1
|
Li Y, Zhang Z, Wang S, Du X, Li Q. miR-423 sponged by lncRNA NORHA inhibits granulosa cell apoptosis. J Anim Sci Biotechnol 2023; 14:154. [PMID: 38053184 DOI: 10.1186/s40104-023-00960-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Atresia and degeneration, a follicular developmental fate that reduces female fertility and is triggered by granulosa cell (GC) apoptosis, have been induced by dozens of miRNAs. Here, we report a miRNA, miR-423, that inhibits the initiation of follicular atresia (FA), and early apoptosis of GCs. RESULTS We showed that miR-423 was down-regulated during sow FA, and its levels in follicles were negatively correlated with the GC density and the P4/E2 ratio in the follicular fluid in vivo. The in vitro gain-of-function experiments revealed that miR-423 suppresses cell apoptosis, especially early apoptosis in GCs. Mechanically speaking, the miR-423 targets and interacts with the 3'-UTR of the porcine SMAD7 gene, which encodes an apoptosis-inducing factor in GCs, and represses its expression and pro-apoptotic function. Interestingly, FA and the GC apoptosis-related lncRNA NORHA was demonstrated as a ceRNA of miR-423. Additionally, we showed that a single base deletion/insertion in the miR-423 promoter is significantly associated with the number of stillbirths (NSB) trait of sows. CONCLUSION These results demonstrate that miR-423 is a small molecule for inhibiting FA initiation and GC early apoptosis, suggesting that treating with miR-423 may be a novel approach for inhibiting FA initiation and improving female fertility.
Collapse
Affiliation(s)
- Yuqi Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhuofan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Siqi Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xing Du
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
2
|
Han X, Yu S, Cui Y, Li J, Fan J, Wang L, Wang M, Pan Y, Xu G. MiR-23a promotes autophagy of yak cumulus cells to alleviate apoptosis via the apoptosis signal-regulating kinase 1/c-Jun N-terminal kinase pathway. Theriogenology 2023; 212:50-63. [PMID: 37690377 DOI: 10.1016/j.theriogenology.2023.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023]
Abstract
The ultimate fate of Graafian follicles is ovulation or atresia which relies on the highly coordinated processes of apoptosis and autophagy in ovarian cells. Long non-coding RNA maternally expressed gene 3 (LncRNA MEG3), miR-23a, and apoptosis signal-regulating kinase 1 (ASK1) are factors associated with autophagy. However, whether these factors can regulate autophagy in cumulus cells (CCs) of yak is unclear. Here, miR-23a overexpression upregulated the LC3-II/LC3-I ratio and Beclin1 abundance while reducing p62 accumulation (p < 0.05). The monodansylcadaverine assay exhibited a marked increase in punctate green fluorescence, and the GFP-LC3B displayed increased yellow fluorescence (p < 0.05). The opposite effect was observed for miR-23a inhibitors. Furthermore, miR-23a overexpression downregulated the abundance of ASK1 mRNA and total ASK1 protein (t-ASK1), whereas miR-23a inhibitors up-regulated them (p < 0.05). The effects of miR-23a overexpression on ASK1 phosphorylated protein at serine 845 (P-845), total JNK (c-Jun N-terminal kinase) (t-JNK) and the JNK phosphorylated protein (p-JNK) were similar to those of t-ASK1 but elicited the opposite effect on ASK1 phosphorylated protein at serine 967 (P-967) (p < 0.05). We further demonstrated that ASK1 expression can be silenced by small-interfering RNA (siRNA), which had no significant effect on t-JNK abundance (p > 0.05) but significantly suppressed the p-JNK expression (p < 0.05). Silencing ASK1 significantly improved Beclin1 abundance and the LC3-II/LC3-I ratio, but decreased p62 abundance (p < 0.05). An increase in yellow GFP-LC3B puncta and green MDC staining puncta were observed (p < 0.05). Overexpression of LncRNA MEG3 significantly increased the expression of t-ASK1, P-845, and JNK and decreased the abundance of P-967 and miR-23a (p < 0.05). In addition, miR-23a upregulation reduced the number of the TUNEL-positive cells, and the addition of 8 mM 3-methyladenine (3-MA) reversed this downregulation (p < 0.05). Similar trends were observed for the Bax/Bcl2 ratio and cleaved-caspase3 abundance. In summary, miR-23a promotes autophagy by inhibiting ASK1 abundance, which reduces apoptosis of yak CCs. This effect can be inhibited by LncRNA MEG3, which has implications for decreasing abnormal Graafian follicular atresia and maintaining development.
Collapse
Affiliation(s)
- Xiaohong Han
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China; Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Sijiu Yu
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China; Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Yan Cui
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China; Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jingjing Li
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jiangfeng Fan
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Libin Wang
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Meng Wang
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yangyang Pan
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Gengquan Xu
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|