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Guifang Cao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010010, China
| |
Collapse
|
4
|
Khan MZ, Chen W, Huang B, Liu X, Wang X, Liu Y, Chai W, Wang C. Advancements in Genetic Marker Exploration for Livestock Vertebral Traits with a Focus on China. Animals (Basel) 2024; 14:594. [PMID: 38396562 PMCID: PMC10885964 DOI: 10.3390/ani14040594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
In livestock breeding, the number of vertebrae has gained significant attention due to its impact on carcass quality and quantity. Variations in vertebral traits have been observed across different animal species and breeds, with a strong correlation to growth and meat production. Furthermore, vertebral traits are classified as quantitative characteristics. Molecular marker techniques, such as marker-assisted selection (MAS), have emerged as efficient tools to identify genetic markers associated with vertebral traits. In the current review, we highlight some key potential genes and their polymorphisms that play pivotal roles in controlling vertebral traits (development, length, and number) in various livestock species, including pigs, donkeys, and sheep. Specific genetic variants within these genes have been linked to vertebral development, number, and length, offering valuable insights into the genetic mechanisms governing vertebral traits. This knowledge has significant implications for selective breeding strategies to enhance structural characteristics and meat quantity and quality in livestock, ultimately improving the efficiency and quality of the animal husbandry industry.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | | | | | | | | | | | | | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| |
Collapse
|
5
|
Yin S, Li Z, Yang F, Guo H, Zhao Q, Zhang Y, Yin Y, Wu X, He J. A Comprehensive Genomic Analysis of Chinese Indigenous Ningxiang Pigs: Genomic Breed Compositions, Runs of Homozygosity, and Beyond. Int J Mol Sci 2023; 24:14550. [PMID: 37833998 PMCID: PMC10572203 DOI: 10.3390/ijms241914550] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Ningxiang pigs are a renowned indigenous pig breed in China, known for their meat quality, disease resistance, and environmental adaptability. In recent decades, consumer demand for meats from indigenous breeds has grown significantly, fueling the selection and crossbreeding of Ningxiang pigs (NXP). The latter has raised concerns about the conservation and sustainable use of Ningxiang pigs as an important genetic resource. To address these concerns, we conducted a comprehensive genomic study using 2242 geographically identified Ningxiang pigs. The estimated genomic breed composition (GBC) suggested 2077 pigs as purebred Ningxiang pigs based on a ≥94% NXP-GBC cut-off. The remaining 165 pigs were claimed to be crosses, including those between Duroc and Ningxiang pigs and between Ningxiang and Shaziling pigs, and non-Ningxiang pigs. Runs of homozygosity (ROH) were identified in the 2077 purebred Ningxiang pigs. The number and length of ROH varied between individuals, with an average of 32.14 ROH per animal and an average total length of 202.4 Mb per animal. Short ROH (1-5 Mb) was the most abundant, representing 66.5% of all ROH and 32.6% of total ROH coverage. The genomic inbreeding estimate was low (0.089) in purebred Ningxiang pigs compared to imported western pig breeds. Nine ROH islands were identified, pinpointing candidate genes and QTLs associated with economic traits of interest, such as reproduction, carcass and growth traits, lipid metabolism, and fat deposition. Further investigation of these ROH islands and candidate genes is anticipated to better understand the genomics of Ningxiang pigs.
Collapse
Affiliation(s)
- Shishu Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.Y.); (Z.L.); (F.Y.); (H.G.); (Q.Z.); (Y.Z.)
| | - Zhi Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.Y.); (Z.L.); (F.Y.); (H.G.); (Q.Z.); (Y.Z.)
| | - Fang Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.Y.); (Z.L.); (F.Y.); (H.G.); (Q.Z.); (Y.Z.)
| | - Haimin Guo
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.Y.); (Z.L.); (F.Y.); (H.G.); (Q.Z.); (Y.Z.)
| | - Qinghua Zhao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.Y.); (Z.L.); (F.Y.); (H.G.); (Q.Z.); (Y.Z.)
| | - Yuebo Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.Y.); (Z.L.); (F.Y.); (H.G.); (Q.Z.); (Y.Z.)
- Key Laboratory for Evaluation and Utilization of Livestock and Poultry Resources (Pigs) of the Ministry of Agriculture and Rural Affairs, Changsha 410128, China;
| | - Yulong Yin
- Key Laboratory for Evaluation and Utilization of Livestock and Poultry Resources (Pigs) of the Ministry of Agriculture and Rural Affairs, Changsha 410128, China;
- Animal Nutrition Genome and Germplasm Innovation Research Center, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Laboratory of Animal Nutrition Physiology and Metabolism, The Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China
| | - Xiaolin Wu
- Council on Dairy Cattle Breeding, Bowie, MD 20716, USA
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA
| | - Jun He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.Y.); (Z.L.); (F.Y.); (H.G.); (Q.Z.); (Y.Z.)
- Key Laboratory for Evaluation and Utilization of Livestock and Poultry Resources (Pigs) of the Ministry of Agriculture and Rural Affairs, Changsha 410128, China;
| |
Collapse
|
6
|
Yin C, Wang Y, Zhou P, Shi H, Ma X, Yin Z, Liu Y. Genomic Scan for Runs of Homozygosity and Selective Signature Analysis to Identify Candidate Genes in Large White Pigs. Int J Mol Sci 2023; 24:12914. [PMID: 37629094 PMCID: PMC10454931 DOI: 10.3390/ijms241612914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Large White pigs are extensively utilized in China for their remarkable characteristics of rapid growth and the high proportion of lean meat. The economic traits of pigs, comprising reproductive and meat quality traits, play a vital role in swine production. In this study, 2295 individuals, representing three different genetic backgrounds Large White pig populations were used: 500 from the Canadian line, 295 from the Danish line, and 1500 from the American line. The GeneSeek 50K GGP porcine HD array was employed to genotype the three pig populations. Firstly, genomic selective signature regions were identified using the pairwise fixation index (FST) and locus-specific branch length (LSBL). By applying a top 1% threshold for both parameters, a total of 888 candidate selective windows were identified, harbouring 1571 genes. Secondly, the investigation of regions of homozygosity (ROH) was performed utilizing the PLINK software. In total, 25 genomic regions exhibiting a high frequency of ROHs were detected, leading to the identification of 1216 genes. Finally, the identified potential functional genes from candidate genomic regions were annotated, and several important candidate genes associated with reproductive traits (ADCYAP1, U2, U6, CETN1, Thoc1, Usp14, GREB1L, FGF12) and meat quality traits (MiR-133, PLEKHO1, LPIN2, SHANK2, FLVCR1, MYL4, SFRP1, miR-486, MYH3, STYX) were identified. The findings of this study provide valuable insights into the genetic basis of economic traits in Large White pigs and may have potential use in future pig breeding programs.
Collapse
Affiliation(s)
- Chang Yin
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (C.Y.); (Y.W.); (P.Z.); (H.S.); (X.M.)
| | - Yuwei Wang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (C.Y.); (Y.W.); (P.Z.); (H.S.); (X.M.)
| | - Peng Zhou
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (C.Y.); (Y.W.); (P.Z.); (H.S.); (X.M.)
| | - Haoran Shi
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (C.Y.); (Y.W.); (P.Z.); (H.S.); (X.M.)
| | - Xinyu Ma
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (C.Y.); (Y.W.); (P.Z.); (H.S.); (X.M.)
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China;
| | - Yang Liu
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (C.Y.); (Y.W.); (P.Z.); (H.S.); (X.M.)
| |
Collapse
|
7
|
Deng S, Qiu Y, Zhuang Z, Wu J, Li X, Ruan D, Xu C, Zheng E, Yang M, Cai G, Yang J, Wu Z, Huang S. Genome-Wide Association Study of Body Conformation Traits in a Three-Way Crossbred Commercial Pig Population. Animals (Basel) 2023; 13:2414. [PMID: 37570223 PMCID: PMC10417164 DOI: 10.3390/ani13152414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 08/13/2023] Open
Abstract
Body conformation is the most direct production index, which can fully reflect pig growth status and is closely related to critical economic traits. In this study, we conducted a genome-wide association study (GWAS) on body conformation traits in a population of 1518 Duroc × (Landrace × Yorkshire) commercial pigs. These traits included body length (BL), body height (BH), chest circumference (CC), abdominal circumference (AC), and waist circumference (WC). Both the mixed linear model (MLM) and fixed and random model circulating probability unification (FarmCPU) approaches were employed for the analysis. Our findings revealed 60 significant single nucleotide polymorphisms (SNPs) associated with these body conformation traits in the crossbred pig population. Specifically, sixteen SNPs were significantly associated with BL, three SNPs with BH, thirteen SNPs with CC, twelve SNPs with AC, and sixteen SNPs with WC. Moreover, we identified several promising candidate genes located within the genomic regions associated with body conformation traits. These candidate genes include INTS10, KIRREL3, SOX21, BMP2, MAP4K3, SOD3, FAM160B1, ATL2, SPRED2, SEC16B, and RASAL2. Furthermore, our analysis revealed a novel significant quantitative trait locus (QTL) on SSC7 specifically associated with waist circumference, spanning an 84 kb interval. Overall, the identification of these significant SNPs and potential candidate genes in crossbred commercial pigs enhances our understanding of the genetic basis underlying body conformation traits. Additionally, these findings provide valuable genetic resources for pig breeding programs.
Collapse
Affiliation(s)
- Shaoxiong Deng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (S.D.); (Y.Q.); (Z.Z.); (J.W.); (X.L.); (D.R.); (C.X.); (E.Z.); (G.C.); (J.Y.)
| | - Yibin Qiu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (S.D.); (Y.Q.); (Z.Z.); (J.W.); (X.L.); (D.R.); (C.X.); (E.Z.); (G.C.); (J.Y.)
| | - Zhanwei Zhuang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (S.D.); (Y.Q.); (Z.Z.); (J.W.); (X.L.); (D.R.); (C.X.); (E.Z.); (G.C.); (J.Y.)
| | - Jie Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (S.D.); (Y.Q.); (Z.Z.); (J.W.); (X.L.); (D.R.); (C.X.); (E.Z.); (G.C.); (J.Y.)
| | - Xuehua Li
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (S.D.); (Y.Q.); (Z.Z.); (J.W.); (X.L.); (D.R.); (C.X.); (E.Z.); (G.C.); (J.Y.)
| | - Donglin Ruan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (S.D.); (Y.Q.); (Z.Z.); (J.W.); (X.L.); (D.R.); (C.X.); (E.Z.); (G.C.); (J.Y.)
| | - Cineng Xu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (S.D.); (Y.Q.); (Z.Z.); (J.W.); (X.L.); (D.R.); (C.X.); (E.Z.); (G.C.); (J.Y.)
| | - Enqing Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (S.D.); (Y.Q.); (Z.Z.); (J.W.); (X.L.); (D.R.); (C.X.); (E.Z.); (G.C.); (J.Y.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Ming Yang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
| | - Gengyuan Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (S.D.); (Y.Q.); (Z.Z.); (J.W.); (X.L.); (D.R.); (C.X.); (E.Z.); (G.C.); (J.Y.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu 527400, China
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (S.D.); (Y.Q.); (Z.Z.); (J.W.); (X.L.); (D.R.); (C.X.); (E.Z.); (G.C.); (J.Y.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (S.D.); (Y.Q.); (Z.Z.); (J.W.); (X.L.); (D.R.); (C.X.); (E.Z.); (G.C.); (J.Y.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu 527400, China
| | - Sixiu Huang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (S.D.); (Y.Q.); (Z.Z.); (J.W.); (X.L.); (D.R.); (C.X.); (E.Z.); (G.C.); (J.Y.)
| |
Collapse
|
8
|
He X, Tian M, Wang W, Feng Y, Li Z, Wang J, Song Y, Zhang J, Liu D. Identification of Candidate Genes for Min Pig Villi Hair Traits by Genome-Wide Association of Copy Number Variation. Vet Sci 2023; 10:vetsci10050307. [PMID: 37235390 DOI: 10.3390/vetsci10050307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
The Min pig is a famous native pig breed in northeast China, which has the special genetic character of villi hair growth in cold seasons. At present, little research has focused on the genetic mechanism of villi hair growth in Min pigs. Copy number variations (CNVs) are a type of variant that may influence many traits. In this study, we first investigated the phenotype of Large White × Min pigs' F2 pig villi hair in detail and then performed a CNV-based genome-wide association study (GWAS) between CNVs and pig villi hair appearance. Finally, a total number of 15 significant CNVRs were found to be associated with Min pig villi hair. The most significant CNVR was located on chromosome 1. Nearest gene annotation analysis indicated that the pig villi hair traits may be associated with the biological process of the G-protein-coupled receptor signaling pathway. QTL overlapping analysis found that among the CNVRs, 14 CNVRs could be co-located with known QTLs. Some genes such as MCHR2, LTBP2, and GFRA2 may be candidate genes for pig villi traits and are worth further study. Our study may provide a basic reference for the selection and breeding of cold-resistant pigs and outdoor breeding.
Collapse
Affiliation(s)
- Xinmiao He
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Ming Tian
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Wentao Wang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Yanzhong Feng
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Zhongqiu Li
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Jiahui Wang
- Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161005, China
| | - Yan Song
- Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161005, China
| | - Jinfeng Zhang
- Harbin Academy of Agricultural Sciences, Harbin 150029, China
| | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| |
Collapse
|