1
|
Castilha EP, Biondo R, Trugilo KP, Fortunato GM, Fenton TR, de Oliveira KB. APOBEC3 Proteins: From Antiviral Immunity to Oncogenic Drivers in HPV-Positive Cancers. Viruses 2025; 17:436. [PMID: 40143363 PMCID: PMC11946020 DOI: 10.3390/v17030436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
The human APOBEC superfamily consists of eleven cytidine deaminase enzymes. Among them, APOBEC3 enzymes play a dual role in antiviral immunity and cancer development. APOBEC3 enzymes, including APOBEC3A (A3A) and APOBEC3B (A3B), induce mutations in viral DNA, effectively inhibiting viral replication but also promoting somatic mutations in the host genome, contributing to cancer development. A3A and A3B are linked to mutational signatures in over 50% of human cancers, with A3A being a potent mutagen. A3B, one of the first APOBEC3 enzymes linked to carcinogenesis, plays a significant role in HPV-associated cancers by driving somatic mutagenesis and tumor progression. The A3A_B deletion polymorphism results in a hybrid A3A_B gene, leading to increased A3A expression and enhanced mutagenic potential. Such polymorphism has been linked to an elevated risk of certain cancers, particularly in populations where it is more prevalent. This review explores the molecular mechanisms of APOBEC3 proteins, highlighting their dual roles in antiviral defense and tumorigenesis. We also discuss the clinical implications of genetic variants, such as the A3A_B polymorphism, mainly in HPV infection and associated cancers, providing a comprehensive understanding of their contributions to both viral restriction and cancer development.
Collapse
Affiliation(s)
- Eliza Pizarro Castilha
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil; (E.P.C.); (K.P.T.); (G.M.F.)
| | - Rosalba Biondo
- Leiden Academic Centre for Drug Research, Analytical Biosciences, Leiden University, P.O. Box 9502, 2311 EZ Leiden, The Netherlands;
| | - Kleber Paiva Trugilo
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil; (E.P.C.); (K.P.T.); (G.M.F.)
| | - Giulia Mariane Fortunato
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil; (E.P.C.); (K.P.T.); (G.M.F.)
| | - Timothy Robert Fenton
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Tremona Road, Southampton SO16 6YD, UK;
- Institute for Life Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Karen Brajão de Oliveira
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil; (E.P.C.); (K.P.T.); (G.M.F.)
- Polymorphism Research Laboratory, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil
| |
Collapse
|
2
|
de Sousa Pereira N, Vitiello GAF, Amarante MK. Involvement of APOBEC3A/B Deletion in Mouse Mammary Tumor Virus (MMTV)-like Positive Human Breast Cancer. Diagnostics (Basel) 2023; 13:diagnostics13061196. [PMID: 36980505 PMCID: PMC10047902 DOI: 10.3390/diagnostics13061196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The association between mouse mammary tumor virus (MMTV)-like sequences and human breast cancer (BC) is largely documented in the literature, but further research is needed to determine how they influence carcinogenesis. APOBEC3 cytidine deaminases are viral restriction factors that have been implicated in cancer mutagenesis, and a germline deletion that results in the fusion of the APOBEC3A coding region with the APOBEC3B 3'-UTR has been linked to increased mutagenic potential, enhanced risk of BC development, and poor prognosis. However, little is known about factors influencing APOBEC3 family activation in cancer. Thus, we hypothesized that MMTV infection and APOBEC3-mediated mutagenesis may be linked in the pathogenesis of BC. We investigated APOBEC3A/B genotyping, MMTV-like positivity, and clinicopathological parameters of 209 BC patients. We show evidence for active APOBEC3-mediated mutagenesis in human-derived MMTV sequences and comparatively investigate the impact of APOBEC3A/B germline deletion in MMTV-like env positive and negative BC in a Brazilian cohort. In MMTV-like negative samples, APOBEC3A/B deletion was negatively correlated with tumor stage while being positively correlated with estrogen receptor expression. Although APOBEC3A/B was not associated with MMTV-like positivity, samples carrying both MMTV-like positivity and APOBEC3A/B deletion had the lowest age-at-diagnosis of all study groups, with all patients being less than 50 years old. These results indicate that APOBEC3 mutagenesis is active against MMTV-like sequences, and that APOBEC3A/B deletion might act along with the MMTV-like presence to predispose people to early-onset BC.
Collapse
Affiliation(s)
- Nathália de Sousa Pereira
- Oncology Laboratory, Department of Pathology, Clinical and Toxicological Analyses, Health Sciences Center, Londrina State University, Londrina 86057-970, PR, Brazil
| | | | - Marla Karine Amarante
- Oncology Laboratory, Department of Pathology, Clinical and Toxicological Analyses, Health Sciences Center, Londrina State University, Londrina 86057-970, PR, Brazil
| |
Collapse
|
3
|
Sofiyeva N, Krakstad C, Halle MK, O'Mara TA, Romundstad P, Hveem K, Vatten L, Lønning PE, Gansmo LB, Knappskog S.
APOBEC3A
/B
deletion polymorphism and endometrial cancer risk. Cancer Med 2022; 12:6659-6667. [PMID: 36394079 PMCID: PMC10067079 DOI: 10.1002/cam4.5448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND A common 30 kb deletion affecting the APOBEC3A and APOBEC3B genes has been linked to increased APOBEC activity and APOBEC-related mutational signatures in human cancers. The role of this deletion as a cancer risk factor remains controversial. MATERIALS AND METHODS We genotyped the APOBEC3A/B deletion in a sample of 1,470 Norwegian endometrial cancer cases and compared to 1,918 healthy controls. For assessment across Caucasian populations, we mined genotypes of the SNP rs12628403, which is in strong linkage disequilibrium with the deletion, in a GWAS dataset of 4,274 cases and 18,125 healthy controls, through the ECAC consortium. RESULTS We found the APOBEC3A/B deletion variant to be significantly associated with reduced risk of endometrial cancer among Norwegian women (OR = 0.75; 95% CI = 0.62-0.91; p = 0.003; dominant model). Similar results were found in the subgroup of endometrioid endometrial cancer (OR = 0.64; 95% CI = 0.51-0.79; p = 3.6 × 10-5 ; dominant model). The observed risk reduction was particularly strong among individuals in the range of 50-60 years of age (OR = 0.51; 95% CI = 0.33-0.78; p = 0.002; dominant model). In the different populations included in the ECAC dataset, the ORs varied from 0.85 to 1.05. Although five out of six populations revealed ORs <1.0, the overall estimate was nonsignificant and, as such, did not formally validate the findings in the Norwegian cohort. CONCLUSION The APOBEC3A/B deletion polymorphism is associated with a decreased risk of endometrial cancer in the Norwegian population.
Collapse
Affiliation(s)
- Nigar Sofiyeva
- K.G. Jebsen Center for Genome‐Directed Cancer Therapy, Department of Clinical Science University of Bergen Bergen Norway
- Department of Oncology Haukeland University Hospital Bergen Norway
| | - Camilla Krakstad
- Department of Clinical Science, Centre for Cancer Biomarkers University of Bergen Bergen Norway
- Department of Obstetrics and Gynaecology Haukeland University Hospital Bergen Norway
| | - Mari K. Halle
- Department of Clinical Science, Centre for Cancer Biomarkers University of Bergen Bergen Norway
- Department of Obstetrics and Gynaecology Haukeland University Hospital Bergen Norway
| | - Tracy A. O'Mara
- Cancer Program QIMR Berghofer Medical Research Institute Brisbane Australia
| | - Pål Romundstad
- Department of Public Health, Faculty of Medicine Norwegian University of Science and Technology Trondheim Norway
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health, Faculty of Medicine Norwegian University of Science and Technology Trondheim Norway
| | - Lars Vatten
- Department of Public Health, Faculty of Medicine Norwegian University of Science and Technology Trondheim Norway
| | - Per E. Lønning
- K.G. Jebsen Center for Genome‐Directed Cancer Therapy, Department of Clinical Science University of Bergen Bergen Norway
- Department of Oncology Haukeland University Hospital Bergen Norway
| | - Liv B. Gansmo
- K.G. Jebsen Center for Genome‐Directed Cancer Therapy, Department of Clinical Science University of Bergen Bergen Norway
- Department of Oncology Haukeland University Hospital Bergen Norway
| | - Stian Knappskog
- K.G. Jebsen Center for Genome‐Directed Cancer Therapy, Department of Clinical Science University of Bergen Bergen Norway
- Department of Oncology Haukeland University Hospital Bergen Norway
| |
Collapse
|
4
|
Zhang Y, Chen X, Cao Y, Yang Z. Roles of APOBEC3 in hepatitis B virus (HBV) infection and hepatocarcinogenesis. Bioengineered 2021; 12:2074-2086. [PMID: 34043485 PMCID: PMC8806738 DOI: 10.1080/21655979.2021.1931640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 02/08/2023] Open
Abstract
APOBEC3 (A3) cytidine deaminases inhibit hepatitis B virus (HBV) infection and play vital roles in maintaining a variety of biochemical processes, including the regulation of protein expression and innate immunity. Emerging evidence indicates that the deaminated deoxycytidine biochemical activity of A3 proteins in single-stranded DNA makes them a double-edged sword. These enzymes can cause cellular genetic mutations at replication forks or within transcription bubbles, depending on the physiological state of the cell and the phase of the cell cycle. Under pathological conditions, aberrant expression of A3 genes with improper deaminase activity regulation may threaten genomic stability and eventually lead to cancer development. This review attempted to summarize the antiviral activities and underlying mechanisms of A3 editing enzymes in HBV infections. Moreover, the correlations between A3 genes and hepatocarcinogenesis were also elucidated.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiaorong Chen
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yajuan Cao
- Central Laboratory, Shanghai Pulmonary HospitalSchool of Medicine, Tongji University School of Medicine, Shanghai, China
- Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zongguo Yang
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Perez-Bercoff D, Laude H, Lemaire M, Hunewald O, Thiers V, Vignuzzi M, Blanc H, Poli A, Amoura Z, Caval V, Suspène R, Hafezi F, Mathian A, Vartanian JP, Wain-Hobson S. Sustained high expression of multiple APOBEC3 cytidine deaminases in systemic lupus erythematosus. Sci Rep 2021; 11:7893. [PMID: 33846459 PMCID: PMC8041901 DOI: 10.1038/s41598-021-87024-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
APOBEC3 (A3) enzymes are best known for their role as antiviral restriction factors and as mutagens in cancer. Although four of them, A3A, A3B, A3F and A3G, are induced by type-1-interferon (IFN-I), their role in inflammatory conditions is unknown. We thus investigated the expression of A3, and particularly A3A and A3B because of their ability to edit cellular DNA, in Systemic Lupus Erythematosus (SLE), a chronic inflammatory disease characterized by high IFN-α serum levels. In a cohort of 57 SLE patients, A3A and A3B, but also A3C and A3G, were upregulated ~ 10 to 15-fold (> 1000-fold for A3B) compared to healthy controls, particularly in patients with flares and elevated serum IFN-α levels. Hydroxychloroquine, corticosteroids and immunosuppressive treatment did not reverse A3 levels. The A3AΔ3B polymorphism, which potentiates A3A, was detected in 14.9% of patients and in 10% of controls, and was associated with higher A3A mRNA expression. A3A and A3B mRNA levels, but not A3C or A3G, were correlated positively with dsDNA breaks and negatively with lymphopenia. Exposure of SLE PBMCs to IFN-α in culture induced massive and sustained A3A levels by 4 h and led to massive cell death. Furthermore, the rs2853669 A > G polymorphism in the telomerase reverse transcriptase (TERT) promoter, which disrupts an Ets-TCF-binding site and influences certain cancers, was highly prevalent in SLE patients, possibly contributing to lymphopenia. Taken together, these findings suggest that high baseline A3A and A3B levels may contribute to cell frailty, lymphopenia and to the generation of neoantigens in SLE patients. Targeting A3 expression could be a strategy to reverse cell death and the generation of neoantigens.
Collapse
Affiliation(s)
- Danielle Perez-Bercoff
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 rue Henri Koch, 4354, Esch-sur-Alzette, Luxembourg.
| | - Hélène Laude
- ICAReB Platform, 28 rue du Docteur Roux, 75724, Paris Cedex 15, France
- Viral Populations and Pathogenesis Unit, UMR 3569, CNRS, Institut Pasteur, 28 rue du Dr. Roux, 75724, Paris Cedex 15, France
| | - Morgane Lemaire
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 rue Henri Koch, 4354, Esch-sur-Alzette, Luxembourg
| | - Oliver Hunewald
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 rue Henri Koch, 4354, Esch-sur-Alzette, Luxembourg
| | - Valérie Thiers
- Molecular Retrovirology Unit, UMR 3569, Institut Pasteur, CNRS, 28 rue du Dr. Roux, 75724, Paris cedex 15, France
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis Unit, UMR 3569, CNRS, Institut Pasteur, 28 rue du Dr. Roux, 75724, Paris Cedex 15, France
| | - Hervé Blanc
- Viral Populations and Pathogenesis Unit, UMR 3569, CNRS, Institut Pasteur, 28 rue du Dr. Roux, 75724, Paris Cedex 15, France
| | - Aurélie Poli
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 rue Henri Koch, 4354, Esch-sur-Alzette, Luxembourg
| | - Zahir Amoura
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre D'Immunologie Et Des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Vincent Caval
- Departement de Virologie, Institut Pasteur, 28 rue du Dr. Roux, 75724, Paris Cedex 15, France
| | - Rodolphe Suspène
- Departement de Virologie, Institut Pasteur, 28 rue du Dr. Roux, 75724, Paris Cedex 15, France
| | - François Hafezi
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 rue Henri Koch, 4354, Esch-sur-Alzette, Luxembourg
| | - Alexis Mathian
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre D'Immunologie Et Des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Jean-Pierre Vartanian
- Molecular Retrovirology Unit, UMR 3569, Institut Pasteur, CNRS, 28 rue du Dr. Roux, 75724, Paris cedex 15, France
- Departement de Virologie, Institut Pasteur, 28 rue du Dr. Roux, 75724, Paris Cedex 15, France
| | - Simon Wain-Hobson
- Molecular Retrovirology Unit, UMR 3569, Institut Pasteur, CNRS, 28 rue du Dr. Roux, 75724, Paris cedex 15, France
| |
Collapse
|
6
|
Kim SH, Ahn S, Suh KJ, Kim YJ, Park SY, Kang E, Kim EK, Kim IA, Chae S, Choi M, Kim JH. Identifying germline APOBEC3B deletion and immune phenotype in Korean patients with operable breast cancer. Breast Cancer Res Treat 2020; 183:697-704. [PMID: 32715441 DOI: 10.1007/s10549-020-05811-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 07/15/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3B (APOBEC3B) is implicated in anti-viral immune response and cancer mutagenesis. Germline APOBEC3B deletion is associated with increased susceptibility to breast cancer. We aimed to evaluate the association between germline APOBEC3B deletion and clinical phenotypes of breast cancer in Korean patients with operable breast cancer. METHODS Mononuclear blood cell DNA of 103 patients with operable breast cancer was collected at Seoul National University Bundang Hospital in 2009. The DNA was sequenced to analyze APOBEC3B deletion status. Further, tumor-infiltrating lymphocytes (TILs) and programmed cell death-ligand 1 (PD-L1) expression in tumor cells were measured using immunohistochemistry. RESULTS Median age of breast cancer diagnosis was 46 (25-72). In APOBEC3B deletion analysis, 10 (9.7%), 36 (35.0%), and 57 (55.3%) patients were identified as two-copy deletion (A3Bdel/del), one-one copy deletion (A3Bdel/wt), and no deletion (A3Bwt/wt), respectively. For other cancer susceptibility gene alterations, 9 (8.7%) patients were identified as pathogenic variants: RAD51D (n = 1), GJB2 (n = 1), BRCA1 (n = 1), BRCA2 (n = 2), ATM (n = 1), USH2A (n = 1), RET (n = 1), BARD1 (n = 1). We observed no significant association between germline APOBEC3B deletion with any clinicopathologic features of breast cancer, such as age, family history of cancer, and bilateral breast cancer. Further, according to follow-up observations, APOBEC3B deletion was not predictive of disease-free survival. In ER+ subtype, a trend toward better survival was observed in patients with A3Bdel/del genotype as compared to patients with A3Bdel/wt and A3Bwt/wt genotype (log-rank, P = 0.25). In patients with sufficient tumor samples for the assessment of TIL (n = 63) and PD-L1 (n = 71), the A3Bdel/del genotype was significantly associated with high TILs (> 10%) than other tumor genotypes (6/7 patients in A3Bdel/del vs. 13/24 in A3Bdel/wt vs. 15/32 in A3Bwt/wt: Fisher's exact test, P = 0.029). However, PD-L1 expression was not associated with APOBEC3B deletion status (1/7 patients > 1% PD-L1 in A3Bdel/del vs. 4/26 in A3Bdel/wt vs. 8/38 in A3Bwt/wt: P = 0.901). CONCLUSION We identified germline APOBEC3B deletion in 9.7% of Korean patients with operable breast cancer. The relationship between A3Bdel/del genotype and high TILs suggests that patients carrying this genotype could be potential candidates for immunotherapy.
Collapse
Affiliation(s)
- Se Hyun Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Songnam, Korea
| | - Soomin Ahn
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Songnam, Korea
| | - Koung Jin Suh
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Songnam, Korea
| | - Yu Jung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Songnam, Korea
| | - So Yeon Park
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Songnam, Korea
| | - Eunyoung Kang
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Songnam, Korea
| | - Eun-Kyu Kim
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Songnam, Korea
| | - In Ah Kim
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Songnam, Korea
| | - Sumin Chae
- Department of Surgery, Kyung Hee University School of Medicine, Kyung Hee University Medical Center, Seoul, Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jee Hyun Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Songnam, Korea. .,Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82 Gumi-ro 173 beon-gil, Bundang-gu, Songnam, 13620, Korea.
| |
Collapse
|
7
|
Germline APOBEC3B deletion influences clinicopathological parameters in luminal-A breast cancer: evidences from a southern Brazilian cohort. J Cancer Res Clin Oncol 2020; 146:1523-1532. [PMID: 32285256 DOI: 10.1007/s00432-020-03208-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/02/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE APOBEC3A and APOBEC3B cytidine deaminases have been implicated in the pathogenesis of multiple cancers, including breast cancer (BC). A germline deletion linking APOBEC3A and APOBEC3B loci (A3A/B) has been associated with higher APOBEC-mediated mutational burden, but its association with BC risk have been controversial. Therefore, this study investigated the association between A3A/B and BC susceptibility and clinical presentation in a Brazilian cohort. METHODS A3A/B deletion was evaluated through allele-specific PCR in 341 BC patients and 397 women without familial or personal history of neoplasia from Brazil and associations with susceptibility to BC subtypes were tested through age-adjusted logistic models while correlations with clinicopathological parameters were tested using Kendall's tests. RESULTS No association was found between A3A/B and BC susceptibility; however, in Luminal-A BCs, it was positively correlated with tumor size (Tau-c = 0.125) and Ki67 (Tau-c = 0.116) and negatively correlated with lymph node metastasis (LNM) (Tau-c = - 0.162). The negative association between A3A/B with LNM in Luminal-A BCs remained significant even after adjusting for tumor size and Ki67 in logistic models (OR = 0.22; p = 0.008). CONCLUSION These results show that although A3A/B may not modify BC susceptibility in Brazilian population, it may affect clinicopathological features in BC subtypes, promoting tumor cell proliferation while being negatively associated with LNM in Luminal-A BCs.
Collapse
|