1
|
Szatrowski A, Maggio Z, Khomtchouk B. HDL Cholesterol Is Remarkably Cardioprotective Against Coronary Artery Disease in Native Hawaiians and Pacific Islanders. JACC. ADVANCES 2025; 4:101741. [PMID: 40319838 PMCID: PMC12124629 DOI: 10.1016/j.jacadv.2025.101741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 02/26/2025] [Accepted: 03/24/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND High-density lipoprotein cholesterol (HDL-C) is inversely associated with cardiometabolic risk and exhibits nonlinear effects at extreme levels. Cardiometabolic diseases are a leading cause of death and are particularly prevalent among Native Hawaiian and Pacific Islanders (NHPIs). OBJECTIVES This study characterizes HDL-C's association with coronary artery disease (CAD), major adverse cardiovascular events (MACE), and type 2 diabetes (T2D) in NHPIs compared to the general population. METHODS Using electronic health record data from the National Institutes of Health All of Us Research Program, we applied Cox proportional hazards models to compare HDL-C's protective effects on CAD, MACE, and T2D between 261 NHPIs and the remaining cohort (n = 188,802). Models were adjusted for key confounders, and restricted cubic splines were used to assess nonlinear risk dynamics. RESULTS Tracking individuals across 10,534,661 person-years (mean age 55.7 ± 15.8 years, 38% male), HDL-C was more strongly associated with reduced CAD risk in NHPIs (HR: 0.32; 95% CI: 0.19-0.54) than in the general cohort (HR: 0.57; 95% CI: 0.56-0.58). A marginally stronger association was observed for MACE (NHPI HR: 0.40; 95% CI: 0.23-0.71 vs general HR: = 0.54; 95% CI: 0.53-0.56), while T2D associations were similar. Spline analysis indicated that low HDL-C increases risk for both CAD and T2D in NHPIs. CONCLUSIONS HDL-C's protective role against cardiometabolic diseases is more pronounced in NHPIs, particularly for CAD. These findings support further investigation into tailored clinical assessments for this population.
Collapse
Affiliation(s)
| | - Zane Maggio
- The College of the University of Chicago, Chicago, Illinois, USA; Department of Biomedical Engineering and Informatics, Luddy School of Informatics, Indiana University, Indianapolis, Indiana, USA
| | - Bohdan Khomtchouk
- Department of Biomedical Engineering and Informatics, Luddy School of Informatics, Indiana University, Indianapolis, Indiana, USA.
| |
Collapse
|
2
|
Gérard B, Leask M, Merriman TR, Bardin T, Oehler E, Lawrence A, Viali S, 'Ofanoa S, Te Karu L, Stamp LK, Dalbeth N, Pascart T. Hyperuricaemia and gout in the Pacific. Nat Rev Rheumatol 2025; 21:197-210. [PMID: 40069386 DOI: 10.1038/s41584-025-01228-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2025] [Indexed: 03/15/2025]
Abstract
Gout is the most common form of inflammatory arthritis in adults worldwide. There has been a steady increase in prevalence, which varies across different geographic areas and is high in the Indigenous (First Nations) peoples of the Pacific region. Palaeo-archaeological studies demonstrate that gout was present in the Pacific region prior to European colonization, which is suggestive of genetic predisposition. Genetic risk factors, including population-specific genetic variants and genetic variants shared across populations, particularly those influencing urate transporters, have been identified in Indigenous peoples of the Pacific that partly explain the earlier age of onset of gout. Indigenous peoples of the Pacific experience severe gout, with frequent flares, high hospitalization rates and tophaceous gout, all aggravated by socio-cultural factors. Despite a specific need for effective gout management, Indigenous peoples of the Pacific are under-represented in gout research and inequities in care continue. Indigenous peoples-led, holistic gout management programmes are systematically and urgently required in this region, where gout is a major public health issue. Importantly, a foundation of cultural safety is necessary to underpin such programmes.
Collapse
Affiliation(s)
| | - Megan Leask
- Department of Physiology, University of Otago, Dunedin, Aotearoa New Zealand
| | - Tony R Merriman
- Department of Microbiology and Immunology, University of Otago, Dunedin, Aotearoa New Zealand
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Thomas Bardin
- Department of Rheumatology, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Erwan Oehler
- Department of Internal Medicine, French Polynesia Hospital Centre, Papeete, Tahiti, French Polynesia
| | - Aniva Lawrence
- Te Whareora o Tikipunga, Northland Clinical Site, University of Auckland, Whangarei, Aotearoa New Zealand
| | | | - Samuela 'Ofanoa
- Pacific Health Section, University of Auckland, Auckland, Aotearoa New Zealand
| | - Leanne Te Karu
- Department of General Practice and Primary Health Care, University of Auckland, Auckland, Aotearoa New Zealand
| | - Lisa K Stamp
- Department of Medicine, University of Otago, Christchurch, Christchurch, Aotearoa New Zealand
| | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland, Aotearoa New Zealand
| | - Tristan Pascart
- Department of Rheumatology, Saint Philibert Hospital, Lille Catholic University, Lille, France.
| |
Collapse
|
3
|
Adam-Raileanu A, Miron I, Lupu A, Bozomitu L, Sasaran MO, Russu R, Rosu ST, Nedelcu AH, Salaru DL, Baciu G, Mihai CM, Chisnoiu T, Beser OF, Lupu VV. Fetal Growth Restriction and Its Metabolism-Related Long-Term Outcomes-Underlying Mechanisms and Clinical Implications. Nutrients 2025; 17:555. [PMID: 39940412 PMCID: PMC11819745 DOI: 10.3390/nu17030555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
The developmental origins of adult disease theory support the concept that undernourished fetuses are at risk of developing metabolic syndrome due to the energy-saving 'Thrifty Phenotype'. This metabolic plasticity represents an evolutionary adaptation that allows individuals to resist the intense pressure caused by cyclically recurring periods of nutritional deprivation. A comprehensive review was conducted following an extensive literature search in the PubMed/Medline and EMBASE databases concerning reports on fetal/intrauterine growth restriction and its metabolic-related long-term outcomes. We only included articles written in English that were published before 1 July 2024. There are several underlying mechanisms and metabolic and endocrine adjustments shaped by the perinatal environment, and they all contribute to progression towards adult disease. From in utero malnutrition or other insults during the fetal period to fetal programing and postnatal catch-up growth, it is difficult to identify the exact moment when this adaptative phenomenon meant to assure fetal survival and to set children on their own physiological growth curves lose its beneficial effect, establishing the trajectory to obesity, insulin resistance, and other hallmarks of metabolic syndrome. With clinical correspondence to an altered body mass, composition, and eating behaviors, it is evident that the metabolic complications linked to FGR are intricate and arise from disturbances in several pathways and organs, but the underlying processes responsible for the long-term consequences are just starting to be understood. The lack of continuity in perinatal-to-pediatric FGR research sets the challenge of exploring new directions in future scientific opportunities. These will hopefully represent a cornerstone in the management of FGR-related metabolic disorders in children, preventing these disorders from evolving into adult disease.
Collapse
Affiliation(s)
- Anca Adam-Raileanu
- Pediatrics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.A.-R.); (I.M.); (V.V.L.)
| | - Ingrith Miron
- Pediatrics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.A.-R.); (I.M.); (V.V.L.)
| | - Ancuta Lupu
- Pediatrics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.A.-R.); (I.M.); (V.V.L.)
| | - Laura Bozomitu
- Pediatrics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.A.-R.); (I.M.); (V.V.L.)
| | - Maria Oana Sasaran
- Pediatrics, Faculty of Medicine, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania;
| | - Ruxandra Russu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (R.R.); (S.T.R.); (A.H.N.); (D.L.S.)
| | - Solange Tamara Rosu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (R.R.); (S.T.R.); (A.H.N.); (D.L.S.)
| | - Alin Horatiu Nedelcu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (R.R.); (S.T.R.); (A.H.N.); (D.L.S.)
| | - Delia Lidia Salaru
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (R.R.); (S.T.R.); (A.H.N.); (D.L.S.)
| | - Ginel Baciu
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania;
| | - Cristina Maria Mihai
- Pediatrics, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania; (C.M.M.); (T.C.)
| | - Tatiana Chisnoiu
- Pediatrics, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania; (C.M.M.); (T.C.)
| | - Omer Faruk Beser
- Department of Pediatric Gastroenterology, Hepatology & Nutrition, Cerrahpasa Medical Faculty, Istanbul University Cerrahpasa, 34776 Istanbul, Turkey;
| | - Vasile Valeriu Lupu
- Pediatrics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.A.-R.); (I.M.); (V.V.L.)
| |
Collapse
|
4
|
Ha EK, Shriner D, Callier SL, Riley L, Adeyemo AA, Rotimi CN, Bentley AR. Native Hawaiian and Pacific Islander populations in genomic research. NPJ Genom Med 2024; 9:45. [PMID: 39349931 PMCID: PMC11442686 DOI: 10.1038/s41525-024-00428-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/06/2024] [Indexed: 10/04/2024] Open
Abstract
The role of genomic research and medicine in improving health continues to grow significantly, highlighting the need for increased equitable inclusion of diverse populations in genomics. Native Hawaiian and Pacific Islander (NHPI) communities are often missing from these efforts to ensure that the benefits of genomics are accessible to all individuals. In this article, we analyze the qualities of NHPI populations relevant to their inclusion in genomic research and investigate their current representation using data from the genome-wide association studies (GWAS) catalog. A discussion of the barriers NHPI experience regarding participating in research and recommendations to improve NHPI representation in genomic research are also included.
Collapse
Affiliation(s)
- Edra K Ha
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- University of Hawai'i at Mānoa, Honolulu, HI, USA
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Daniel Shriner
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shawneequa L Callier
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Clinical Research and Leadership, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | | | - Adebowale A Adeyemo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charles N Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amy R Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
5
|
Clarke AJ, Brodtmann A, Irish M, Mowszowski L, Radford K, Naismith SL, Mok VC, Kiernan MC, Halliday GM, Ahmed RM. Risk factors for the neurodegenerative dementias in the Western Pacific region. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2024; 50:101051. [PMID: 39399869 PMCID: PMC11471060 DOI: 10.1016/j.lanwpc.2024.101051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/04/2024] [Accepted: 03/12/2024] [Indexed: 10/15/2024]
Abstract
The Western Pacific Region (WPR) is characterized by a group of socioeconomically, culturally, and geopolitically heterogenous countries and represents a microcosm of the global endemic of neurodegeneration. This review will chart the known risk factors for dementia across the WPR. We explore the intersection between the established risk factors for dementia including the biomedical and lifestyle (cardiovascular and metabolic disease, sleep, hearing loss, depression, alcohol, smoking, traumatic brain injury, genetics) and social determinants (social disadvantage, limited education, systemic racism) as well as incorporate neuroimaging data, where available, to predict disease progression in the WPR. In doing so, we highlight core risk factors for dementia in the WPR, as well as geographical epicentres at heightened risk for dementia, to orient future research towards addressing these disparities.
Collapse
Affiliation(s)
- Antonia J. Clarke
- Department of Neurosciences, Monash University, Melbourne, VIC 3004 Australia
| | - Amy Brodtmann
- Department of Neurosciences, Monash University, Melbourne, VIC 3004 Australia
| | - Muireann Irish
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050 Australia
| | - Loren Mowszowski
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050 Australia
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Kylie Radford
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, Australia
- The University of New South Wales, Sydney, NSW 2031 Australia
| | - Sharon L. Naismith
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050 Australia
| | | | - Matthew C. Kiernan
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050 Australia
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Glenda M. Halliday
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050 Australia
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW 2050 Australia
| | - Rebekah M. Ahmed
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050 Australia
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, Australia
| |
Collapse
|
6
|
Brassington L, Arner AM, Watowich MM, Damstedt J, Ng KS, Lim YAL, Venkataraman VV, Wallace IJ, Kraft TS, Lea AJ. Integrating the Thrifty Genotype and Evolutionary Mismatch Hypotheses to understand variation in cardiometabolic disease risk. Evol Med Public Health 2024; 12:214-226. [PMID: 39484023 PMCID: PMC11525211 DOI: 10.1093/emph/eoae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/18/2024] [Indexed: 11/03/2024] Open
Abstract
More than 60 years ago, James Neel proposed the Thrifty Genotype Hypothesis to explain the widespread prevalence of type 2 diabetes in Western, industrial contexts. This hypothesis posits that variants linked to conservative energy usage and increased fat deposition would have been favored throughout human evolution due to the advantages they could provide during periods of resource limitation. However, in industrial environments, these variants instead produce an increased risk of obesity, metabolic syndrome, type 2 diabetes, and related health issues. This hypothesis has been popular and impactful, with thousands of citations, many ongoing debates, and several spin-off theories in biomedicine, evolutionary biology, and anthropology. However, despite great attention, the applicability and utility of the Thrifty Genotype Hypothesis (TGH) to modern human health remains, in our opinion, unresolved. To move research in this area forward, we first discuss the original formulation of the TGH and its critiques. Second, we trace the TGH to updated hypotheses that are currently at the forefront of the evolutionary medicine literature-namely, the Evolutionary Mismatch Hypothesis. Third, we lay out empirical predictions for updated hypotheses and evaluate them against the current literature. Finally, we discuss study designs that could be fruitful for filling current knowledge gaps; here, we focus on partnerships with subsistence-level groups undergoing lifestyle transitions, and we present data from an ongoing study with the Orang Asli of Malaysia to illustrate this point. Overall, we hope this synthesis will guide new empirical research aimed at understanding how the human evolutionary past interacts with our modern environments to influence cardiometabolic health.
Collapse
Affiliation(s)
- Layla Brassington
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Audrey M Arner
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Marina M Watowich
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Jane Damstedt
- Department of Anthropology, University of Utah, Salt Lake City, Utah, USA
| | - Kee Seong Ng
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Yvonne A L Lim
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Vivek V Venkataraman
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada
| | - Ian J Wallace
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Thomas S Kraft
- Department of Anthropology, University of Utah, Salt Lake City, Utah, USA
| | - Amanda J Lea
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
7
|
Kuek T. Type 2 Diabetes Prevalence, Control and Management within Fiji,Kiribati, Samoa, the Solomon Islands, Tonga, and Vanuatu: A ScopingReview with a Systematic Approach. Curr Diabetes Rev 2024; 20:e220124225914. [PMID: 38258764 DOI: 10.2174/0115733998260306231025151814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/25/2023] [Accepted: 09/15/2023] [Indexed: 01/24/2024]
Abstract
BACKGROUND Type 2 diabetes (T2D) causes significant morbidity and is disproportionately prevalent in Pacific Island Countries (PICs). The socio-political demographics of PICs are rapidly changing, and health services must adapt to match the needs of their population. OBJECTIVES The objective of this study was to review the literature published within the last 15 years relating to T2D prevalence, control, and management, with a specific focus on targetable areas for future funding and research projects. METHODS This review was conducted using the PRISMA guidelines. Inclusion criteria were: discussion on T2D in the six PICs. Results were limited to those published between 1st January, 2006, and 27th July, 2023. RESULTS A total of 6,640 publications were retrieved, and 110 met the inclusion criteria. Nineteen additional studies were identified through hand-searching. T2D prevalence differed between countries but was predicted to increase in the coming decades, with projections of up to 31.2% by 2030 in Tonga. Factors associated with T2D varied between countries, including Indian-Fijian ethnicity in Fiji and tuberculosis in Kiribati. Control was generally poor, with high rates of undiagnosed diabetes and microvascular complications. Epidemiological data was limited in some cases, as was information describing the structure and function of diabetes services. CONCLUSION The prevalence, control, and management of T2D varied between Fiji, Kiribati, Samoa, the Solomon Islands, Tonga, and Vanuatu. Significant gaps remain in the data describing these domains; however, there are clearly targetable areas for future research and diabetes management programs.
Collapse
Affiliation(s)
- Timothy Kuek
- Interplast Australia and New Zealand, 250/290 Spring St, East Melbourne VIC, 3002, Australia
| |
Collapse
|
8
|
Dinh BL, Tang E, Taparra K, Nakatsuka N, Chen F, Chiang CWK. Recombination map tailored to Native Hawaiians may improve robustness of genomic scans for positive selection. Hum Genet 2024; 143:85-99. [PMID: 38157018 PMCID: PMC10794367 DOI: 10.1007/s00439-023-02625-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/25/2023] [Indexed: 01/03/2024]
Abstract
Recombination events establish the patterns of haplotypic structure in a population and estimates of recombination rates are used in several downstream population and statistical genetic analyses. Using suboptimal maps from distantly related populations may reduce the efficacy of genomic analyses, particularly for underrepresented populations such as the Native Hawaiians. To overcome this challenge, we constructed recombination maps using genome-wide array data from two study samples of Native Hawaiians: one reflecting the current admixed state of Native Hawaiians (NH map) and one based on individuals of enriched Polynesian ancestries (PNS map) with the potential to be used for less admixed Polynesian populations such as the Samoans. We found the recombination landscape to be less correlated with those from other continental populations (e.g. Spearman's rho = 0.79 between PNS and CEU (Utah residents with Northern and Western European ancestry) compared to 0.92 between YRI (Yoruba in Ibadan, Nigeria) and CEU at 50 kb resolution), likely driven by the unique demographic history of the Native Hawaiians. PNS also shared the fewest recombination hotspots with other populations (e.g. 8% of hotspots shared between PNS and CEU compared to 27% of hotspots shared between YRI and CEU). We found that downstream analyses in the Native Hawaiian population, such as local ancestry inference, imputation, and IBD segment and relatedness detections, would achieve similar efficacy when using the NH map compared to an omnibus map. However, for genome scans of adaptive loci using integrated haplotype scores, we found several loci with apparent genome-wide significant signals (|Z-score|> 4) in Native Hawaiians that would not have been significant when analyzed using NH-specific maps. Population-specific recombination maps may therefore improve the robustness of haplotype-based statistics and help us better characterize the evolutionary history that may underlie Native Hawaiian-specific health conditions that persist today.
Collapse
Affiliation(s)
- Bryan L Dinh
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Echo Tang
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Kekoa Taparra
- Department of Radiation Oncology, Stanford University, Palo Alto, CA, USA
| | | | - Fei Chen
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Charleston W K Chiang
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA.
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Bell AV. Selection and adaptation in human migration. Evol Anthropol 2023; 32:308-324. [PMID: 37589279 DOI: 10.1002/evan.22003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 06/18/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
This article reviews the ways migration shapes human biology. This includes the physiological and genetic, but also socio-cultural aspects such as organization, behavior, and culture. Across disciplines I highlight the multiple levels of cultural and genetic selection whereby individuals and groups adapt to pressures along a migration timeline: the origin, transit, and destination. Generally, the evidence suggests that selective pressures and adaptations occur at the individual, family, and community levels. Consequently, across levels there are negotiations, interactions, and feedbacks that shape migration outcomes and the trajectory of evolutionary change. The rise and persistence of migration-relevant adaptations emerges as a central question, including the maintenance of cumulative culture adaptations, the persistence of "cultures of migration," as well as the individual-level physiological and cognitive adaptations applied to successful transit and settlement in novel environments.
Collapse
Affiliation(s)
- Adrian Viliami Bell
- Department of Anthropology, University of Utah, Salt Lake City, Utah, USA
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
10
|
Dinh BL, Tang E, Taparra K, Nakatsuka N, Chen F, Chiang CWK. Recombination map tailored to Native Hawaiians improves robustness of genomic scans for positive selection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548735. [PMID: 37503129 PMCID: PMC10370006 DOI: 10.1101/2023.07.12.548735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Recombination events establish the patterns of haplotypic structure in a population and estimates of recombination rates are used in several downstream population and statistical genetic analyses. Using suboptimal maps from distantly related populations may reduce the efficacy of genomic analyses, particularly for underrepresented populations such as the Native Hawaiians. To overcome this challenge, we constructed recombination maps using genome-wide array data from two study samples of Native Hawaiians: one reflecting the current admixed state of Native Hawaiians (NH map), and one based on individuals of enriched Polynesian ancestries (PNS map) with the potential to be used for less admixed Polynesian populations such as the Samoans. We found the recombination landscape to be less correlated with those from other continental populations (e.g. Spearman's rho = 0.79 between PNS and CEU (Utah residents with Northern and Western European ancestry) compared to 0.92 between YRI (Yoruba in Ibadan, Nigeria) and CEU at 50 kb resolution), likely driven by the unique demographic history of the Native Hawaiians. PNS also shared the fewest recombination hotspots with other populations (e.g. 8% of hotspots shared between PNS and CEU compared to 27% of hotspots shared between YRI and CEU). We found that downstream analyses in the Native Hawaiian population, such as local ancestry inference, imputation, and IBD segment and relatedness detections, would achieve similar efficacy when using the NH map compared to an omnibus map. However, for genome scans of adaptive loci using integrated haplotype scores, we found several loci with apparent genome-wide significant signals (|Z-score| > 4) in Native Hawaiians that would not have been significant when analyzed using NH-specific maps. Population-specific recombination maps may therefore improve the robustness of haplotype-based statistics and help us better characterize the evolutionary history that may underlie Native Hawaiian-specific health conditions that persist today.
Collapse
Affiliation(s)
- Bryan L Dinh
- Department of Quantitative and Computational Biology, University of Southern California
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California
| | - Echo Tang
- Department of Quantitative and Computational Biology, University of Southern California
| | - Kekoa Taparra
- Department of Radiation Oncology, Stanford University, Palo Alto, California
| | | | - Fei Chen
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California
| | - Charleston W K Chiang
- Department of Quantitative and Computational Biology, University of Southern California
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California
| |
Collapse
|
11
|
Montenegro A, Niclou A, Anderson A, Fitzpatrick SM, Ocobock C. Estimated energetic demands of thermoregulation during ancient canoe passages from Tahiti to Hawaii and New Zealand, a simulation analysis. PLoS One 2023; 18:e0287290. [PMID: 37437072 PMCID: PMC10337932 DOI: 10.1371/journal.pone.0287290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/03/2023] [Indexed: 07/14/2023] Open
Abstract
Prehistoric colonization of East Polynesia represents the last and most extensive of human migrations into regions previously uninhabited. Although much of East Polynesia is tropical, the southern third, dominated by New Zealand-by far the largest Polynesian landmass-ranges from a warm- to cool-temperate climate with some islands extending into the Subantarctic. The substantial latitudinal variation implies questions about biocultural adaptations of tropical people to conditions in which most of their familiar resources were absent and their agriculture marginal. Perhaps the most basic question, but one which has never been explored, is the extent to which sailing out of the tropics on long-distance colonizing voyages imposed physiological stress on canoe crews and passengers. In this paper we use trajectories of simulated voyages from Tahiti to New Zealand and Tahiti to Hawaii to obtain along-trip environmental parameters which are then used to model the energy expenditure of these long overseas journeys. Results show that travelers to New Zealand are exposed to much harsher environmental conditions, leading to significantly greater in-trip thermoregulatory demands. For both destinations, travelers with larger body sizes exhibit lower modeled heat loss and hence obtain an energetic advantage, with greater gains for females. Such physiological features, notably of Samoans who probably formed the founding population in East Polynesia, may help explain successful voyaging to temperate latitudes.
Collapse
Affiliation(s)
- Alvaro Montenegro
- Department of Geography, Ohio State University, Columbus, OH, United States of America
| | - Alexandra Niclou
- Pennington Biomedical Research Center, Baton Rouge, LA, United States of America
- Department of Anthropology, University of Notre Dame, Notre Dame, IN, United States of America
| | - Atholl Anderson
- Department of Archaeology and Natural History, Australian National University, Canberra, ACT, Australia
- Ngai Tahu Research Centre, University of Canterbury, Christchurch, New Zealand
| | - Scott M. Fitzpatrick
- Department of Anthropology, University of Oregon, Eugene, OR, United States of America
- Museum of Natural and Cultural History, University of Oregon, Eugene, OR, United States of America
| | - Cara Ocobock
- Department of Anthropology, University of Notre Dame, Notre Dame, IN, United States of America
- Eck Institute for Global Health, Institute for Educational Initiatives, University of Notre Dame, Notre Dame, IN, United States of America
- Department of Gender Studies, University of Notre Dame, Notre Dame, IN, United States of America
| |
Collapse
|
12
|
Miszkiewicz JJ, Buckley HR, Feldman M, Kiko L, Carlhoff S, Naegele K, Bertolini E, Guimarães NRD, Walker MM, Powell A, Posth C, Kinaston RL. Female bone physiology resilience in a past Polynesian Outlier community. Sci Rep 2022; 12:18857. [PMID: 36344562 PMCID: PMC9640697 DOI: 10.1038/s41598-022-23171-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
Abstract
Remodelling is a fundamental biological process involved in the maintenance of bone physiology and function. We know that a range of health and lifestyle factors can impact this process in living and past societies, but there is a notable gap in bone remodelling data for populations from the Pacific Islands. We conducted the first examination of femoral cortical histology in 69 individuals from ca. 440-150 BP Taumako in Solomon Islands, a remote 'Polynesian Outlier' island in Melanesia. We tested whether bone remodelling indicators differed between age groups, and biological sex validated using ancient DNA. Bone vascular canal and osteon size, vascular porosity, and localised osteon densities, corrected by femoral robusticity indices were examined. Females had statistically significantly higher vascular porosities when compared to males, but osteon densities and ratios of canal-osteon (~ 8%) did not differ between the sexes. Our results indicate that, compared to males, localised femoral bone tissue of the Taumako females did not drastically decline with age, contrary to what is often observed in modern populations. However, our results match findings in other archaeological samples-a testament to past female bone physiology resilience, also now observed in the Pacific region.
Collapse
Affiliation(s)
- Justyna J. Miszkiewicz
- grid.1001.00000 0001 2180 7477School of Archaeology and Anthropology, Australian National University, Canberra, Australia ,grid.1003.20000 0000 9320 7537School of Social Science, University of Queensland, St Lucia, Australia
| | - Hallie R. Buckley
- grid.29980.3a0000 0004 1936 7830Department of Anatomy, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Michal Feldman
- grid.10392.390000 0001 2190 1447Archaeo- and Palaeogenetics Group, Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany ,grid.10392.390000 0001 2190 1447Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany ,grid.419518.00000 0001 2159 1813Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Lawrence Kiko
- The Solomon Islands National Museum, Honiara, Solomon Islands
| | - Selina Carlhoff
- grid.419518.00000 0001 2159 1813Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Kathrin Naegele
- grid.419518.00000 0001 2159 1813Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Emilie Bertolini
- grid.469873.70000 0004 4914 1197Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Nathalia R. Dias Guimarães
- grid.1001.00000 0001 2180 7477School of Archaeology and Anthropology, Australian National University, Canberra, Australia
| | - Meg M. Walker
- grid.1001.00000 0001 2180 7477School of Archaeology and Anthropology, Australian National University, Canberra, Australia
| | - Adam Powell
- grid.419518.00000 0001 2159 1813Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Cosimo Posth
- grid.10392.390000 0001 2190 1447Archaeo- and Palaeogenetics Group, Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany ,grid.10392.390000 0001 2190 1447Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany ,grid.419518.00000 0001 2159 1813Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Rebecca L. Kinaston
- grid.29980.3a0000 0004 1936 7830Department of Anatomy, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand ,grid.1022.10000 0004 0437 5432Centre for Social and Cultural Research, Griffith University, Southport, QLD Australia ,BioArch South, Waitati, New Zealand
| |
Collapse
|
13
|
Aisyah R, Sadewa AH, Patria SY, Wahab A. The PPARGC1A Is the Gene Responsible for Thrifty Metabolism Related Metabolic Diseases: A Scoping Review. Genes (Basel) 2022; 13:1894. [PMID: 36292779 PMCID: PMC9601628 DOI: 10.3390/genes13101894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 07/29/2023] Open
Abstract
The "thrifty genotype" hypothesis has thus far described the relationship between specific genes and the population's resilience to food scarcity circumstances, but its link to the widespread prevalence of genetic diseases and metabolic syndrome has not been adequately mapped. The purpose of the study was to discover genes responsible for thrifty metabolism. A systematic search with keywords was performed for relevant titles. This study used the article's database published by Pubmed, Proquest, and EBSCO from January, 2009 to September, 2022. Out of 418 papers screened for eligibility, the final evaluation determined that five studies should be included in the analysis. Results indicated that PPARGC1A Gly482Ser led to high BMI in the Tongans population but was unrelated to the onset of type 2 diabetes mellitus, but this was not the case in the Maori population. Significantly differing frequencies of PPAR C1431T and Pro12Ala gene polymorphisms were observed in the Iranian population. GWAS identification of additional genes in Asian and European populations did not produce consistent findings. As a summary, PPARGC1A Gly482Ser addresses as the gene responsible for thrifty metabolism in the Pacific population although some studies show inconsistent results.
Collapse
Affiliation(s)
- Riandini Aisyah
- Department of Molecular Biology, Faculty of Medicine, Universitas Muhammadiyah Surakarta, Surakarta 57169, Indonesia
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Ahmad Hamim Sadewa
- Department of Biochemistry, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Suryono Yudha Patria
- Division of Pediatric Endocrinology, Department of Pediatrics, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Abdul Wahab
- Department of Biostatistics, Epidemiology and Population Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
14
|
Speakman JR, Elmquist JK. Obesity: an evolutionary context. LIFE METABOLISM 2022; 1:10-24. [PMID: 36394061 PMCID: PMC9642988 DOI: 10.1093/lifemeta/loac002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/21/2022] [Accepted: 03/09/2022] [Indexed: 05/07/2023]
Abstract
People completely lacking body fat (lipodystrophy/lipoatrophy) and those with severe obesity both show profound metabolic and other health issues. Regulating levels of body fat somewhere between these limits would, therefore, appear to be adaptive. Two different models might be contemplated. More traditional is a set point (SP) where the levels are regulated around a fixed level. Alternatively, dual-intervention point (DIP) is a system that tolerates fairly wide variation but is activated when critically high or low levels are breached. The DIP system seems to fit our experience much better than an SP, and models suggest that it is more likely to have evolved. A DIP system may have evolved because of two contrasting selection pressures. At the lower end, we may have been selected to avoid low levels of fat as a buffer against starvation, to avoid disease-induced anorexia, and to support reproduction. At the upper end, we may have been selected to avoid excess storage because of the elevated risks of predation. This upper limit of control seems to have malfunctioned because some of us deposit large fat stores, with important negative health effects. Why has evolution not protected us against this problem? One possibility is that the protective system slowly fell apart due to random mutations after we dramatically reduced the risk of being predated during our evolutionary history. By chance, it fell apart more in some people than others, and these people are now unable to effectively manage their weight in the face of the modern food glut. To understand the evolutionary context of obesity, it is important to separate the adaptive reason for storing some fat (i.e. the lower intervention point), from the nonadaptive reason for storing lots of fat (a broken upper intervention point). The DIP model has several consequences, showing how we understand the obesity problem and what happens when we attempt to treat it.
Collapse
Affiliation(s)
- John R Speakman
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental biology, Chinese Academy of Sciences, Beijing, China
- CAS Center of Excellence in Animal Evolution and Genetics, Kunming, China
| | - Joel K Elmquist
- Departments of Internal Medicine and Pharmacology, Center for Hypothalamic Research, University of Texas Southwestern, Dallas, TX, USA
| |
Collapse
|
15
|
Polverino A, Sorrentino P, Pesoli M, Mandolesi L. Nutrition and cognition across the lifetime: an overview on epigenetic mechanisms. AIMS Neurosci 2021; 8:448-476. [PMID: 34877399 PMCID: PMC8611190 DOI: 10.3934/neuroscience.2021024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/12/2021] [Indexed: 12/28/2022] Open
Abstract
The functioning of our brain depends on both genes and their interactions with environmental factors. The close link between genetics and environmental factors produces structural and functional cerebral changes early on in life. Understanding the weight of environmental factors in modulating neuroplasticity phenomena and cognitive functioning is relevant for potential interventions. Among these, nutrition plays a key role. In fact, the link between gut and brain (the gut-brain axis) is very close and begins in utero, since the Central Nervous System (CNS) and the Enteric Nervous System (ENS) originate from the same germ layer during the embryogenesis. Here, we investigate the epigenetic mechanisms induced by some nutrients on the cognitive functioning, which affect the cellular and molecular processes governing our cognitive functions. Furthermore, epigenetic phenomena can be positively affected by specific healthy nutrients from diet, with the possibility of preventing or modulating cognitive impairments. Specifically, we described the effects of several nutrients on diet-dependent epigenetic processes, in particular DNA methylation and histones post-translational modifications, and their potential role as therapeutic target, to describe how some forms of cognitive decline could be prevented or modulated from the early stages of life.
Collapse
Affiliation(s)
- Arianna Polverino
- Institute of Diagnosis and Treatment Hermitage Capodimonte, Naples, Italy.,Department of Motor and Wellness Sciences, University of Naples "Parthenope", Naples, Italy
| | - Pierpaolo Sorrentino
- Institut de Neurosciences des Systèmes, Aix-Marseille University, Marseille, France.,Institute of Applied Sciences and Intelligent Systems, National Research Council, Pozzuoli, Italy
| | - Matteo Pesoli
- Department of Motor and Wellness Sciences, University of Naples "Parthenope", Naples, Italy
| | - Laura Mandolesi
- Department of Humanities Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
16
|
Chiang CWK. The Opportunities and Challenges of Integrating Population Histories Into Genetic Studies for Diverse Populations: A Motivating Example From Native Hawaiians. Front Genet 2021; 12:643883. [PMID: 34646295 PMCID: PMC8503554 DOI: 10.3389/fgene.2021.643883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 08/19/2021] [Indexed: 11/25/2022] Open
Abstract
There is a well-recognized need to include diverse populations in genetic studies, but several obstacles continue to be prohibitive, including (but are not limited to) the difficulty of recruiting individuals from diverse populations in large numbers and the lack of representation in available genomic references. These obstacles notwithstanding, studying multiple diverse populations would provide informative, population-specific insights. Using Native Hawaiians as an example of an understudied population with a unique evolutionary history, I will argue that by developing key genomic resources and integrating evolutionary thinking into genetic epidemiology, we will have the opportunity to efficiently advance our knowledge of the genetic risk factors, ameliorate health disparity, and improve healthcare in this underserved population.
Collapse
Affiliation(s)
- Charleston W K Chiang
- Department of Population and Public Health Sciences, Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
17
|
Fleming TP, Sun C, Denisenko O, Caetano L, Aljahdali A, Gould JM, Khurana P. Environmental Exposures around Conception: Developmental Pathways Leading to Lifetime Disease Risk. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:9380. [PMID: 34501969 PMCID: PMC8431664 DOI: 10.3390/ijerph18179380] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/11/2022]
Abstract
Environment around conception can influence the developmental programme with lasting effects on gestational and postnatal phenotype and with consequences for adult health and disease risk. Peri-conception exposure comprises a crucial part of the 'Developmental Origins of Health and Disease' (DOHaD) concept. In this review, we consider the effects of maternal undernutrition experienced during the peri-conception period in select human models and in a mouse experimental model of protein restriction. Human datasets indicate that macronutrient deprivation around conception affect the epigenome, with enduring effects on cardiometabolic and neurological health. The mouse model, comprising maternal low protein diet exclusively during the peri-conception period, has revealed a stepwise progression in altered developmental programming following induction through maternal metabolite deficiency. This progression includes differential effects in extra-embryonic and embryonic cell lineages and tissues, leading to maladaptation in the growth trajectory and increased chronic disease comorbidities. The timeline embraces an array of mechanisms across nutrient sensing and signalling, cellular, metabolic, epigenetic and physiological processes with a coordinating role for mTORC1 signalling proposed. Early embryos appear active participants in environmental sensing to optimise the developmental programme for survival but with the trade-off of later disease. Similar adverse health outcomes may derive from other peri-conception environmental experiences, including maternal overnutrition, micronutrient availability, pollutant exposure and assisted reproductive treatments (ART) and support the need for preconception health before pregnancy.
Collapse
Affiliation(s)
- Tom P. Fleming
- Biological Sciences, Southampton General Hospital, University of Southampton, Southampton SO16 6YD, UK; (L.C.); (A.A.); (P.K.)
| | - Congshan Sun
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
- Center for Genetic Muscle Disorders, Hugo W. Moser Research Institute at Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Oleg Denisenko
- Department of Medicine, University of Washington, 850 Republican St., Rm 242, Seattle, WA 98109, USA;
| | - Laura Caetano
- Biological Sciences, Southampton General Hospital, University of Southampton, Southampton SO16 6YD, UK; (L.C.); (A.A.); (P.K.)
| | - Anan Aljahdali
- Biological Sciences, Southampton General Hospital, University of Southampton, Southampton SO16 6YD, UK; (L.C.); (A.A.); (P.K.)
- Department of Biological Sciences, Faculty of Science, Alfaisaliah campus, University of Jeddah, Jeddah 23442, Saudi Arabia
| | - Joanna M. Gould
- Clinical Neurosciences and Psychiatry, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK;
| | - Pooja Khurana
- Biological Sciences, Southampton General Hospital, University of Southampton, Southampton SO16 6YD, UK; (L.C.); (A.A.); (P.K.)
- Institute for Biogenesis Research, Research Corporation of the University of Hawaii, Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
18
|
Ma'u E, Cullum S, Cheung G, Livingston G, Mukadam N. Differences in the potential for dementia prevention between major ethnic groups within one country: A cross sectional analysis of population attributable fraction of potentially modifiable risk factors in New Zealand. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2021; 13:100191. [PMID: 34527984 PMCID: PMC8358157 DOI: 10.1016/j.lanwpc.2021.100191] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/16/2021] [Accepted: 05/27/2021] [Indexed: 12/03/2022]
Abstract
BACKGROUND Twelve potentially modifiable risk factors (less education, hypertension, obesity, alcohol, traumatic brain injury (TBI), hearing loss, smoking, depression, physical inactivity, social isolation, diabetes, air pollution) account for an estimated 40% of worldwide dementia cases. We aimed to calculate population attributable fractions (PAFs) for dementia for the four largest New Zealand ethnic groups (European, Māori, Asian, and Pacific peoples) to identify whether optimal dementia prevention targets differed by ethnicity. METHODS We calculated risk factor prevalence for 10 risk factors using the New Zealand Health Survey 2018/19 and published reports for hearing loss and TBI prevalences. We calculated the PAF for each risk factor using calculated prevalence and relative risk estimates from previous meta-analyses. To account for risk factor overlap, we calculated communality of risk factors and a weighted PAF. FINDINGS The weighted PAF for dementia was 47.7% overall in New Zealand, 47.6% for Europeans, 51.4% for Māori, 50.8% for Pacific peoples, and 40.8% for Asians. Highest PAFs for Europeans were hearing loss (8%) and social isolation (5.7%), and for Asians hearing loss (7.3%) and physical inactivity (5.5%). For Māori and Pacific peoples, highest PAFs were for obesity (7.3% and 8.9% respectively) and hearing loss (6.5% and 6.6%). INTERPRETATION New Zealand has higher dementia prevention potential than worldwide estimates with high prevalences of untreated hearing loss and obesity. The relative contribution of individual risk factors PAFs varies by ethnic group. Public health strategies for dementia prevention need to be tailored to these differences. FUNDING Health Research Council of New Zealand (HRC:20/021).
Collapse
Affiliation(s)
- Etuini Ma'u
- Department of Psychological Medicine, University of Auckland, New Zealand
- Waikato District Health Board
| | - Sarah Cullum
- Department of Psychological Medicine, University of Auckland, New Zealand
- Counties Manukau District Health Board
| | - Gary Cheung
- Department of Psychological Medicine, University of Auckland, New Zealand
- Auckland District Health Board
| | - Gill Livingston
- Division of Psychiatry, University College London, London, UK; Camden and Islington NHS Foundation Trust, St Pancras Hospital, London, UK
| | - Naaheed Mukadam
- Division of Psychiatry, University College London, London, UK; Camden and Islington NHS Foundation Trust, St Pancras Hospital, London, UK
| |
Collapse
|
19
|
Badii M, Gaal OI, Cleophas MC, Klück V, Davar R, Habibi E, Keating ST, Novakovic B, Helsen MM, Dalbeth N, Stamp LK, Macartney-Coxson D, Phipps-Green AJ, Stunnenberg HG, Dinarello CA, Merriman TR, Netea MG, Crişan TO, Joosten LAB. Urate-induced epigenetic modifications in myeloid cells. Arthritis Res Ther 2021; 23:202. [PMID: 34321071 PMCID: PMC8317351 DOI: 10.1186/s13075-021-02580-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/12/2021] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES Hyperuricemia is a metabolic condition central to gout pathogenesis. Urate exposure primes human monocytes towards a higher capacity to produce and release IL-1β. In this study, we assessed the epigenetic processes associated to urate-mediated hyper-responsiveness. METHODS Freshly isolated human peripheral blood mononuclear cells or enriched monocytes were pre-treated with solubilized urate and stimulated with LPS with or without monosodium urate (MSU) crystals. Cytokine production was determined by ELISA. Histone epigenetic marks were assessed by sequencing immunoprecipitated chromatin. Mice were injected intraarticularly with MSU crystals and palmitate after inhibition of uricase and urate administration in the presence or absence of methylthioadenosine. DNA methylation was assessed by methylation array in whole blood of 76 participants with normouricemia or hyperuricemia. RESULTS High concentrations of urate enhanced the inflammatory response in vitro in human cells and in vivo in mice, and broad-spectrum methylation inhibitors reversed this effect. Assessment of histone 3 lysine 4 trimethylation (H3K4me3) and histone 3 lysine 27 acetylation (H3K27ac) revealed differences in urate-primed monocytes compared to controls. Differentially methylated regions (e.g. HLA-G, IFITM3, PRKAB2) were found in people with hyperuricemia compared to normouricemia in genes relevant for inflammatory cytokine signaling. CONCLUSION Urate alters the epigenetic landscape in selected human monocytes or whole blood of people with hyperuricemia compared to normouricemia. Both histone modifications and DNA methylation show differences depending on urate exposure. Subject to replication and validation, epigenetic changes in myeloid cells may be a therapeutic target in gout.
Collapse
Affiliation(s)
- M Badii
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 8, 6525 GA, Nijmegen, The Netherlands
| | - O I Gaal
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 8, 6525 GA, Nijmegen, The Netherlands
| | - M C Cleophas
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 8, 6525 GA, Nijmegen, The Netherlands
| | - V Klück
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 8, 6525 GA, Nijmegen, The Netherlands
| | - R Davar
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - E Habibi
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - S T Keating
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 8, 6525 GA, Nijmegen, The Netherlands
| | - B Novakovic
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - M M Helsen
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - N Dalbeth
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - L K Stamp
- Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - D Macartney-Coxson
- Human Genomics, Institute of Environmental Science and Research (ESR), Wellington, New Zealand
| | - A J Phipps-Green
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - H G Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - C A Dinarello
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 8, 6525 GA, Nijmegen, The Netherlands
- Department of Medicine, University of Colorado Denver, Aurora, CO, 80045, USA
| | - T R Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - M G Netea
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 8, 6525 GA, Nijmegen, The Netherlands
- Human Genomics Laboratory, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - T O Crişan
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 8, 6525 GA, Nijmegen, The Netherlands
| | - L A B Joosten
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 8, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
20
|
Choin J, Mendoza-Revilla J, Arauna LR, Cuadros-Espinoza S, Cassar O, Larena M, Ko AMS, Harmant C, Laurent R, Verdu P, Laval G, Boland A, Olaso R, Deleuze JF, Valentin F, Ko YC, Jakobsson M, Gessain A, Excoffier L, Stoneking M, Patin E, Quintana-Murci L. Genomic insights into population history and biological adaptation in Oceania. Nature 2021; 592:583-589. [PMID: 33854233 DOI: 10.1038/s41586-021-03236-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 01/13/2021] [Indexed: 12/27/2022]
Abstract
The Pacific region is of major importance for addressing questions regarding human dispersals, interactions with archaic hominins and natural selection processes1. However, the demographic and adaptive history of Oceanian populations remains largely uncharacterized. Here we report high-coverage genomes of 317 individuals from 20 populations from the Pacific region. We find that the ancestors of Papuan-related ('Near Oceanian') groups underwent a strong bottleneck before the settlement of the region, and separated around 20,000-40,000 years ago. We infer that the East Asian ancestors of Pacific populations may have diverged from Taiwanese Indigenous peoples before the Neolithic expansion, which is thought to have started from Taiwan around 5,000 years ago2-4. Additionally, this dispersal was not followed by an immediate, single admixture event with Near Oceanian populations, but involved recurrent episodes of genetic interactions. Our analyses reveal marked differences in the proportion and nature of Denisovan heritage among Pacific groups, suggesting that independent interbreeding with highly structured archaic populations occurred. Furthermore, whereas introgression of Neanderthal genetic information facilitated the adaptation of modern humans related to multiple phenotypes (for example, metabolism, pigmentation and neuronal development), Denisovan introgression was primarily beneficial for immune-related functions. Finally, we report evidence of selective sweeps and polygenic adaptation associated with pathogen exposure and lipid metabolism in the Pacific region, increasing our understanding of the mechanisms of biological adaptation to island environments.
Collapse
Affiliation(s)
- Jeremy Choin
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, CNRS, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | | | - Lara R Arauna
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, CNRS, Paris, France
| | - Sebastian Cuadros-Espinoza
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, CNRS, Paris, France
- Sorbonne Université, Collège doctoral, Paris, France
| | - Olivier Cassar
- Oncogenic Virus Epidemiology and Pathophysiology, Institut Pasteur, UMR 3569, CNRS, Paris, France
| | - Maximilian Larena
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Albert Min-Shan Ko
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Christine Harmant
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, CNRS, Paris, France
| | - Romain Laurent
- Muséum National d'Histoire Naturelle, UMR7206, CNRS, Université de Paris, Paris, France
| | - Paul Verdu
- Muséum National d'Histoire Naturelle, UMR7206, CNRS, Université de Paris, Paris, France
| | - Guillaume Laval
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, CNRS, Paris, France
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Robert Olaso
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Frédérique Valentin
- Maison de l'Archéologie et de l'Ethnologie, UMR 7041, CNRS, Nanterre, France
| | - Ying-Chin Ko
- Environment-Omics-Disease Research Center, China Medical University and Hospital, Taichung, Taiwan
| | - Mattias Jakobsson
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Antoine Gessain
- Oncogenic Virus Epidemiology and Pathophysiology, Institut Pasteur, UMR 3569, CNRS, Paris, France
| | - Laurent Excoffier
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Etienne Patin
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, CNRS, Paris, France.
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, CNRS, Paris, France.
- Collège de France, Paris, France.
| |
Collapse
|
21
|
Miszkiewicz JJ, Valentin F, Vrahnas C, Sims NA, Vongsvivut J, Tobin MJ, Clark G. Bone loss markers in the earliest Pacific Islanders. Sci Rep 2021; 11:3981. [PMID: 33597553 PMCID: PMC7889909 DOI: 10.1038/s41598-021-83264-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/25/2021] [Indexed: 11/09/2022] Open
Abstract
Kingdom of Tonga in Polynesia is one of the most obese nations where metabolic conditions, sedentary lifestyles, and poor quality diet are widespread. These factors can lead to poor musculoskeletal health. However, whether metabolic abnormalities such as osteoporosis occurred in archaeological populations of Tonga is unknown. We employed a microscopic investigation of femur samples to establish whether bone loss afflicted humans in this Pacific region approximately 3000 years ago. Histology, laser confocal microscopy, and synchrotron Fourier-transform infrared microspectroscopy were used to measure bone vascular canal densities, bone porosity, and carbonate and phosphate content of bone composition in eight samples extracted from adult Talasiu males and females dated to 2650 BP. Compared to males, samples from females had fewer vascular canals, lower carbonate and phosphate content, and higher bone porosity. Although both sexes showed evidence of trabecularised cortical bone, it was more widespread in females (35.5%) than males (15.8%). Our data suggest experiences of advanced bone resorption, possibly as a result of osteoporosis. This provides first evidence for microscopic bone loss in a sample of archaeological humans from a Pacific population widely afflicted by metabolic conditions today.
Collapse
Affiliation(s)
- Justyna J Miszkiewicz
- School of Archaeology and Anthropology, Australian National University, 44 Linnaeus Way, Canberra, ACT, 2601, Australia.
| | - Frédérique Valentin
- CNRS, UMR 7041, ArScAn, Ethnologie préhistorique, Maison René-Ginouvès, Archéologie et Ethnologie, 21 Allée de l'Université, 92023, Nanterre Cedex, France.,Archaeology and Natural History, School of Culture History and Language, College of Asia and the Pacific, Australian National University, Canberra, ACT, 2601, Australia
| | - Christina Vrahnas
- Bone Biology and Disease Unit, St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Melbourne, VIC, 3065, Australia.,Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Melbourne, VIC, 3065, Australia.,MRC Protein Phosphorylation and Ubiquitylation Unit, James Black Centre, University of Dundee, Dundee, DD1 5EH, UK
| | - Natalie A Sims
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Melbourne, VIC, 3065, Australia.,MRC Protein Phosphorylation and Ubiquitylation Unit, James Black Centre, University of Dundee, Dundee, DD1 5EH, UK
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy Beamline, ANSTO - Australian Synchrotron, 800 Blackburn Road, Clayton, VIC, 3168, Australia
| | - Mark J Tobin
- Infrared Microspectroscopy Beamline, ANSTO - Australian Synchrotron, 800 Blackburn Road, Clayton, VIC, 3168, Australia
| | - Geoffrey Clark
- Archaeology and Natural History, School of Culture History and Language, College of Asia and the Pacific, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
22
|
|
23
|
DOHaD in low- and middle-income countries: a systematic review exploring gaps in DOHaD population studies. J Dev Orig Health Dis 2020; 11:557-563. [PMID: 32314679 DOI: 10.1017/s2040174420000276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Low- and middle-income countries (LMICs) are disproportionately affected by non-communicable diseases (NCDs), accounting for more than 80% of NCD-related deaths globally. Research into early-life influences on these diseases via the developmental origins of health and disease (DOHaD) paradigm has informed health promotion interventions and policies focused on optimising early-life health. However, little is known about where this research occurs and whether it reaches and reflects the countries most affected by NCDs. This review searched for DOHaD studies that investigated relationships between factors during pregnancy and at birth, with later-life NCD incidence, risk and related mortality. The aim of this review was to identify where DOHaD research has been conducted and whether this focus is appropriate and relevant, given the differential burden of NCDs. Embase, MEDLINE and Scopus were searched, and eligibility screening processes identified 136 final articles. This review found that 49.7% of DOHaD research was conducted on populations within Western Europe, 15.9% in East Asia, 12.7% in North America, 8.3% in Latin America and the Caribbean, and fewer in Australasia, South Asia, the Middle East, the Africas, and Central Asia. When categorised by income, this review found that 76.4% of studies were based in high-income countries, 19.1% in upper-middle-income and 4.5% in lower-middle-income countries. No studies were based in low-income countries. There is therefore a marked disconnect between where DOHaD research is undertaken and where the greatest NCD disease burden exists. Increasing DOHaD research capacity in LMICs is crucial to informing local strategies that can contribute to reducing the incidence of NCDs.
Collapse
|
24
|
Genetic hypothesis for the developmental origins of health and disease theory. JOURNAL OF BIO-X RESEARCH 2020. [DOI: 10.1097/jbr.0000000000000056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
25
|
Fox K, Rallapalli KL, Komor AC. Rewriting Human History and Empowering Indigenous Communities with Genome Editing Tools. Genes (Basel) 2020; 11:E88. [PMID: 31940934 PMCID: PMC7016644 DOI: 10.3390/genes11010088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/12/2022] Open
Abstract
Appropriate empirical-based evidence and detailed theoretical considerations should be used for evolutionary explanations of phenotypic variation observed in the field of human population genetics (especially Indigenous populations). Investigators within the population genetics community frequently overlook the importance of these criteria when associating observed phenotypic variation with evolutionary explanations. A functional investigation of population-specific variation using cutting-edge genome editing tools has the potential to empower the population genetics community by holding "just-so" evolutionary explanations accountable. Here, we detail currently available precision genome editing tools and methods, with a particular emphasis on base editing, that can be applied to functionally investigate population-specific point mutations. We use the recent identification of thrifty mutations in the CREBRF gene as an example of the current dire need for an alliance between the fields of population genetics and genome editing.
Collapse
Affiliation(s)
- Keolu Fox
- Department of Anthropology, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Global Health, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kartik Lakshmi Rallapalli
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA;
| | - Alexis C. Komor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA;
| |
Collapse
|
26
|
Horwood PF, Tarantola A, Goarant C, Matsui M, Klement E, Umezaki M, Navarro S, Greenhill AR. Health Challenges of the Pacific Region: Insights From History, Geography, Social Determinants, Genetics, and the Microbiome. Front Immunol 2019; 10:2184. [PMID: 31572391 PMCID: PMC6753857 DOI: 10.3389/fimmu.2019.02184] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/29/2019] [Indexed: 02/06/2023] Open
Abstract
The Pacific region, also referred to as Oceania, is a geographically widespread region populated by people of diverse cultures and ethnicities. Indigenous people in the region (Melanesians, Polynesians, Micronesians, Papuans, and Indigenous Australians) are over-represented on national, regional, and global scales for the burden of infectious and non-communicable diseases. Although social and environmental factors such as poverty, education, and access to health-care are assumed to be major drivers of this disease burden, there is also developing evidence that genetic and microbiotic factors should also be considered. To date, studies investigating genetic and/or microbiotic links with vulnerabilities to infectious and non-communicable diseases have mostly focused on populations in Europe, Asia, and USA, with uncertain associations for other populations such as indigenous communities in Oceania. Recent developments in personalized medicine have shown that identifying ethnicity-linked genetic vulnerabilities can be important for medical management. Although our understanding of the impacts of the gut microbiome on health is still in the early stages, it is likely that equivalent vulnerabilities will also be identified through the interaction between gut microbiome composition and function with pathogens and the host immune system. As rapid economic, dietary, and cultural changes occur throughout Oceania it becomes increasingly important that further research is conducted within indigenous populations to address the double burden of high rates of infectious diseases and rapidly rising non-communicable diseases so that comprehensive development goals can be planned. In this article, we review the current knowledge on the impact of nutrition, genetics, and the gut microbiome on infectious diseases in indigenous people of the Pacific region.
Collapse
Affiliation(s)
- Paul F. Horwood
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | | | - Cyrille Goarant
- Institut Pasteur de Nouvelle-Calédonie, Noumea, New Caledonia
| | - Mariko Matsui
- Institut Pasteur de Nouvelle-Calédonie, Noumea, New Caledonia
| | - Elise Klement
- Institut Pasteur de Nouvelle-Calédonie, Noumea, New Caledonia
- Internal Medicine and Infectious Diseases Department, Centre Hospitalier Territorial, Noumea, New Caledonia
| | - Masahiro Umezaki
- Department of Human Ecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Severine Navarro
- Immunology Department, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Andrew R. Greenhill
- School of Health and Life Sciences, Federation University Australia, Churchill, VIC, Australia
| |
Collapse
|
27
|
Tarantola A, Horwood PF, Goarant C, Bertrand S, Merilles OEA, Pedron T, Klement-Frutos E, Sansonetti P, Quintana-Murci L, Richard V. Counting Oceanians of Non-European, Non-Asian Descent (ONENA) in the South Pacific to Make Them Count in Global Health. Trop Med Infect Dis 2019; 4:114. [PMID: 31405081 PMCID: PMC6789437 DOI: 10.3390/tropicalmed4030114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/30/2019] [Accepted: 08/06/2019] [Indexed: 01/07/2023] Open
Abstract
Several diseases and vulnerabilities associated with genetic or microbial factors are more frequent among populations of Oceanian, Non-European, Non-Asian descent (ONENA). ONENA are specific and have long been isolated geographically. To our knowledge, there are no published official, quantitative, aggregated data on the populations impacted by these excess vulnerabilities in Oceania. We searched official census reports for updated estimates of the total population for each of the Pacific Island Countries and Territories (including Australia) and the US State of Hawaii, privileging local official statistical or censual sources. We multiplied the most recent total population estimate by the cumulative percentage of the ONENA population as determined in official reports. Including Australia and the US State of Hawaii, Oceania counts 27 countries and territories, populated in 2016 by approximately 41 M inhabitants (17 M not counting Australia) among which approximately 12.5 M (11.6 M not counting Australia) consider themselves of entire or partial ONENA ancestry. Specific genetic and microbiome traits of ONENA may be unique and need further investigation to adjust risk estimates, risk prevention, diagnostic and therapeutic strategies, to the benefit of populations in the Pacific and beyond.
Collapse
Affiliation(s)
- Arnaud Tarantola
- Epidemiology unit, Institut Pasteur de Nouvelle-Calédonie, BP 61-98845 Nouméa cedex, New Caledonia.
| | - Paul F Horwood
- Virology and Viral Diseases, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville QLD 4811, Australia
| | - Cyrille Goarant
- Leptospirosis research and expertise unit, Institut Pasteur de Nouvelle-Calédonie, BP 61 - 98845 Nouméa cedex, New Caledonia
| | - Solène Bertrand
- Communauté du Pacifique/Pacific Community, 95 Promenade Roger Laroque, BP D5, Nouméa 98848, New Caledonia
| | - Onofre Edwin A Merilles
- Communauté du Pacifique/Pacific Community, 95 Promenade Roger Laroque, BP D5, Nouméa 98848, New Caledonia
| | - Thierry Pedron
- Unité de Pathogénie Microbienne Moléculaire, INSERM U1202, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris cedex 15, France
| | - Elise Klement-Frutos
- Epidemiology unit, Institut Pasteur de Nouvelle-Calédonie, BP 61-98845 Nouméa cedex, New Caledonia
- Internal Medicine and Infectious Diseases Department, Centre Hospitalier Territorial, 110 Boulevard Joseph Wamytan, Dumbéa Sur Mer 98835, New Caledonia
| | - Philippe Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, INSERM U1202, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris cedex 15 ; Chaire de Microbiologie et Maladies Infectieuses, Collège de France, 11 squareMarcelin Berthelot, 75005 Paris, France
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - Vincent Richard
- Institut Pasteur de Nouvelle-Calédonie, BP 61-98845 Nouméa cedex, New Caledonia
| |
Collapse
|
28
|
Matisoo-Smith E, Gosling AL. Walking backwards into the future: the need for a holistic evolutionary approach in Pacific health research. Ann Hum Biol 2018; 45:175-187. [PMID: 29877149 DOI: 10.1080/03014460.2018.1448889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CONTEXT The Pacific region has had a complex human history. It has been subject to multiple major human dispersal and colonisation events, including some of the earliest Out-of-Africa migrations, the so-called Austronesian expansion of people out of Island Southeast Asia, and the more recent arrival of Europeans. Despite models of island isolation, evidence suggests significant levels of interconnectedness that vary in direction and frequency over time. The Pacific Ocean covers a vast area and its islands provide an array of different physical environments with variable pathogen loads and subsistence opportunities. These diverse environments likely caused Pacific peoples to adapt (both genetically and culturally) in unique ways. Differences in genetic background, in combination with adaptation, likely affect their susceptibility to non-communicable diseases. OBJECTIVES Here we provide an overview of some of the key issues in the natural and human history of the Pacific region which are likely to impact human health. We argue that understanding the evolutionary and cultural history of Pacific peoples is essential for the generation of testable hypotheses surrounding potential causes of elevated disease susceptibility among Pacific peoples.
Collapse
Affiliation(s)
| | - Anna L Gosling
- a Department of Anatomy , University of Otago , Dunedin , New Zealand.,b Department of Biochemistry , University of Otago , Dunedin , New Zealand
| |
Collapse
|
29
|
Qasim A, Turcotte M, de Souza RJ, Samaan MC, Champredon D, Dushoff J, Speakman JR, Meyre D. On the origin of obesity: identifying the biological, environmental and cultural drivers of genetic risk among human populations. Obes Rev 2018; 19:121-149. [PMID: 29144594 DOI: 10.1111/obr.12625] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/28/2017] [Accepted: 09/08/2017] [Indexed: 12/12/2022]
Abstract
Genetic predisposition to obesity presents a paradox: how do genetic variants with a detrimental impact on human health persist through evolutionary time? Numerous hypotheses, such as the thrifty genotype hypothesis, attempt to explain this phenomenon yet fail to provide a justification for the modern obesity epidemic. In this critical review, we appraise existing theories explaining the evolutionary origins of obesity and explore novel biological and sociocultural agents of evolutionary change to help explain the modern-day distribution of obesity-predisposing variants. Genetic drift, acting as a form of 'blind justice,' may randomly affect allele frequencies across generations while gene pleiotropy and adaptations to diverse environments may explain the rise and subsequent selection of obesity risk alleles. As an adaptive response, epigenetic regulation of gene expression may impact the manifestation of genetic predisposition to obesity. Finally, exposure to malnutrition and disease epidemics in the wake of oppressive social systems, culturally mediated notions of attractiveness and desirability, and diverse mating systems may play a role in shaping the human genome. As an important first step towards the identification of important drivers of obesity gene evolution, this review may inform empirical research focused on testing evolutionary theories by way of population genetics and mathematical modelling.
Collapse
Affiliation(s)
- A Qasim
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - M Turcotte
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - R J de Souza
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - M C Samaan
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada.,Department of Pediatrics, McMaster University, Hamilton, ON, Canada.,Division of Pediatric Endocrinology, McMaster Children's Hospital, Hamilton, ON, Canada
| | - D Champredon
- Department of Biology, McMaster University, Hamilton, ON, Canada.,Agent-Based Modelling Laboratory, York University, Toronto, ON, Canada
| | - J Dushoff
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - J R Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - D Meyre
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
30
|
Gene-nutrient interactions and susceptibility to human obesity. GENES AND NUTRITION 2017; 12:29. [PMID: 29093760 PMCID: PMC5663124 DOI: 10.1186/s12263-017-0581-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 07/04/2017] [Indexed: 12/28/2022]
Abstract
A large number of genome-wide association studies, transferability studies, and candidate gene studies performed in diverse populations around the world have identified gene variants that are associated with common human obesity. The mounting evidence suggests that these obesity gene variants interact with multiple environmental factors and increase susceptibility to this complex metabolic disease. The objective of this review article is to provide concise and updated information on energy balance, heritability of body weight, origins of gene variants, and gene-nutrient interactions in relation to human obesity. It is proposed that knowledge of these related topics will provide valuable insight for future preventative lifestyle intervention using targeted nutritional and medicinal therapies.
Collapse
|
31
|
Reales G, Rovaris DL, Jacovas VC, Hünemeier T, Sandoval JR, Salazar-Granara A, Demarchi DA, Tarazona-Santos E, Felkl AB, Serafini MA, Salzano FM, Bisso-Machado R, Comas D, Paixão-Côrtes VR, Bortolini MC. A tale of agriculturalists and hunter-gatherers: Exploring the thrifty genotype hypothesis in native South Americans. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 163:591-601. [PMID: 28464262 DOI: 10.1002/ajpa.23233] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/06/2017] [Accepted: 04/06/2017] [Indexed: 01/30/2023]
Abstract
OBJECTIVES To determine genetic differences between agriculturalist and hunter-gatherer southern Native American populations for selected metabolism-related markers and to test whether Neel's thrifty genotype hypothesis (TGH) could explain the genetic patterns observed in these populations. MATERIALS AND METHODS 375 Native South American individuals from 17 populations were genotyped using six markers (APOE rs429358 and rs7412; APOA2 rs5082; CD36 rs3211883; TCF7L2 rs11196205; and IGF2BP2 rs11705701). Additionally, APOE genotypes from 39 individuals were obtained from the literature. AMOVA, main effects, and gene-gene interaction tests were performed. RESULTS We observed differences in allele distribution patterns between agriculturalists and hunter-gatherers for some markers. For instance, between-groups component of genetic variance (FCT ) for APOE rs429358 showed strong differences in allelic distributions between hunter-gatherers and agriculturalists (p = 0.00196). Gene-gene interaction analysis indicated that the APOE E4/CD36 TT and APOE E4/IGF2BP2 A carrier combinations occur at a higher frequency in hunter-gatherers, but this combination is not replicated in archaic (Neanderthal and Denisovan) and ancient (Anzick, Saqqaq, Ust-Ishim, Mal'ta) hunter-gatherer individuals. DISCUSSION A complex scenario explains the observed frequencies of the tested markers in hunter-gatherers. Different factors, such as pleotropic alleles, rainforest selective pressures, and population dynamics, may be collectively shaping the observed genetic patterns. We conclude that although TGH seems a plausible hypothesis to explain part of the data, other factors may be important in our tested populations.
Collapse
Affiliation(s)
- Guillermo Reales
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Diego L Rovaris
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Vanessa C Jacovas
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Tábita Hünemeier
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - José R Sandoval
- Facultad de Medicina Humana, Universidad de San Martin de Porres, Lima, Peru
| | | | - Darío A Demarchi
- Instituto de Antropología de Córdoba, CONICET, Universidad Nacional de Córdoba, Argentina
| | - Eduardo Tarazona-Santos
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte, Minas Gerais, Brazil
| | - Aline B Felkl
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Michele A Serafini
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Francisco M Salzano
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rafael Bisso-Machado
- Polo de Desarrollo Universitario Diversidad Genética Humana, Centro Universitario de Tacuarembó, Universidad de la República, Tacuarembó, Uruguay
| | - David Comas
- Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències Experimentals i de La Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Vanessa R Paixão-Côrtes
- Departamento de Biologia Geral, Instituto de Biologia, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Maria Cátira Bortolini
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
32
|
Smith RJ. Explanations for adaptations, just-so stories, and limitations on evidence in evolutionary biology. Evol Anthropol 2016; 25:276-287. [DOI: 10.1002/evan.21495] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Indexed: 02/01/2023]
|