1
|
Zhang S, Zhu J, Jin S, Sun W, Ji W, Chen Z. Jawbone periosteum-derived cells with high osteogenic potential controlled by R-spondin 3. FASEB J 2024; 38:e70079. [PMID: 39340242 DOI: 10.1096/fj.202400988rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/04/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024]
Abstract
The jawbone periosteum, the easily accessible tissue responding to bone repair, has been overlooked in the recent development of cell therapy for jawbone defect reconstruction. Therefore, this study aimed to elucidate the in vitro and in vivo biological characteristics of jawbone periosteum-derived cells (jb-PDCs). For this purpose, we harvested the jb-PDCs from 8-week-old C57BL/6 mice. The in vitro cultured jb-PDCs (passages 1 and 3) contained skeletal stem/progenitor cells and exhibited clonogenicity and tri-lineage differentiation capacity. When implanted in vivo, the jb-PDCs (passage 3) showed evident ectopic bone formation after 4-week subcutaneous implantation, and active contribution to repair the critical-size jawbone defects in mice. Molecular profiling suggested that R-spondin 3 was strongly associated with the superior in vitro and in vivo osteogenic potentials of jb-PDCs. Overall, our study highlights the significance of comprehending the biological characteristics of the jawbone periosteum, which could pave the way for innovative cell-based therapies for the reconstruction of jawbone defects.
Collapse
Affiliation(s)
- Shu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jingxian Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Siyu Jin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei Sun
- Department of Implantology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Implantology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Di DS, Li C, Dai Y, Wei MH, Wang SS, Song WJ, Zhou HL, Cui Y, Zhang RY, Huang Q, Wang Q. Integrative Analysis of LGR5/6 Gene Variants, Gut Microbiota Composition and Osteoporosis Risk in Elderly Population. Front Microbiol 2021; 12:765008. [PMID: 34795657 PMCID: PMC8593465 DOI: 10.3389/fmicb.2021.765008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/13/2021] [Indexed: 11/25/2022] Open
Abstract
Objective: This study aimed to explore the relationships between the common variants of R-spondin/Wnt signaling genes, gut microbiota composition, and osteoporosis (OP) risk in elderly Chinese Han population. Design: Dual-energy X-ray absorptiometry was used to obtain the OP-associated measurements at multiple skeleton sites among all 1,168 participants. Genotyping data was obtained by using the next-generation sequencing in the discovery stage (n = 400, 228 OP patients) and SNPscan technology in the replication stage (n = 768, 356 OP patients). Bioinformatic analysis was performed to provide more evidence for the genotype-OP associations. The 16S ribosomal RNA gene high-throughput sequencing technology was adopted to explore OP-associated gut microbiota variations. Results: The genetic variants of rs10920362 in the LGR6 gene (P-FDR = 1.19 × 10–6) and rs11178860 in the LGR5 gene (P-FDR = 1.51 × 10–4) were found to associate with OP risk significantly. Several microbial taxa were associated with the BMDs and T-scores at multiple skeleton sites. The associations between rs10920362 and BMD-associated microbiota maintained significance after adjusting confounders. The rs10920362 CT/TT genotype associated with a decreased relative abundance of Actinobacteria (β = −1.32, P < 0.001), Bifidobacteriaceae (β = −1.70, P < 0.001), and Bifidobacterium (β = −1.70, P < 0.001) compared to the CC genotype. Conclusion: Our findings suggested that the variants loci of LGR6 may be associate with OP pathogenesis via gut microbiota modifications. The relationship between host genetics and gut microbiome provides new perspectives about OP prevention and treatment.
Collapse
Affiliation(s)
- Dong-Sheng Di
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Can Li
- Department of Cancer Prevention and Control, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yu Dai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mu-Hong Wei
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan-Shan Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen-Jing Song
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao-Long Zhou
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Cui
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ru-Yi Zhang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Huang
- Department of Rehabilitation Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Wang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Nilsson KH, Henning P, El Shahawy M, Nethander M, Andersen TL, Ejersted C, Wu J, Gustafsson KL, Koskela A, Tuukkanen J, Souza PPC, Tuckermann J, Lorentzon M, Ruud LE, Lehtimäki T, Tobias JH, Zhou S, Lerner UH, Richards JB, Movérare-Skrtic S, Ohlsson C. RSPO3 is important for trabecular bone and fracture risk in mice and humans. Nat Commun 2021; 12:4923. [PMID: 34389713 PMCID: PMC8363747 DOI: 10.1038/s41467-021-25124-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/19/2021] [Indexed: 11/22/2022] Open
Abstract
With increasing age of the population, countries across the globe are facing a substantial increase in osteoporotic fractures. Genetic association signals for fractures have been reported at the RSPO3 locus, but the causal gene and the underlying mechanism are unknown. Here we show that the fracture reducing allele at the RSPO3 locus associate with increased RSPO3 expression both at the mRNA and protein levels, increased trabecular bone mineral density and reduced risk mainly of distal forearm fractures in humans. We also demonstrate that RSPO3 is expressed in osteoprogenitor cells and osteoblasts and that osteoblast-derived RSPO3 is the principal source of RSPO3 in bone and an important regulator of vertebral trabecular bone mass and bone strength in adult mice. Mechanistic studies revealed that RSPO3 in a cell-autonomous manner increases osteoblast proliferation and differentiation. In conclusion, RSPO3 regulates vertebral trabecular bone mass and bone strength in mice and fracture risk in humans.
Collapse
Affiliation(s)
- Karin H Nilsson
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Petra Henning
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Maha El Shahawy
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Faculty of Dentistry, Department of Oral Biology, Minia University, Minia, Egypt
| | - Maria Nethander
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Thomas Levin Andersen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Charlotte Ejersted
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Jianyao Wu
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Karin L Gustafsson
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Antti Koskela
- Department of Anatomy and Cell Biology, Faculty of Medicine, Institute of Cancer Research and Translational Medicine, University of Oulu, Oulu, Finland
| | - Juha Tuukkanen
- Department of Anatomy and Cell Biology, Faculty of Medicine, Institute of Cancer Research and Translational Medicine, University of Oulu, Oulu, Finland
| | - Pedro P C Souza
- Innovation in Biomaterials Laboratory, Faculty of Dentistry, Federal University of Goiás, Goiâna, Brazil
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology (CME), University of Ulm, Ulm, Germany
| | - Mattias Lorentzon
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Geriatric Medicine, Sahlgrenska University Hospital, Mölndal, Sweden
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Linda Engström Ruud
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jon H Tobias
- Musculoskeletal Research Unit, Translational Health Sciences, and Medical Research Council Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - Sirui Zhou
- Department of Medicine, Centre for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Ulf H Lerner
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - J Brent Richards
- Department of Medicine, Centre for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Sofia Movérare-Skrtic
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | - Claes Ohlsson
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Region Västra Götaland, Department of Drug Treatment, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
4
|
Alhazmi N, Carroll SH, Kawasaki K, Woronowicz KC, Hallett SA, Macias Trevino C, Li EB, Baron R, Gori F, Yelick PC, Harris MP, Liao EC. Synergistic roles of Wnt modulators R-spondin2 and R-spondin3 in craniofacial morphogenesis and dental development. Sci Rep 2021; 11:5871. [PMID: 33712657 PMCID: PMC7954795 DOI: 10.1038/s41598-021-85415-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 02/26/2021] [Indexed: 12/01/2022] Open
Abstract
Wnt signaling plays a critical role in craniofacial patterning, as well as tooth and bone development. Rspo2 and Rspo3 are key regulators of Wnt signaling. However, their coordinated function and relative requirement in craniofacial development and odontogensis are poorly understood. We showed that in zebrafish rspo2 and rspo3 are both expressed in osteoprogenitors in the embryonic craniofacial skeleton. This is in contrast to mouse development, where Rspo3 is expressed in osteoprogenitors while Rspo2 expression is not observed. In zebrafish, rspo2 and rspo3 are broadly expressed in the pulp, odontoblasts and epithelial crypts. However, in the developing molars of the mouse, Rspo3 is largely expressed in the dental follicle and alveolar mesenchyme while Rspo2 expression is restricted to the tooth germ. While Rspo3 ablation in the mouse is embryonic lethal, zebrafish rspo3-/- mutants are viable with modest decrease in Meckel's cartilage rostral length. However, compound disruption of rspo3 and rspo2 revealed synergistic roles of these genes in cartilage morphogenesis, fin development, and pharyngeal tooth development. Adult rspo3-/- zebrafish mutants exhibit a dysmorphic cranial skeleton and decreased average tooth number. This study highlights the differential functions of Rspo2 and Rspo3 in dentocranial morphogenesis in zebrafish and in mouse.
Collapse
Affiliation(s)
- Nora Alhazmi
- Harvard School of Dental Medicine, Boston, MA, USA
| | - Shannon H Carroll
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Shriners Hospital for Children, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kenta Kawasaki
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Shriners Hospital for Children, Boston, MA, USA
| | - Katherine C Woronowicz
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Orthopedics, Boston Children's Hospital, Boston, MA, USA
| | - Shawn A Hallett
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Claudio Macias Trevino
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Edward B Li
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Roland Baron
- Harvard School of Dental Medicine, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | - Pamela C Yelick
- Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Matthew P Harris
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Orthopedics, Boston Children's Hospital, Boston, MA, USA
| | - Eric C Liao
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Shriners Hospital for Children, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
5
|
Nagano K. R-spondin signaling as a pivotal regulator of tissue development and homeostasis. JAPANESE DENTAL SCIENCE REVIEW 2019; 55:80-87. [PMID: 31049116 PMCID: PMC6479641 DOI: 10.1016/j.jdsr.2019.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 02/04/2019] [Accepted: 03/28/2019] [Indexed: 01/01/2023] Open
Abstract
R-spondins (Rspos) are cysteine-rich secreted glycoproteins which control a variety of cellular functions and are essential for embryonic development and tissue homeostasis. R-spondins (Rspo1 to 4) have high structural similarity and share 60% sequence homology. It has been shown that their cysteine-rich furin-like (FU) domain and the thrombospondin (TSP) type I repeat domain are essential for initiating downstream signaling cascades and therefore for their biological functions. Although numerous studies have unveiled their pivotal role as critical developmental regulators, the most important finding is that Rspos synergize Wnt signaling. Recent studies have identified novel receptors for Rspos, the Lgr receptors, closely related orphans of the leucin-rich repeat containing G protein-coupled receptors, and proposed that Rspos potentiate canonical Wnt signaling via these receptors. Given that Wnt signaling is one of the most important developmental signaling pathways that controls cell fate decisions and tissue development, growth and homeostasis, Rspos may function as key players for these processes as well as potential therapeutic targets. Here, I recapitulate the Wnt signaling and then outline the biological role of Rspos in tissue development and homeostasis and explore the possibility that Rspos may be used as therapeutic targets.
Collapse
Affiliation(s)
- Kenichi Nagano
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Ave, REB314, Boston, MA 02115, USA
| |
Collapse
|