1
|
Wang M, Liu W, Zheng L, Ma S, Jin L, Zhao D, Li D. Broadening horizons: microbiota as a novel biomarker and potential treatment for endometriosis. Front Microbiol 2025; 16:1521216. [PMID: 40313408 PMCID: PMC12043583 DOI: 10.3389/fmicb.2025.1521216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 04/01/2025] [Indexed: 05/03/2025] Open
Abstract
As a heterogeneous disease, endometriosis is associated with diagnostic delay. Delayed diagnosis, physical discomfort, hormone therapy, and inconvenience in daily life and work all contribute to a decreased quality of life for endometriosis patients. Early clinical diagnosis is highly important for the intervention and treatment of endometriosis. Currently, reliable non-invasive diagnostic methods are lacking, and laparoscopic examination combined with pathological diagnosis is considered the "gold standard" for definitively diagnosing endometriosis. An increasing number of studies have confirmed the correlation between endometriosis and microbial ecological changes. Microbial dysbiosis is an important factor in the development and progression of endometriosis. Certain key microbial species and their metabolites can induce functional alterations in endometrial cells through various mechanisms, often preceding the emergence of clinical symptoms. Endometriosis are chronic inflammatory diseases, with an immunoinflammatory response as the pathological foundation. The microbiome may participate in the pathological mechanisms of endometriosis through multiple pathways, including mediating inflammatory responses, regulating immune responses, participating in estrogen regulation, interfering with metabolic activities, and modulating the gut-brain axis. Therefore, the microbiome holds potential as an early non-invasive diagnostic and therapeutic target for endometriosis patients. This study summarizes and analyses the correlations between microorganisms and their metabolites and the onset of endometriosis, aiming to provide novel insights into the etiology, diagnosis, and treatment of endometriosis.
Collapse
Affiliation(s)
- Min Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Wei Liu
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Lianwen Zheng
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Shuai Ma
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Lianhai Jin
- Low Pressure and Low Oxygen Environment and Health Intervention Innovation Center, Jilin Medical University, Jilin, China
| | - Donghai Zhao
- College of Basic Medicine, Jilin Medical University, Jilin, China
| | - Dandan Li
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Hicks C, Leonardi M, Chua X, Mari‐Breedt L, Espada M, El‐Omar EM, Condous G, El‐Assaad F. Oral, Vaginal, and Stool Microbial Signatures in Patients With Endometriosis as Potential Diagnostic Non-Invasive Biomarkers: A Prospective Cohort Study. BJOG 2025; 132:326-336. [PMID: 39431364 PMCID: PMC11704027 DOI: 10.1111/1471-0528.17979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 09/04/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024]
Abstract
OBJECTIVE To identify a microbial signature for endometriosis for use as a diagnostic non-invasive biomarker. DESIGN Prospective cohort pilot study. SETTING Nepean Hospital and UNSW Microbiome Research Centre, Australia. POPULATION Sixty-four age- and sex-matched subjects (n = 19 healthy control (HC); n = 24 non-endometriosis (N-ENDO) and n = 21 confirmed endometriosis (ENDO)). All study participants, besides healthy controls, underwent laparoscopic surgical assessment for endometriosis, and histology was performed on excised lesions. METHODS Oral, stool and, vaginal samples were self-collected at a single time point for healthy controls, and preoperatively for patients undergoing laparoscopy. Samples underwent 16S rRNA amplicon sequencing, followed by bioinformatics analysis. MAIN OUTCOME MEASURES Compositional differences between cohorts as identified by diversity analyses, and differentially abundant microbial taxa, as identified by LEfSE analysis. RESULTS The composition of the oral (adjusted p = 0.003), and stool (adjusted p = 0.042) microbiota is different between the three cohorts. Differentially abundant taxa are present within each cohort as identified by LEfSE analysis. Particularly, Fusobacterium was enriched in the oral samples of patients with moderate/severe endometriosis. CONCLUSIONS Taxonomic and compositional differences were found between the microbiota in the mouth, gut and, vagina of patients with and without endometriosis and healthy controls. Fusobacterium was enriched in patients with moderate/severe endometriosis. Fusobacterium is noted as a key pathogen in periodontal disease, a common comorbidity in endometriosis. These findings suggest a role for the oral, stool and, vaginal microbiome in endometriosis, and present potential for microbial-based treatments and the design of a diagnostic swab.
Collapse
Affiliation(s)
- Chloe Hicks
- Microbiome Research Centre, School of Clinical Medicine, UNSW Medicine & Health, St George & Sutherland Clinical CampusesUNSW SydneySydneyNew South WalesAustralia
| | - Mathew Leonardi
- Endometriosis Ultrasound and Advanced Endosurgery Unit, Sydney Medical School NepeanNepean Hospital, University of SydneySydneyNew South WalesAustralia
| | - Xin‐Yi Chua
- Microbiome Research Centre, School of Clinical Medicine, UNSW Medicine & Health, St George & Sutherland Clinical CampusesUNSW SydneySydneyNew South WalesAustralia
| | - Lisa Mari‐Breedt
- Microbiome Research Centre, School of Clinical Medicine, UNSW Medicine & Health, St George & Sutherland Clinical CampusesUNSW SydneySydneyNew South WalesAustralia
| | - Mercedes Espada
- Endometriosis Ultrasound and Advanced Endosurgery Unit, Sydney Medical School NepeanNepean Hospital, University of SydneySydneyNew South WalesAustralia
| | - Emad M. El‐Omar
- Microbiome Research Centre, School of Clinical Medicine, UNSW Medicine & Health, St George & Sutherland Clinical CampusesUNSW SydneySydneyNew South WalesAustralia
| | - George Condous
- Endometriosis Ultrasound and Advanced Endosurgery Unit, Sydney Medical School NepeanNepean Hospital, University of SydneySydneyNew South WalesAustralia
| | - Fatima El‐Assaad
- Microbiome Research Centre, School of Clinical Medicine, UNSW Medicine & Health, St George & Sutherland Clinical CampusesUNSW SydneySydneyNew South WalesAustralia
| |
Collapse
|
3
|
Collie B, Troisi J, Lombardi M, Symes S, Richards S. The Current Applications of Metabolomics in Understanding Endometriosis: A Systematic Review. Metabolites 2025; 15:50. [PMID: 39852392 PMCID: PMC11767062 DOI: 10.3390/metabo15010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/31/2024] [Accepted: 01/11/2025] [Indexed: 01/26/2025] Open
Abstract
Endometriosis is a common gynecological disease that affects approximately 10-15% of reproductive-aged women worldwide. This debilitating disease has a negative impact on the quality of life of those affected. Despite this condition being very common, the pathogenesis is not well understood. Metabolomics is the study of the array of low-weight metabolites in a given sample. This emerging field of omics-based science has proved to be effective at furthering the understanding of endometriosis. In this systematic review, we seek to provide an overview of the application of metabolomics in endometriosis. We highlight the use of metabolomics in locating biomarkers for identification, understanding treatment mechanisms and symptoms, and relating external factors to endometriosis. The literature search took place in the Web of Science, Pubmed, and Google Scholar based on the keywords "metabolomics" AND "endometriosis" or "metabolome" AND "endometriosis". We found 58 articles from 2012 to 2024 that met our search criteria. Significant alterations of lipids, amino acids, as well as other compounds were present in human and animal models. Discrepancies among studies of significantly altered metabolites make it difficult to make general conclusions on the metabolic signature of endometriosis. However, several individual metabolites were elevated in multiple studies of women with endometriosis; these include 3-hydroxybutyrate, lactate, phosphatidic acids, succinate, pyruvate, tetradecenoylcarnitine, hypoxanthine, and xanthine. Accordingly, L-isoleucine and citrate were reduced in multiple studies of women with endometriosis. Including larger cohorts, standardizing testing methods, and studying the individual phenotypes of endometriosis may lead to more separable results.
Collapse
Affiliation(s)
- Blake Collie
- Department of Biology, University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA
| | - Jacopo Troisi
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
- Theoreo Srl., Via Degli Ulivi 3, 84090 Montecorvino Pugliano, Italy
- European Institute of Metabolomics (EIM) Foundation, Via G. Puccini, 3, 84081 Baronissi, Italy
| | - Martina Lombardi
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
- Theoreo Srl., Via Degli Ulivi 3, 84090 Montecorvino Pugliano, Italy
- European Institute of Metabolomics (EIM) Foundation, Via G. Puccini, 3, 84081 Baronissi, Italy
| | - Steven Symes
- Department of Chemistry and Physics, University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA
- Section on Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Tennessee College of Medicine, Chattanooga, TN 37403, USA
| | - Sean Richards
- Section on Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Tennessee College of Medicine, Chattanooga, TN 37403, USA
- Department of Biology, Geology and Environmental Sciences, University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA
| |
Collapse
|
4
|
Yang H. Gut Microbiota, Circulating Metabolites and Risk of Endometriosis: A Two-Step Mendelian Randomization Study. Pol J Microbiol 2024; 73:491-503. [PMID: 39670637 PMCID: PMC11639408 DOI: 10.33073/pjm-2024-041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/19/2024] [Indexed: 12/14/2024] Open
Abstract
Epidemiological studies and animal models have suggested a possible link between gut microbiota (GM), circulating metabolites, and endometriosis (EMs) pathogenesis. However, whether these associations are causal or merely due to confounding factors remains unclear. We conducted a two-sample and two-step Mendelian randomization (MR) study to elucidate the potential causal relationship between GM and EMs, and the mediating role of circulating metabolites. Our MR analysis revealed that higher abundances of class Negativicutes, and order Selenomonadales, as well as genera Dialister, Enterorhabdus, Eubacterium xylanophilum group, Methanobrevibacter were associated with an increased risk of EMs (Odds Ratio (OR) range: 1.0019-1.0037). Conversely, higher abundances of genera Coprococcus 1 and Senegalimassilia were linked to reduced risk of EMs (OR range: 0.9964-0.9967). Additionally, elevated levels of circulating metabolites such as 1-eicosatrienoyl-glycerophosphocholine and 1-oleoylglycerophosphocholine were found to be associated with heightened risk of EMs (OR range: 2.21-3.16), while higher concentrations of 3-phenylpropionate and dihomo-linolenate were protective (OR range: 0.285-0.535). Two-step MR analysis indicated that specific microbial taxa, notably genus Enterorhabdus and order Selenomonadales, might function as mediators linking circulating metabolites to the risk of EMs. Our findings suggest a probable causal relationship between GM, circulating metabolites, and EMs, indicating that GM may mediate the influence of circulating metabolites on the pathophysiology of EMs. These results offer new leads for future mechanistic studies and could inform clinical translational research.
Collapse
Affiliation(s)
- Hua Yang
- Department of Gynecology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
5
|
Pan Y, Pan C, Zhang C. Unraveling the complexity of follicular fluid: insights into its composition, function, and clinical implications. J Ovarian Res 2024; 17:237. [PMID: 39593094 PMCID: PMC11590415 DOI: 10.1186/s13048-024-01551-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Follicular fluid (FF) plays a vital role in the bidirectional communication between oocytes and granulosa cells (GCs), regulating and promoting oocyte growth and development. This fluid constitutes a complex microenvironment, rich in various molecules including hormones, growth factors, cytokines, lipids, proteins, and extracellular vesicles. Understanding the composition and metabolic profile of follicular fluid is important for investigating ovarian pathologies such as polycystic ovary syndrome (PCOS) and endometriosis. Additionally, analyzing follicular fluid can offer valuable insights into oocyte quality, aiding in optimal oocyte selection for in vitro fertilization (IVF). This review provides an overview of follicular fluid composition, classification of its components and discusses the influential components of oocyte development. It also highlights the role of follicular fluid in the pathogenesis and diagnosis of ovarian diseases, along with potential follicular fluid biomarkers for assessing oocyte quality. By understanding the intricate relationship between follicular fluid and oocyte development, we can advance fertility research and improve clinical outcomes for infertility patients.
Collapse
Affiliation(s)
- Yurong Pan
- Nanchang University Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Chenyu Pan
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chunping Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330019, China.
| |
Collapse
|
6
|
Yang H. The causality between gut microbiota and endometriosis: a bidirectional Mendelian randomization study. Front Med (Lausanne) 2024; 11:1434582. [PMID: 39650192 PMCID: PMC11621931 DOI: 10.3389/fmed.2024.1434582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 11/13/2024] [Indexed: 12/11/2024] Open
Abstract
Background Observational studies and animal experiments had suggested a potential relationship between gut microbiota abundance and pathogenesis of endometriosis (EMs), but the relevance of this relationship remains to be clarified. Methods We perform a two-sample bidirectional Mendelian randomization (MR) analysis to explore whether there is a causal correlation between the abundance of the gut microbiota and EMs and the direction of causality. Genome-wide association study (GWAS) data ukb-d-N80, finn-b-N14-EM, and MiBinGen were selected. Inverse variance weighted (IVW), weighted median, and MR Egger are selected for causal inference. The Cochran Q test, Egger intercept test, and leave-one-out analysis are performed for sensitivity analyses. Results In the primary outcome, we find that a higher abundance of class Negativicutes, genus Dialister, genus Enterorhabdus, genus Eubacterium xylanophilum group, genus Methanobrevibacter and order Selenomonadales predict a higher risk of EMs, and a higher abundance of genus Coprococcus and genus Senegalimassilia predict a lower risk of EMs. During verifiable outcomes, we find that a higher abundance of phylum Cyanobacteria, genus Ruminococcaceae UCG002, and genus Coprococcus 3 predict a higher risk of EMs, and a higher abundance of genus Flavonifracto, genus Bifidobacterium, and genus Rikenellaceae RC9 predict a lower risk of EMs. In primary reverse MR analysis, we find that EMs predict a lower abundance of the genus Eubacterium fissicatena group, genus Prevotella7, genus Butyricicoccus, family Lactobacillaceae, and a higher abundance of genus Ruminococcaceae UCG009. In verifiable reverse MR analysis, we find that EMs predict a lower abundance of the genus Ruminococcaceae UCG004 and a higher abundance of the genus Howardella. Conclusion Our study implies a mutual causality between gut microbiota abundance and the pathogenesis of EMs, which may provide a novel direction for EMs diagnosis, prevention, and treatment, may promote future functional or clinical analysis.
Collapse
Affiliation(s)
- Hua Yang
- Department of Gynecology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
7
|
Marín-Sáez J, Hernández-Mesa M, Cano-Sancho G, García-Campaña AM. Analytical challenges and opportunities in the study of endocrine disrupting chemicals within an exposomics framework. Talanta 2024; 279:126616. [PMID: 39067205 DOI: 10.1016/j.talanta.2024.126616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Exposomics aims to measure human exposures throughout the lifespan and the changes they produce in the human body. Exposome-scale studies have significant potential to understand the interplay of environmental factors with complex multifactorial diseases widespread in our society and whose origin remain unclear. In this framework, the study of the chemical exposome aims to cover all chemical exposures and their effects in human health but, today, this goal still seems unfeasible or at least very challenging, which makes the exposome for now only a concept. Furthermore, the study of the chemical exposome faces several methodological challenges such as moving from specific targeted methodologies towards high-throughput multitargeted and non-targeted approaches, guaranteeing the availability and quality of biological samples to obtain quality analytical data, standardization of applied analytical methodologies, as well as the statistical assignment of increasingly complex datasets, or the identification of (un)known analytes. This review discusses the various steps involved in applying the exposome concept from an analytical perspective. It provides an overview of the wide variety of existing analytical methods and instruments, highlighting their complementarity to develop combined analytical strategies to advance towards the chemical exposome characterization. In addition, this review focuses on endocrine disrupting chemicals (EDCs) to show how studying even a minor part of the chemical exposome represents a great challenge. Analytical strategies applied in an exposomics context have shown great potential to elucidate the role of EDCs in health outcomes. However, translating innovative methods into etiological research and chemical risk assessment will require a multidisciplinary effort. Unlike other review articles focused on exposomics, this review offers a holistic view from the perspective of analytical chemistry and discuss the entire analytical workflow to finally obtain valuable results.
Collapse
Affiliation(s)
- Jesús Marín-Sáez
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, E-18071, Granada, Spain; Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, Agrifood Campus of International Excellence, ceiA3, E-04120, Almeria, Spain.
| | - Maykel Hernández-Mesa
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, E-18071, Granada, Spain.
| | | | - Ana M García-Campaña
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, E-18071, Granada, Spain
| |
Collapse
|
8
|
Scarfò G, Daniele S, Chelucci E, Papini F, Epifani F, Ruggiero M, Cela V, Franzoni F, Artini PG. Endometrial Dysbiosis: A Possible Association with Estrobolome Alteration. Biomolecules 2024; 14:1325. [PMID: 39456258 PMCID: PMC11506823 DOI: 10.3390/biom14101325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Microbiota modification at the endometrial level can favor gynecological diseases and impair women's fertility. The overgrowth of pathogen microorganisms is related to the contemporary alteration of estrogen-metabolizing bacteria, including β-glucuronidase, thereby enhancing estrogen-related inflammatory states and decreasing anti-inflammatory cells. The possible connection between estrobolome impairment and gynecological diseases has been suggested in animal models. Nevertheless, in humans, coherent evidence on the estrobolome alteration and functionality of the female reproductive tract is still lacking. The objective of this study was to explore alterations in estrogen-related signaling and the putative link with endometrial dysbiosis. METHODS Women with infertility and repeated implantation failure (RIF, N = 40) were enrolled in order to explore the putative link between estrogen metabolism and endometrial dysbiosis. Endometrial biopsies were used to measure inflammatory and growth factor molecules. β-glucuronidase enzyme activity and estrogen receptor (ER) expression were also assessed. RESULTS Herein, increased levels of inflammatory molecules (i.e., IL-1β and HIF-1α) and decreased levels of the growth factor IGF-1 were found in the endometrial biopsies of patients presenting dysbiosis compared to eubiotic ones. β-glucuronidase activity and the expression of ERβ were significantly enhanced in patients in the dysbiosis group. Interestingly, Lactobacilli abundance was inversely related to β-glucuronidase activity and to ERβ expression, thus suggesting that an alteration of the estrogen-activating enzyme may affect the expression of ERs as well. CONCLUSIONS Overall, these preliminary data suggested a link between endometrial dysbiosis and estrobolome impairment as possible synergistic contributing factors to women infertility and RIF.
Collapse
Affiliation(s)
- Giorgia Scarfò
- Division of General Medicine, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.S.); (F.F.)
| | - Simona Daniele
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy;
| | - Elisa Chelucci
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy;
| | - Francesca Papini
- Division of Gynecology and Obstetrics, Azienda Ospedaliero Universitaria Pisana and Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (F.P.); (V.C.)
| | - Francesco Epifani
- Department of Juridical and Economic Sciences, Pegaso Telematic University, 80143 Napoli, Italy;
- Fanfani, Diagnostics and Health, 50129 Firenze, Italy
| | | | - Vito Cela
- Division of Gynecology and Obstetrics, Azienda Ospedaliero Universitaria Pisana and Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (F.P.); (V.C.)
- San Rossore Clinic Care, 56100 Pisa, Italy;
| | - Ferdinando Franzoni
- Division of General Medicine, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.S.); (F.F.)
| | - Paolo Giovanni Artini
- Division of Gynecology and Obstetrics, Azienda Ospedaliero Universitaria Pisana and Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (F.P.); (V.C.)
- San Rossore Clinic Care, 56100 Pisa, Italy;
| |
Collapse
|
9
|
Wu J, Li J, Yan M, Xiang Z. Gut and oral microbiota in gynecological cancers: interaction, mechanism, and therapeutic value. NPJ Biofilms Microbiomes 2024; 10:104. [PMID: 39389989 PMCID: PMC11467339 DOI: 10.1038/s41522-024-00577-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024] Open
Abstract
Gynecologic cancers develop from the female reproductive organs. Microbial dysbiosis in the gut and oral cavity can communicate with each other through various ways, leading to mucosal destruction, inflammatory response, genomic instability, and ultimately inducing cancer and worsening. Here, we introduce the mechanisms of interactions between gut and oral microbiota and their changes in the development of gynecologic tumors. In addition, new therapeutic approaches based on microbiota modulation are discussed.
Collapse
Affiliation(s)
- Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China.
| | - Jiarui Li
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Meina Yan
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Wang M, Zheng LW, Ma S, Zhao DH, Xu Y. The gut microbiota: emerging biomarkers and potential treatments for infertility-related diseases. Front Cell Infect Microbiol 2024; 14:1450310. [PMID: 39391885 PMCID: PMC11464459 DOI: 10.3389/fcimb.2024.1450310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Infertility is a disease of impaired fertility. With socioeconomic development, changes in human lifestyles, and increased environmental pollution, the problem of low human fertility has become increasingly prominent. The incidence of global infertility is increasing every year. Many factors lead to infertility, and common female factors include tubal factors, ovulation disorders, endometriosis, and immune factors. The gut microbiota is involved in many physiological processes, such as nutrient absorption, intestinal mucosal growth, glycolipid metabolism, and immune system regulation. An altered gut flora is associated with female infertility disorders such as polycystic ovary syndrome (PCOS), endometriosis (EMs), and premature ovarian failure (POF). Dysbiosis of the gut microbiota directly or indirectly contributes to the development of female infertility disorders, which also affect the homeostasis of the gut microbiota. Identifying the etiology and pathogenesis of infertility in patients is the focus of reproductive medicine physicians. We studied the developmental mechanism between the gut microbiota and PCOS, EMs, and POF from a new perspective, providing new ideas for diagnosing and treating female infertility diseases and specific reference values for eugenics.
Collapse
Affiliation(s)
- Min Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Lian-Wen Zheng
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Shuai Ma
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Dong-Hai Zhao
- Department of Pathology, Jilin Medical University, Jilin, China
| | - Ying Xu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Cui J, Tian H, Qi Y, Hu X, Li S, Zhang W, Wei Z, Zhang M, Liu Z, Abolfathi S. Impact of microplastic residues from polyurethane films on crop growth: Unraveling insights through transcriptomics and metabolomics analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116826. [PMID: 39106570 DOI: 10.1016/j.ecoenv.2024.116826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/08/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
The utilisation of coated controlled-release fertilizers (CRFs) leads to the persistence of residual plastic films in agricultural soils, posing a potential threat to crop health. This study investigates the impacts of four residual films (0.39 %, w/w) derived from CRFs in soil, including petrochemical polyether, bio-based polyether, castor oil polyester, and wheat straw polyester polyurethane on wheat growth. This study found that PecPEUR significantly reduced wheat plant height, stem diameter, leaf area, and aboveground fresh weight by 24.8 %, 20.2 %, and 25.7 %. Through an in-depth exploration of transcriptomics and metabolomics, it has been discovered that all residual films disrupted glycolysis-related metabolic pathways in wheat roots, affecting seedling growth. Among them, PecPEUR significantly reduced the fresh weight of aboveground parts by 20.5 %. In contrast, polyester polyurethane residue had no discernible impact on aboveground wheat growth. This was attributed to the enrichment of wheat root genes in jasmonic acid and γ-aminobutyric acid metabolic pathways, thus mitigating oxidative stress, enhancing stress resistance, and ensuring normal plant growth. This study, for the first time, provides comprehensive insights into the effects of polyurethane film residue on wheat seedling growth, underscoring its potential as a promising alternative to conventional plastics in soil.
Collapse
Affiliation(s)
- Jing Cui
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Hongyu Tian
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Yingjie Qi
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, Shandong 276041, China
| | - Xiaomin Hu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Shuyue Li
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Wenrui Zhang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Zhanbo Wei
- Engineering Laboratory for Green Fertilizers, Chinese Academy of Sciences, Shenyang 110016, China
| | - Min Zhang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Zhiguang Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong 271018, China.
| | | |
Collapse
|
12
|
Li Y, Zhou Z, Liang X, Ding J, He Y, Sun S, Cheng W, Ni Z, Yu C. Gut Microbiota Disorder Contributes to the Production of IL-17A That Exerts Chemotaxis via Binding to IL-17RA in Endometriosis. J Inflamm Res 2024; 17:4199-4217. [PMID: 38974001 PMCID: PMC11225878 DOI: 10.2147/jir.s458928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/18/2024] [Indexed: 07/09/2024] Open
Abstract
Introduction Endometriosis (EM) is a chronic estrogen-dependent condition characterized by the growth of endometrial-like tissue outside the uterus, posing a significant burden on reproductive-aged women. Previous research has shown a correlation between gut microbiota dysbiosis and interleukin-17A (IL-17A) in EM patients. IL-17A, a promising immunomodulatory molecule, exerts dual roles in human physiology, driving inflammatory diseases. However, the functions and origins of IL-17A in EM remain poorly characterized. Methods Single-cell data analysis was employed to characterize IL-17A activity in EM lesions. Fecal microbiota transplantation was conducted to explore the impact of gut microbiota on EM. Gut microbiota and bile acid metabolism were assessed via 16S rRNA sequencing and targeted metabolomics. Th17 cell proportions were measured using flow cytometry. Results High expression of IL-17 receptor A (IL-17RA) was observed in myeloid cell subpopulations within EM lesions and may be involved in the migration and recruitment of inflammatory cells in lesions. Elevated IL-17A levels were further validated in peritoneal and follicular fluids of EM patients. Dysregulated bile acid levels, particularly elevated chenodeoxycholic acid (CDCA) and ursodeoxycholic acid (UDCA), were found in the gut and peritoneal fluid of EM mouse models. Additional CDCA administration reduced EM lesions and modulated Th17 cell proportions, while UDCA showed no significant effects. Discussion Our findings shed light on the origins and functions of IL-17A in EM, implicating its involvement in lesion migration and recruitment. Dysregulated bile acid metabolism may contribute to EM pathogenesis, with CDCA exhibiting therapeutic potential.
Collapse
Affiliation(s)
- Yangshuo Li
- Department of Traditional Chinese Gynecology, the First Affiliated Hospital of Naval Military Medical University (Changhai Hospital), Shanghai, People’s Republic of China
| | - Zhihao Zhou
- Department of Traditional Chinese Gynecology, the First Affiliated Hospital of Naval Military Medical University (Changhai Hospital), Shanghai, People’s Republic of China
- Traditional Chinese Medicine Department, No. 929 Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Xiaolan Liang
- Department of Traditional Chinese Gynecology, the First Affiliated Hospital of Naval Military Medical University (Changhai Hospital), Shanghai, People’s Republic of China
| | - Jie Ding
- Department of Traditional Chinese Gynecology, the First Affiliated Hospital of Naval Military Medical University (Changhai Hospital), Shanghai, People’s Republic of China
| | - Yalun He
- Department of Traditional Chinese Gynecology, the First Affiliated Hospital of Naval Military Medical University (Changhai Hospital), Shanghai, People’s Republic of China
| | - Shuai Sun
- Department of Traditional Chinese Gynecology, the First Affiliated Hospital of Naval Military Medical University (Changhai Hospital), Shanghai, People’s Republic of China
| | - Wen Cheng
- Department of Traditional Chinese Gynecology, the First Affiliated Hospital of Naval Military Medical University (Changhai Hospital), Shanghai, People’s Republic of China
| | - Zhexin Ni
- Department of Traditional Chinese Gynecology, the First Affiliated Hospital of Naval Military Medical University (Changhai Hospital), Shanghai, People’s Republic of China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, People’s Republic of China
| | - Chaoqin Yu
- Department of Traditional Chinese Gynecology, the First Affiliated Hospital of Naval Military Medical University (Changhai Hospital), Shanghai, People’s Republic of China
| |
Collapse
|
13
|
Liu M, Peng R, Tian C, Shi J, Ma J, Shi R, Qi X, Zhao R, Guan H. Effects of the gut microbiota and its metabolite short-chain fatty acids on endometriosis. Front Cell Infect Microbiol 2024; 14:1373004. [PMID: 38938880 PMCID: PMC11208329 DOI: 10.3389/fcimb.2024.1373004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024] Open
Abstract
In recent years, a growing body of research has confirmed that the gut microbiota plays a major role in the maintenance of human health and disease. A gut microbiota imbalance can lead to the development of many diseases, such as pregnancy complications, adverse pregnancy outcomes, polycystic ovary syndrome, endometriosis, and cancer. Short-chain fatty acids are metabolites of specific intestinal bacteria and are crucial for maintaining intestinal homeostasis and regulating metabolism and immunity. Endometriosis is the result of cell proliferation, escape from immune surveillance, and invasive metastasis. There is a strong correlation between the anti-proliferative and anti-inflammatory effects of short-chain fatty acids produced by gut microbes and the development of endometriosis. Given that the mechanism of action of gut microbiota and Short-chain fatty acids in endometriosis remain unclear, this paper aims to provide a comprehensive review of the complex interactions between intestinal flora, short-chain fatty acids and endometriosis. In addition, we explored potential microbial-based treatment strategies for endometriosis, providing new insights into the future development of diagnostic tests and prevention and treatment methods for endometriosis.
Collapse
Affiliation(s)
- Menghe Liu
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Ru Peng
- Department of Obstetrics and Gynecology, Hohhot Maternal and Child Health Care Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| | - Chunfang Tian
- Department of Oncology, Inner Mongolia Traditional Chinese Medicine Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| | - Jianping Shi
- College of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Jiannan Ma
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Ruiwen Shi
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Xiao Qi
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Rongwei Zhao
- Department of Obstetrics and Gynecology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Haibin Guan
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| |
Collapse
|
14
|
Cuffaro F, Russo E, Amedei A. Endometriosis, Pain, and Related Psychological Disorders: Unveiling the Interplay among the Microbiome, Inflammation, and Oxidative Stress as a Common Thread. Int J Mol Sci 2024; 25:6473. [PMID: 38928175 PMCID: PMC11203696 DOI: 10.3390/ijms25126473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Endometriosis (EM), a chronic condition in endometrial tissue outside the uterus, affects around 10% of reproductive-age women, significantly affecting fertility. Its prevalence remains elusive due to the surgical confirmation needed for diagnosis. Manifesting with a range of symptoms, including dysmenorrhea, dyschezia, dysuria, dyspareunia, fatigue, and gastrointestinal discomfort, EM significantly impairs quality of life due to severe chronic pelvic pain (CPP). Psychological manifestations, notably depression and anxiety, frequently accompany the physical symptoms, with CPP serving as a key mediator. Pain stems from endometrial lesions, involving oxidative stress, neuroinflammation, angiogenesis, and sensitization processes. Microbial dysbiosis appears to be crucial in the inflammatory mechanisms underlying EM and associated CPP, as well as psychological symptoms. In this scenario, dietary interventions and nutritional supplements could help manage EM symptoms by targeting inflammation, oxidative stress, and the microbiome. Our manuscript starts by delving into the complex relationship between EM pain and psychological comorbidities. It subsequently addresses the emerging roles of the microbiome, inflammation, and oxidative stress as common links among these abovementioned conditions. Furthermore, the review explores how dietary and nutritional interventions may influence the composition and function of the microbiome, reduce inflammation and oxidative stress, alleviate pain, and potentially affect EM-associated psychological disorders.
Collapse
Affiliation(s)
- Francesca Cuffaro
- Division of Interdisciplinary Internal Medicine, Careggi University Hospital of Florence, 50134 Florence, Italy;
| | - Edda Russo
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 50139 Florence, Italy
| |
Collapse
|
15
|
Samare-Najaf M, Razavinasab SA, Samareh A, Jamali N. Omics-based novel strategies in the diagnosis of endometriosis. Crit Rev Clin Lab Sci 2024; 61:205-225. [PMID: 37878077 DOI: 10.1080/10408363.2023.2270736] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023]
Abstract
Endometriosis, an enigmatic and chronic disorder, is considered a debilitating condition despite being benign. Globally, this gynecologic disorder affects up to 10% of females of reproductive age, impacting almost 190 million individuals. A variety of genetic and environmental factors are involved in endometriosis development, hence the pathophysiology and etiology of endometriosis remain unclear. The uncertainty of the etiology of the disease and its complexity along with nonspecific symptoms have led to misdiagnosis or lack of diagnosis of affected people. Biopsy and laparoscopy are referred to as the gold standard for endometriosis diagnosis. However, the invasiveness of the procedure, the unnecessary operation in disease-free women, and the dependence of the reliability of diagnosis on experience in this area are considered the most significant limitations. Therefore, continuous studies have attempted to offer a noninvasive and reliable approach. The recent advances in modern technologies have led to the generation of large-scale biological data sets, known as -omics data, resulting in the proceeding of the -omics century in biomedical sciences. Thereby, the present study critically reviews novel and noninvasive biomarkers that are based on -omics approaches from 2020 onward. The findings reveal that biomarkers identified based on genomics, epigenomics, transcriptomics, proteomics, and metabolomics are potentially able to diagnose endometriosis, predict prognosis, and stage patients, and potentially, in the near future, a multi-panel of these biomarkers will generate clinical benefits.
Collapse
Affiliation(s)
- Mohammad Samare-Najaf
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Kerman Regional Blood Transfusion Center, Kerman, Iran
- Biochemistry Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ali Samareh
- Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Navid Jamali
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| |
Collapse
|
16
|
Dicks LMT. Gut Bacteria Provide Genetic and Molecular Reporter Systems to Identify Specific Diseases. Int J Mol Sci 2024; 25:4431. [PMID: 38674014 PMCID: PMC11050607 DOI: 10.3390/ijms25084431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
With genetic information gained from next-generation sequencing (NGS) and genome-wide association studies (GWAS), it is now possible to select for genes that encode reporter molecules that may be used to detect abnormalities such as alcohol-related liver disease (ARLD), cancer, cognitive impairment, multiple sclerosis (MS), diabesity, and ischemic stroke (IS). This, however, requires a thorough understanding of the gut-brain axis (GBA), the effect diets have on the selection of gut microbiota, conditions that influence the expression of microbial genes, and human physiology. Bacterial metabolites such as short-chain fatty acids (SCFAs) play a major role in gut homeostasis, maintain intestinal epithelial cells (IECs), and regulate the immune system, neurological, and endocrine functions. Changes in butyrate levels may serve as an early warning of colon cancer. Other cancer-reporting molecules are colibactin, a genotoxin produced by polyketide synthetase-positive Escherichia coli strains, and spermine oxidase (SMO). Increased butyrate levels are also associated with inflammation and impaired cognition. Dysbiosis may lead to increased production of oxidized low-density lipoproteins (OX-LDLs), known to restrict blood vessels and cause hypertension. Sudden changes in SCFA levels may also serve as a warning of IS. Early signs of ARLD may be detected by an increase in regenerating islet-derived 3 gamma (REG3G), which is associated with changes in the secretion of mucin-2 (Muc2). Pro-inflammatory molecules such as cytokines, interferons, and TNF may serve as early reporters of MS. Other examples of microbial enzymes and metabolites that may be used as reporters in the early detection of life-threatening diseases are reviewed.
Collapse
Affiliation(s)
- Leon M T Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
17
|
Zheng W, Zhou H, Fu Z, Feng L, Wen D, Liang X, Cao L. Integration of 16 S rRNA gene sequencing, metabonomics and metagenome analysis to investigate the mechanism of Sparganium stoloniferum-Curcuma phaeocaulis in treating of endometriosis in rats. J Pharm Biomed Anal 2024; 241:115970. [PMID: 38277707 DOI: 10.1016/j.jpba.2024.115970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/02/2024] [Accepted: 01/06/2024] [Indexed: 01/28/2024]
Abstract
BACKGROUND Endometriosis is a gynecological disease that causes severe chronic pelvic pain and infertility in women. The therapeutic efficacy of the traditional herbal combination of Sparganium stoloniferum-Curcuma phaeocaulis (Sangleng-Ezhu, SL-EZ) in the treatment of endometriosis has been established. However, the precise mechanism by which this treatment exerts its effects remains elusive. METHODS To gain further insights, UPLC-MS/MS was employed to identify the primary chemical constituents of SL-EZ in serum. Additionally, network pharmacology was utilized to analyze the active ingredients and their corresponding targets. Furthermore, the impact of SL-EZ on ectopic endometrial growth in endometrial implants was assessed using a rat model. The therapeutic mechanism of SL-EZ in rats with endometriosis was further investigated through the application of 16 S rRNA gene sequencing, metagenomic sequencing, and metabolomics. RESULTS The primary compounds in serum were zederone, p-coumaric acid, dehydrocostus lactone, curdione, curcumol. The growth of ectopic lesions in a rat model was effectively inhibited by SL-EZ. In comparison to the control group, the endometriotic rats exhibited a decrease in α-diversity of the gut microbiota, an increase in the Firmicutes/Bacteroidetes ratio, and a reduction in the abundance of Ruminococcaceae. Following SL-EZ intervention, the potential probiotic strains Lactobacillus gasseri and Lactobacillus johnsonii were able to restore the intestinal microenvironment at the species level. The altered metabolites were significantly correlated with Verrucomicrobia, Proteobacteria, and Bacteroidetes. The metabolomic analysis demonstrated significant alterations in intestinal metabolites. And SL-EZ intervention also exerted regulatory effects on various metabolic pathways in gut microbiota, including aminoacyl-tRNA biosynthesis, monobactam biosynthesis, cyanoamino acid metabolism, glycine, serine and threonine metabolism, plant secondary metabolite biosynthesis, and amino acid biosynthesis. CONCLUSION The identification of novel treatment formulations for endometriosis was achieved through the utilization of network pharmacology and gut microbiota analyses. Our findings revealed simultaneous alterations in the microbiota within the rat model of endometriosis. The therapeutic efficacy of SL-EZ in treating endometriosis is attributed to its ability to restore the gut microbiota and regulate metabolism. This investigation offers valuable insights into the therapeutic mechanisms of traditional Chinese medicine (TCM) for endometriosis.
Collapse
Affiliation(s)
- Weilin Zheng
- Department of traditional Chinese medicine, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Hong Zhou
- National Clinical Research Center for Kidney Disease, Nanfang Hospital, Guangzhou, China
| | - Zhiyi Fu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510000, China
| | - Luyao Feng
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, China
| | - Danting Wen
- Department of gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xuefang Liang
- Department of gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| | - Lixing Cao
- Department of gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
18
|
Junaid M, Lu H, Li Y, Liu Y, Din AU, Qi Z, Xiong Y, Yan J. Novel Synergistic Probiotic Intervention: Transcriptomic and Metabolomic Analysis Reveals Ameliorative Effects on Immunity, Gut Barrier, and Metabolism of Mice during Salmonella typhimurium Infection. Genes (Basel) 2024; 15:435. [PMID: 38674370 PMCID: PMC11050207 DOI: 10.3390/genes15040435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Salmonella typhimurium (S. typhimurium), a prevalent cause of foodborne infection, induces significant changes in the host transcriptome and metabolome. The lack of therapeutics with minimal or no side effects prompts the scientific community to explore alternative therapies. This study investigates the therapeutic potential of a probiotic mixture comprising Lactobacillus acidophilus (L. acidophilus 1.3251) and Lactobacillus plantarum (L. plantarum 9513) against S. typhimurium, utilizing transcriptome and metabolomic analyses, a novel approach that has not been previously documented. Twenty-four SPF-BALB/c mice were divided into four groups: control negative group (CNG); positive control group (CPG); probiotic-supplemented non-challenged group (LAPG); and probiotic-supplemented Salmonella-challenged group (LAPST). An RNA-sequencing analysis of small intestinal (ileum) tissue revealed 2907 upregulated and 394 downregulated DEGs in the LAPST vs. CPG group. A functional analysis of DEGs highlighted their significantly altered gene ontology (GO) terms related to metabolism, gut integrity, cellular development, and immunity (p ≤ 0.05). The KEGG analysis showed that differentially expressed genes (DEGs) in the LAPST group were primarily involved in pathways related to gut integrity, immunity, and metabolism, such as MAPK, PI3K-Akt, AMPK, the tryptophan metabolism, the glycine, serine, and threonine metabolism, ECM-receptor interaction, and others. Additionally, the fecal metabolic analysis identified 1215 upregulated and 305 downregulated metabolites in the LAPST vs. CPG group, implying their involvement in KEGG pathways including bile secretion, propanoate metabolism, arginine and proline metabolism, amino acid biosynthesis, and protein digestion and absorption, which are vital for maintaining barrier integrity, immunity, and metabolism. In conclusion, these findings suggest that the administration of a probiotic mixture improves immunity, maintains gut homeostasis and barrier integrity, and enhances metabolism in Salmonella infection.
Collapse
Affiliation(s)
- Muhammad Junaid
- Medical College, Guangxi University, Nanning 530004, China; (M.J.); (H.L.); (Y.L.); (Y.L.); (Z.Q.)
| | - Hongyu Lu
- Medical College, Guangxi University, Nanning 530004, China; (M.J.); (H.L.); (Y.L.); (Y.L.); (Z.Q.)
| | - Yixiang Li
- Medical College, Guangxi University, Nanning 530004, China; (M.J.); (H.L.); (Y.L.); (Y.L.); (Z.Q.)
| | - Yu Liu
- Medical College, Guangxi University, Nanning 530004, China; (M.J.); (H.L.); (Y.L.); (Y.L.); (Z.Q.)
| | - Ahmad Ud Din
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA
| | - Zhongquan Qi
- Medical College, Guangxi University, Nanning 530004, China; (M.J.); (H.L.); (Y.L.); (Y.L.); (Z.Q.)
| | - Yi Xiong
- Guangxi Center for Animals Disease Control and Prevention, Nanning 530004, China
| | - Jianhua Yan
- Medical College, Guangxi University, Nanning 530004, China; (M.J.); (H.L.); (Y.L.); (Y.L.); (Z.Q.)
| |
Collapse
|
19
|
Guo C, Zhang C. Role of the gut microbiota in the pathogenesis of endometriosis: a review. Front Microbiol 2024; 15:1363455. [PMID: 38505548 PMCID: PMC10948423 DOI: 10.3389/fmicb.2024.1363455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Endometriosis is classically defined as a chronic inflammatory heterogeneous disorder occurring in any part of the body, characterized by estrogen-driven periodic bleeding, proliferation, and fibrosis of ectopic endometrial glands and stroma outside the uterus. Endometriosis can take overwhelmingly serious damage to the structure and function of multi-organ, even impair whole-body systems, resulting in severe dysmenorrhea, chronic pelvic pain, infertility, fatigue and depression in 5-10% women of reproductive age. Precisely because of a huge deficiency of cognition about underlying etiology and complex pathogenesis of the debilitating disease, early diagnosis and treatment modalities with relatively minor side effects become bottlenecks in endometriosis. Thus, endometriosis warrants deeper exploration and expanded investigation in pathogenesis. The gut microbiota plays a significant role in chronic diseases in humans by acting as an important participant and regulator in the metabolism and immunity of the body. Increasingly, studies have shown that the gut microbiota is closely related to inflammation, estrogen metabolism, and immunity resulting in the development and progression of endometriosis. In this review, we discuss the diverse mechanisms of endometriosis closely related to the gut microbiota in order to provide new approaches for deeper exploration and expanded investigation for endometriosis on prevention, early diagnosis and treatment.
Collapse
Affiliation(s)
| | - Chiyuan Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
20
|
Tang F, Deng M, Xu C, Yang R, Ji X, Hao M, Wang Y, Tian M, Geng Y, Miao J. Unraveling the microbial puzzle: exploring the intricate role of gut microbiota in endometriosis pathogenesis. Front Cell Infect Microbiol 2024; 14:1328419. [PMID: 38435309 PMCID: PMC10904627 DOI: 10.3389/fcimb.2024.1328419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024] Open
Abstract
Endometriosis (EMs) is a prevalent gynecological disorder characterized by the growth of uterine tissue outside the uterine cavity, causing debilitating symptoms and infertility. Despite its prevalence, the exact mechanisms behind EMs development remain incompletely understood. This article presents a comprehensive overview of the relationship between gut microbiota imbalance and EMs pathogenesis. Recent research indicates that gut microbiota plays a pivotal role in various aspects of EMs, including immune regulation, generation of inflammatory factors, angiopoietin release, hormonal regulation, and endotoxin production. Dysbiosis of gut microbiota can disrupt immune responses, leading to inflammation and impaired immune clearance of endometrial fragments, resulting in the development of endometriotic lesions. The dysregulated microbiota can contribute to the release of lipopolysaccharide (LPS), triggering chronic inflammation and promoting ectopic endometrial adhesion, invasion, and angiogenesis. Furthermore, gut microbiota involvement in estrogen metabolism affects estrogen levels, which are directly related to EMs development. The review also highlights the potential of gut microbiota as a diagnostic tool and therapeutic target for EMs. Interventions such as fecal microbiota transplantation (FMT) and the use of gut microbiota preparations have demonstrated promising effects in reducing EMs symptoms. Despite the progress made, further research is needed to unravel the intricate interactions between gut microbiota and EMs, paving the way for more effective prevention and treatment strategies for this challenging condition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jinwei Miao
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| |
Collapse
|
21
|
Zhou Z, Feng Y, Xie L, Ma S, Cai Z, Ma Y. Alterations in gut and genital microbiota associated with gynecological diseases: a systematic review and meta-analysis. Reprod Biol Endocrinol 2024; 22:13. [PMID: 38238814 PMCID: PMC10795389 DOI: 10.1186/s12958-024-01184-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/02/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Increasing number of studies have demonstrated certain patterns of microbial changes in gynecological diseases; however, the interaction between them remains unclear. To evaluate the consistency or specificity across multiple studies on different gynecological diseases and microbial alterations at different sites of the body (gut and genital tract), we conducted a systematic review and meta-analysis. METHODS We searched PubMed, Embase, Web of Science, and Cochrane Library up to December 5, 2022(PROSPERO: CRD42023400205). Eligible studies focused on gynecological diseases in adult women, applied next-generation sequencing on microbiome, and reported outcomes including alpha or beta diversity or relative abundance. The random-effects model on standardized mean difference (SMD) was conducted using the inverse-variance method for alpha diversity indices. RESULTS Of 3327 unique articles, 87 eligible studies were included. Significant decreases were found in gut microbiome of patients versus controls (observed species SMD=-0.35; 95%CI, -0.62 to -0.09; Shannon index SMD=-0.23; 95%CI, -0.40 to -0.06), whereas significant increases were observed in vaginal microbiome (Chao1 SMD = 1.15; 95%CI, 0.74 to 1.56; Shannon index SMD = 0.51; 95%CI, 0.16 to 0.86). Most studies of different diagnostic categories showed no significant differences in beta diversity. Disease specificity was observed, but almost all the changes were only replicated in three studies, except for the increased Aerococcus in bacterial vaginosis (BV). Patients with major gynecological diseases shared the enrichment of Prevotella and depletion of Lactobacillus, and an overlap in microbes was implied between BV, cervical intraepithelial neoplasia, and cervical cancer. CONCLUSIONS These findings demonstrated an association between alterations in gut and genital microbiota and gynecological diseases. The most observed results were shared alterations across diseases rather than disease-specific alterations. Therefore, further investigation is required to identify specific biomarkers for diagnosis and treatment in the future.
Collapse
Affiliation(s)
- Ziwei Zhou
- Obstetrics and Gynecology Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yifei Feng
- Obstetrics and Gynecology Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lishan Xie
- Obstetrics and Gynecology Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Song Ma
- Obstetrics and Gynecology Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhaoxia Cai
- Guangzhou Liwan Maternal and Child Health Hospital, Guangzhou, China
| | - Ying Ma
- Obstetrics and Gynecology Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
22
|
Xholli A, Cremonini F, Perugi I, Londero AP, Cagnacci A. Gut Microbiota and Endometriosis: Exploring the Relationship and Therapeutic Implications. Pharmaceuticals (Basel) 2023; 16:1696. [PMID: 38139822 PMCID: PMC10747908 DOI: 10.3390/ph16121696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Endometriosis is a common inflammatory disease affecting women of reproductive age, characterized by the growth of endometrial tissue beyond the uterus. In addition to gynecological manifestations, many endometriosis patients experience gastrointestinal symptoms, indicating a potential association between gut health and the disease. Recent studies have revealed alterations in the gut microbiota of individuals with endometriosis, including reduced diversity, microbial composition imbalances, and pathogenic bacteria. These changes can disrupt immune function, increase inflammation, and contribute to the chronic inflammatory state observed in endometriosis. Moreover, dysregulation of intestinal permeability may further exacerbate gastrointestinal symptoms in affected individuals. Understanding the role of the gut microbiota and intestinal permeability in endometriosis can provide valuable insights into disease pathogenesis, aid in non-invasive diagnostic approaches, and open new avenues for therapeutic interventions. Probiotics, in particular, have shown promise in improving endometriosis-associated pain symptoms and reducing endometriotic lesions in animal models. This review suggests that additional research and well-designed clinical trials are necessary to validate the potential diagnostic and therapeutic benefits of manipulating the gut microbiota in managing endometriosis and its gastrointestinal symptoms, thereby improving the quality of life for those affected.
Collapse
Affiliation(s)
- Anjeza Xholli
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (A.X.); (F.C.); (I.P.)
| | - Francesca Cremonini
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (A.X.); (F.C.); (I.P.)
| | - Isabella Perugi
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (A.X.); (F.C.); (I.P.)
| | - Ambrogio Pietro Londero
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Infant Health, University of Genoa, 16132 Genova, Italy;
- Obstetrics and Gynecology Unit, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Angelo Cagnacci
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (A.X.); (F.C.); (I.P.)
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Infant Health, University of Genoa, 16132 Genova, Italy;
| |
Collapse
|
23
|
Liu Z, Chen P, Luo L, Liu Q, Shi H, Yang X. Causal effects of gut microbiome on endometriosis: a two-sample mendelian randomization study. BMC Womens Health 2023; 23:637. [PMID: 38037013 PMCID: PMC10687921 DOI: 10.1186/s12905-023-02742-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 10/29/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Previous studies have shown observational associations between the gut microbiota and endometriosis; however, the causal nature of such associations remains unclear. This study aimed to analyze the genetic causal relationship between the two. METHODS A gut microbiome genome-wide association study conducted by the MiBioGen consortium was used as exposure data, and summary statistics of endometriosis were obtained from the FinnGen consortium R8 release data. Inverse variance weighted, MR-Egger, weighted median, weighted model, and simple model analyses were applied to examine the causal relationship, and sensitivity analyses were conducted to validate the robustness of the results. RESULTS The results showed that, out of 211 gut microbiome taxa, Clostridiales_vadin_BB60_group, Oxalobacteraceae, Desulfovibrio, Haemophilus, and Holdemania had protective effects on endometriosis, while Porphyromonadaceae and Anaerotruncus might contribute to the development of endometriosis. Heterogeneity and pleiotropy analyses confirmed the robustness of the results. CONCLUSION The two-sample Mendelian randomization analysis conducted in this study identified specific intestinal flora with a causal relationship with endometriosis at the genetic level, offering new insights into the gut microbiota-mediated development mechanism of endometriosis.
Collapse
Affiliation(s)
- Ziyu Liu
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Engineering Technology Research Center of Fertility Preservation, Guangzhou, Guangdong, China
| | - Peigen Chen
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Engineering Technology Research Center of Fertility Preservation, Guangzhou, Guangdong, China
| | - Liling Luo
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Engineering Technology Research Center of Fertility Preservation, Guangzhou, Guangdong, China
| | - Qianru Liu
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Engineering Technology Research Center of Fertility Preservation, Guangzhou, Guangdong, China
| | - Hao Shi
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Engineering Technology Research Center of Fertility Preservation, Guangzhou, Guangdong, China
| | - Xing Yang
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China.
- Guangdong Engineering Technology Research Center of Fertility Preservation, Guangzhou, Guangdong, China.
| |
Collapse
|
24
|
Pai AHY, Wang YW, Lu PC, Wu HM, Xu JL, Huang HY. Gut Microbiome-Estrobolome Profile in Reproductive-Age Women with Endometriosis. Int J Mol Sci 2023; 24:16301. [PMID: 38003489 PMCID: PMC10671785 DOI: 10.3390/ijms242216301] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/11/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Microbiota is associated with our bodily functions and microenvironment. A healthy, balanced gut microbiome not only helps maintain mucosal integrity, prevents translocation of bacterial content, and contributes to immune status, but also associates with estrogen metabolism. Gut dysbiosis and estrobolome dysfunction have hence been linked to certain estrogen-dependent diseases, including endometriosis. While prior studies on microbiomes and endometriosis have shown conflicting results, most of the observed microbial differences are seen in the genital tract. This case-control study of reproductive-age women utilizes their fecal and urine samples for enzymatic, microbial, and metabolic studies to explore if patients with endometriosis have distinguishable gut microbiota or altered estrogen metabolism. While gut β-glucuronidase activities, microbial diversity, and abundance did not vary significantly between patients with or without endometriosis, fecal samples of patients with endometriosis were more enriched by the Erysipelotrichia class and had higher folds of four estrogen/estrogen metabolites. Further studies are needed to elucidate what these results imply and whether there indeed is an association or causation between gut microbiota and endometriosis.
Collapse
Affiliation(s)
- Angel Hsin-Yu Pai
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City 333423, Taiwan
| | - Yi-Wen Wang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City 333423, Taiwan
| | - Pei-Chen Lu
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City 333423, Taiwan
| | - Hsien-Ming Wu
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City 333423, Taiwan
- College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Jia-Ling Xu
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City 333423, Taiwan
| | - Hong-Yuan Huang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City 333423, Taiwan
- College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| |
Collapse
|
25
|
Guo W, Cui S, Tang X, Zhang Q, Zhao J, Mao B, Zhang H. Intestinal Microbiomics and Metabolomics Insights into the Hepatoprotective Effects of Lactobacillus paracasei CCFM1222 Against the Acute Liver Injury in Mice. Probiotics Antimicrob Proteins 2023; 15:1063-1077. [PMID: 36056292 DOI: 10.1007/s12602-022-09986-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 11/25/2022]
Abstract
In recent years, acute liver injury (ALI) has received wide-range attention in the world due to its relatively high morbidity and mortality. This study aimed to explore the hepatoprotective effect of Lactobacillus paracasei CCFM1222 against lipopolysaccharide (LPS)-induced ALI mice and further elaborate its mechanism of action from the perspective of intestinal microbiomics and metabolomics. The results displayed that L. paracasei CCFM1222 pretreatment significantly decreased the serum ALT, and AST levels, inhibited the releases of hepatic TNF-α, IL-1β, and IL-6 levels, and activated the SOD, CAT, and GSH-Px activities in LPS-treated mice. The cecal short-chain fatty acid (SCFAs) levels were increased in LPS-treated mice with L. paracasei CCFM1222 pretreatment. In addition, L. paracasei CCFM1222 pretreatment remarkably shifted the intestinal microbiota composition, including the higher abundance of Faecalibaculum, Bifidobacterium, and lower abundance of the Prevotellaceae NK3B31 group, which is positively associated with the cecal propionic, butyric, valeric, isobutyric, and isovaleric acids. The metabolomics based on UPLC-QTOF/MS revealed that L. paracasei CCFM1222 pretreatment significantly regulated the composition of feces metabolites in LPS-treated mice, especially the potential biomarker-related butanoate metabolism, vitamin B6 metabolism, D-glutamine and D-glutamate metabolism, tryptophan metabolism, caffeine metabolism, arginine biosynthesis, arginine, and proline metabolism. Moreover, L. paracasei CCFM1222 pretreatment remarkably regulated the expression of gene-associated ALI (including Tlr4, Myd88, Nf-kβ, iNOS, Cox2, Iκ-Bα, Nrf2, and Sirt-1). In conclusion, these results suggest the possibility that L. paracasei CCFM1222 supplementation has beneficial effects on preventing the occurrence and development of ALI by inhibiting the inflammatory responses and altering intestinal microbiota composition and their metabolites.
Collapse
Affiliation(s)
- Weiling Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China.
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
26
|
Brouns F, Van Haaps A, Keszthelyi D, Venema K, Bongers M, Maas J, Mijatovic V. Diet associations in endometriosis: a critical narrative assessment with special reference to gluten. Front Nutr 2023; 10:1166929. [PMID: 37731404 PMCID: PMC10507348 DOI: 10.3389/fnut.2023.1166929] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Endometriosis is characterized by the presence of endometrium-like tissue outside the uterus. The etiology remains largely unknown. Despite adequate treatment, patients can still experience symptoms or side effects resulting in therapy incompliance and in self-management strategies such as dietary measures is increasing. A gluten free diet is thought to be contributory in reducing endometriosis-related pain, thereby optimizing quality of life. However, data is conflicting and currently provides no evidence for causality. This narrative review aims to put the effect of dietary self-management strategies on endometriosis in a balanced perspective, especially the effect of gluten and a gluten free diet. Several studies have found a strong overlap in symptoms, metabolic and immune responses associated with endometriosis and those associated with celiac disease, ulcerative colitis, Crohn's disease, irritable bowel syndrome and non-celiac wheat sensitivity. However, it remains unclear whether these diseases and/or disorders are causal to an increased risk of endometriosis. Some studies have found a positive effect on the risk of endometriosis, endometriosis-related symptoms and quality of life (QoL) when women either avoided certain nutrients or foods, or applied a specific nutrient supplementation. This includes the avoidance of red meat, an increasing intake of foods rich in anti-oxidants, omega-3, micronutrients and dietary fibers (e.g., fruit, vegetables) and the appliance of a gluten free diet. However, data from the available studies were generally graded of low quality and it was noted that placebo and/or nocebo effects influenced the reported positive effects. In addition, such effects were no longer seen when adjusting for confounders such as overweight, when a translation was made from in vitro to in vivo, or when the nutrients were not supplemented as isolated sources but as part of a mixed daily diet. Finally, some studies showed that long-term adherence to a gluten free diet is often associated with an impaired diet quality and nutrient intake, leading to negative health outcomes and reduced QoL. Concluding, scientific evidence on the efficacy of dietary interventions on well-defined clinical endpoints of endometriosis is lacking and recommending a gluten free diet to women solely diagnosed with endometriosis should therefore not be advised.
Collapse
Affiliation(s)
- Fred Brouns
- Department of Human Biology, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Annelotte Van Haaps
- Endometriosis Center, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, Netherlands
| | - Daniel Keszthelyi
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Koen Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University, Maastricht, Netherlands
| | - Marlies Bongers
- Department of Obstetrics and Gynecology, Máxima Medical Center, Veldhoven, Netherlands
- Grow-School of Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
| | - Jacques Maas
- Grow-School of Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology MUMC+, Maastricht, Netherlands
| | - Velja Mijatovic
- Endometriosis Center, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, Netherlands
| |
Collapse
|
27
|
Li Y, He Y, Cheng W, Zhou Z, Ni Z, Yu C. Double-edged roles of ferroptosis in endometriosis and endometriosis-related infertility. Cell Death Discov 2023; 9:306. [PMID: 37607902 PMCID: PMC10444804 DOI: 10.1038/s41420-023-01606-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/31/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023] Open
Abstract
Endometriosis is strongly associated with infertility. Several mechanisms have been reported in an attempt to elucidate the pathophysiological effects that lead to reduced fertility in women with endometriosis. However, the mechanisms by which endometriosis affects fertility have not been fully elucidated. Ferroptosis is a novel form of nonapoptotic cell death that is characterized by iron-dependent lipid peroxidation membrane damage. In past reports, elevated iron levels in ectopic lesions, peritoneal fluid and follicular fluid have been reported in patients with endometriosis. The high-iron environment is closely associated with ferroptosis, which appears to exhibit a double-edged effect on endometriosis. Ferroptosis can cause damage to ovarian granulosa cells, oocytes, and embryos, leading to endometriosis-related infertility. This article summarizes the main pathways and regulatory mechanisms of ferroptosis and explores the possible mechanisms of the formation of an iron-overloaded environment in endometriotic ectopic lesions, peritoneal fluid and follicular fluid. Finally, we reviewed recent studies on the main and potential mechanisms of ferroptosis in endometriosis and endometriosis-related infertility.
Collapse
Affiliation(s)
- Yangshuo Li
- Department of Gynecology of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, 200433, Shanghai, China
| | - Yalun He
- Department of Gynecology of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, 200433, Shanghai, China
| | - Wen Cheng
- Department of Gynecology of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, 200433, Shanghai, China
| | - Zhihao Zhou
- Department of Gynecology of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, 200433, Shanghai, China
| | - Zhexin Ni
- Department of Gynecology of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, 200433, Shanghai, China.
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 100850, Beijing, China.
| | - Chaoqin Yu
- Department of Gynecology of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, 200433, Shanghai, China.
| |
Collapse
|
28
|
Salmeri N, Sinagra E, Dolci C, Buzzaccarini G, Sozzi G, Sutera M, Candiani M, Ungaro F, Massimino L, Danese S, Mandarino FV. Microbiota in Irritable Bowel Syndrome and Endometriosis: Birds of a Feather Flock Together-A Review. Microorganisms 2023; 11:2089. [PMID: 37630649 PMCID: PMC10458414 DOI: 10.3390/microorganisms11082089] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Endometriosis and irritable bowel syndrome (IBS) are chronic conditions affecting up to 10% of the global population, imposing significant burdens on healthcare systems and patient quality of life. Interestingly, around 20% of endometriosis patients also present with symptoms indicative of IBS. The pathogenesis of both these multifactorial conditions remains to be fully elucidated, but connections to gut microbiota are becoming more apparent. Emerging research underscores significant differences in the gut microbiota composition between healthy individuals and those suffering from either endometriosis or IBS. Intestinal dysbiosis appears pivotal in both conditions, exerting an influence via similar mechanisms. It impacts intestinal permeability, triggers inflammatory reactions, and initiates immune responses. Furthermore, it is entwined in a bidirectional relationship with the brain, as part of the gut-brain axis, whereby dysbiosis influences and is influenced by mental health and pain perception. Recent years have witnessed the development of microbiota-focused therapies, such as low FODMAP diets, prebiotics, probiotics, antibiotics, and fecal microbiota transplantation, designed to tackle dysbiosis and relieve symptoms. While promising, these treatments present inconsistent data, highlighting the need for further research. This review explores the evidence of gut dysbiosis in IBS and endometriosis, underscoring the similar role of microbiota in both conditions. A deeper understanding of this common mechanism may enable enhanced diagnostics and therapeutic advancements.
Collapse
Affiliation(s)
- Noemi Salmeri
- Gynecology/Obstetrics Unit, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, 20132 Milan, Italy; (C.D.); (G.B.); (M.C.)
| | - Emanuele Sinagra
- Gastroenterology & Endoscopy Unit, Fondazione Istituto G. Giglio, Contrada Pietra Pollastra Pisciotto, 90015 Cefalù, Italy;
| | - Carolina Dolci
- Gynecology/Obstetrics Unit, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, 20132 Milan, Italy; (C.D.); (G.B.); (M.C.)
| | - Giovanni Buzzaccarini
- Gynecology/Obstetrics Unit, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, 20132 Milan, Italy; (C.D.); (G.B.); (M.C.)
| | - Giulio Sozzi
- Gynecology/Obstetrics Unit, Fondazione Istituto G. Giglio, Contrada Pietra Pollastra Pisciotto, 90015 Cefalù, Italy; (G.S.); (M.S.)
| | - Miriam Sutera
- Gynecology/Obstetrics Unit, Fondazione Istituto G. Giglio, Contrada Pietra Pollastra Pisciotto, 90015 Cefalù, Italy; (G.S.); (M.S.)
| | - Massimo Candiani
- Gynecology/Obstetrics Unit, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, 20132 Milan, Italy; (C.D.); (G.B.); (M.C.)
| | - Federica Ungaro
- Department of Gastroenterology and Gastrointestinal Endoscopy, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, 20132 Milan, Italy; (F.U.); (L.M.); (S.D.); (F.V.M.)
| | - Luca Massimino
- Department of Gastroenterology and Gastrointestinal Endoscopy, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, 20132 Milan, Italy; (F.U.); (L.M.); (S.D.); (F.V.M.)
| | - Silvio Danese
- Department of Gastroenterology and Gastrointestinal Endoscopy, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, 20132 Milan, Italy; (F.U.); (L.M.); (S.D.); (F.V.M.)
| | - Francesco Vito Mandarino
- Department of Gastroenterology and Gastrointestinal Endoscopy, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, 20132 Milan, Italy; (F.U.); (L.M.); (S.D.); (F.V.M.)
| |
Collapse
|
29
|
Kobayashi H. Gut and reproductive tract microbiota: Insights into the pathogenesis of endometriosis (Review). Biomed Rep 2023; 19:43. [PMID: 37324168 PMCID: PMC10265574 DOI: 10.3892/br.2023.1626] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023] Open
Abstract
Endometriosis is characterized by the presence of endometrial-like tissue outside the uterus and is associated with an inflammatory immune response. The gut and reproductive tract microbiota constitute a protective barrier against infection by pathogens and regulate inflammatory and immune functions. This review summarizes microbiota imbalance (i.e., dysbiosis) in endometriosis and discusses how dysbiosis influences disease development. The literature was searched for studies published from inception to March 2022 in the PubMed and Google Scholar databases using a combination of specific terms. An altered gut and reproductive tract microbiome has been reported in numerous conditions, such as inflammatory bowel disease, allergies, autoimmunity, cancer and reproductive disorders (e.g., endometriosis). Furthermore, microbial dysbiosis is a hallmark of endometriosis and is characterized by a decrease in beneficial probiotics and an increase in pathogenic microbes, which leads to a series of estrobolomic and metabolomic changes. Gut or reproductive tract microbiome dysbiosis was reported in mice, nonhuman primates, and females with endometriosis. Animal models of endometriosis demonstrated the effects of the gut microbiome on lesion growth and vice versa. The immune system mediated by the microbiota-gut-reproductive tract axis triggers an inflammatory response that damages reproductive tract tissue, which possibly leads to endometriosis. However, whether the alteration of eubiosis (a balanced microbiota) to dysbiosis is a cause or a result of endometriosis is unclear. In conclusion, this review provides an overview of the relationship between the gut and reproductive tract microbiome and endometriosis, focusing on the mechanisms by which dysbiosis may increase the risk of disease.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive Medicine, Ms. Clinic MayOne, Shijo-cho, Kashihara, Nara 634-0813, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, Shijo-cho, Kashihara, Nara 634-8522, Japan
| |
Collapse
|
30
|
Sobstyl A, Chałupnik A, Mertowska P, Grywalska E. How Do Microorganisms Influence the Development of Endometriosis? Participation of Genital, Intestinal and Oral Microbiota in Metabolic Regulation and Immunopathogenesis of Endometriosis. Int J Mol Sci 2023; 24:10920. [PMID: 37446108 DOI: 10.3390/ijms241310920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Microorganisms inhabiting the human body play an extremely key role in its proper functioning, as well as in the development of the immune system, which, by maintaining the immune balance, allows you to enjoy health. Dysbiosis of the intestinal microbiota, or in the oral cavity or reproductive tract, understood as a change in the number and diversity of all microorganisms inhabiting them, may correlate with the development of many diseases, including endometriosis, as researchers have emphasized. Endometriosis is an inflammatory, estrogen-dependent gynecological condition defined by the growth of endometrial cells outside the uterine cavity. Deregulation of immune homeostasis resulting from microbiological disorders may generate chronic inflammation, thus creating an environment conducive to the increased adhesion and angiogenesis involved in the development of endometriosis. In addition, research in recent years has implicated bacterial contamination and immune activation, reduced gastrointestinal function by cytokines, altered estrogen metabolism and signaling, and abnormal progenitor and stem cell homeostasis, in the pathogenesis of endometriosis. The aim of this review was to present the influence of intestinal, oral and genital microbiota dysbiosis in the metabolic regulation and immunopathogenesis of endometriosis.
Collapse
Affiliation(s)
- Anna Sobstyl
- Department of Experimental Immunology, Medical University of Lublin, Chodzki Street, 20-093 Lublin, Poland
| | - Aleksandra Chałupnik
- Department of Experimental Immunology, Medical University of Lublin, Chodzki Street, 20-093 Lublin, Poland
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, Chodzki Street, 20-093 Lublin, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, Chodzki Street, 20-093 Lublin, Poland
| |
Collapse
|
31
|
Guo H, Zhu Q, Gao H, Lyu Q, Chai W, Wu L, Li B. Metabolomics analysis of follicular fluid in ovarian endometriosis women receiving progestin-primed ovary stimulation protocol for in vitro fertilization. Sci Rep 2023; 13:5747. [PMID: 37029234 PMCID: PMC10082198 DOI: 10.1038/s41598-023-32797-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
This study aimed to investigate the metabolite profile and inflammatory state of follicular fluid (FF) in women with stage III-IV ovarian endometriosis (OE) who underwent in vitro fertilization (IVF). A cohort of 20 consecutive patients with OE were recruited and received progestin-primed ovary stimulation (PPOS) protocol (study group), while another 20 OE patients received one-month ultra-long term protocol (control group) for IVF in this prospective, nonrandomized study. FF samples were obtained from dominant follicles during oocyte retrieval, and liquid chromatography-mass spectrometry (LC-MS) was used to investigate the metabolites profile of FF. Results showed that significant increases in the levels of proline, arginine, threonine, and glycine in patients who received PPOS protocol compared to the control group (P < 0.05). A panel of three metabolites (proline, arginine, and threonine) was identified as specific biomarkers of OE patients using PPOS protocol. Additionally, levels of interleukin-1β, regulated on activation, normal T cell expressed and secreted, and tumor necrosis factor-α markedly decreased in women who received PPOS protocol compared to the control group (P < 0.05). In conclusion, PPOS protocol regulates the metabolism of several amino acids in the FF, which may play critical roles in the oocyte development and blastocyst formation, and their specific mechanism should be further elucidated.
Collapse
Affiliation(s)
- Haiyan Guo
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, 200011, China
| | - Qianqian Zhu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, 200011, China
| | - Hongyuan Gao
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, 200011, China
| | - Qifeng Lyu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, 200011, China
| | - Weiran Chai
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, 200011, China
| | - Ling Wu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, 200011, China
| | - Bin Li
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, 200011, China.
| |
Collapse
|
32
|
Zhan X, Fletcher L, Huyben D, Cai H, Dingle S, Qi N, Huber LA, Wang B, Li J. Choline supplementation regulates gut microbiome diversity, gut epithelial activity, and the cytokine gene expression in gilts. Front Nutr 2023; 10:1101519. [PMID: 36819695 PMCID: PMC9931747 DOI: 10.3389/fnut.2023.1101519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Choline is an essential nutrient that is necessary for both fetal development and maintenance of neural function, while its effect on female ovarian development is largely unexplored. Our previous study demonstrated that choline supplementation promotes ovarian follicular development and ovulation, although its underlying mechanism was unclear. To uncover the potential regulation pathway, eighteen female Yorkshire × Landrace gilts were fed with either standard commercial diet (Control group, n = 9) or choline supplemented diet (Choline group, additional 500 mg/kg of control diet, n = 9) from day 90 of age to day 186. At day 186, feces samples were analyzed for effects on the gut microbiome using 16S ribosomal RNA gene V3-V4 region sequencing with Illumina MiSeq, serum samples were analyzed for trimethylamine (TMA) and trimethylamine-N-oxide (TMAO) using HILIC method, and jejunum tissues were analyzed for immune related gene expression using qRT-PCR. Our results show that choline supplementation did not alter the circulating level of TMA and TMAO (P > 0.05), but rather increased gut microbiome alpha diversity (P < 0.05). Beta diversity analysis results showed that the choline diet mainly increased the abundance of Firmicutes, Proteobacteria, and Actinobacteria, but decreased the abundance of Bacteroidetes, Spirochaetes, and Euryarchaeota at the phyla level. Meta-genomic analysis revealed that choline supplementation activated pathways in the gut microbiota associated with steroid hormone biosynthesis and degradation of infertility-causing environmental pollutants (bisphenol, xylene, and dioxins). To further verify the effect of choline on intestinal activity, a porcine intestine cell line (IPEC-J2) was treated with serial concentrations of choline chloride in vitro. Our data demonstrated that choline promoted the proliferation of IPEC-J2 while inhibiting the apoptotic activity. qRT-PCR results showed that choline significantly increased the expression level of Bcl2 in both IPEC-J2 cells and jejunum tissues. The expression of IL-22, a cytokine that has been shown to impact ovarian function, was increased by choline treatment in vitro. Our findings reveal the beneficial effect of choline supplementation on enhancing the gut microbiome composition and intestinal epithelial activity, and offer insights into how these changes may have contributed to the ovarian development-promoting effect we reported in our previous study.
Collapse
Affiliation(s)
- Xiaoshu Zhan
- Department of Life Science and Engineering, Foshan University, Foshan, Guangdong, China,Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Lauren Fletcher
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - David Huyben
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Haiming Cai
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Serena Dingle
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Nanshan Qi
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada,Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Lee-Anne Huber
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Bingyun Wang
- Department of Life Science and Engineering, Foshan University, Foshan, Guangdong, China,*Correspondence: Bingyun Wang,
| | - Julang Li
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada,Julang Li,
| |
Collapse
|
33
|
Ser HL, Au Yong SJ, Shafiee MN, Mokhtar NM, Ali RAR. Current Updates on the Role of Microbiome in Endometriosis: A Narrative Review. Microorganisms 2023; 11:360. [PMID: 36838325 PMCID: PMC9962481 DOI: 10.3390/microorganisms11020360] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/16/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Endometriosis affects approximately 6 to 10% of reproductive-age women globally. Despite much effort invested, the pathogenesis that promotes the development, as well as the progression of this chronic inflammatory disease, is poorly understood. The imbalance in the microbiome or dysbiosis has been implicated in a variety of human diseases, especially the gut microbiome. In the case of endometriosis, emerging evidence suggests that there may be urogenital-gastrointestinal crosstalk that leads to the development of endometriosis. Researchers may now exploit important information from microbiome studies to design endometriosis treatment strategies and disease biomarkers with the use of advanced molecular technologies and increased computational capacity. Future studies into the functional profile of the microbiome would greatly assist in the development of microbiome-based therapies to alleviate endometriosis symptoms and improve the quality of life of women suffering from endometriosis.
Collapse
Affiliation(s)
- Hooi-Leng Ser
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Malaysia
| | - Siu-Jung Au Yong
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Malaysia
| | - Mohamad Nasir Shafiee
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsan Malaysia, Cheras 56000, Malaysia
| | - Norfilza Mohd Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Raja Affendi Raja Ali
- School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Malaysia
- Gut Research Group, Faculty of Medicine, Universiti Kebangsan Malaysia, Cheras 56000, Malaysia
| |
Collapse
|
34
|
Chadchan SB, Naik SK, Popli P, Talwar C, Putluri S, Ambati CR, Lint MA, Kau AL, Stallings CL, Kommagani R. Gut microbiota and microbiota-derived metabolites promotes endometriosis. Cell Death Discov 2023; 9:28. [PMID: 36693853 PMCID: PMC9873805 DOI: 10.1038/s41420-023-01309-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Endometriosis is a pathological condition of the female reproductive tract characterized by the existence of endometrium-like tissue at ectopic sites, affecting 10% of women between the age 15 and 49 in the USA. However, currently there is no reliable non-invasive method to detect the presence of endometriosis without surgery and many women find hormonal therapy and surgery as ineffective in avoiding the recurrences. There is a lack of knowledge on the etiology and the factors that contribute to the development of endometriosis. A growing body of recent evidence suggests an association between gut microbiota and endometriosis pathophysiology. However, the direct impact of microbiota and microbiota-derived metabolites on the endometriosis disease progression is largely unknown. To understand the causal role of gut microbiota and endometriosis, we have implemented a novel model using antibiotic-induced microbiota-depleted (MD) mice to investigate the endometriosis disease progression. Interestingly, we found that MD mice showed reduced endometriotic lesion growth and, the transplantation of gut microbiota by oral gavage of feces from mice with endometriosis rescued the endometriotic lesion growth. Additionally, using germ-free donor mice, we indicated that the uterine microbiota is dispensable for endometriotic lesion growth in mice. Furthermore, we showed that gut microbiota modulates immune cell populations in the peritoneum of lesions-bearing mice. Finally, we found a novel signature of microbiota-derived metabolites that were significantly altered in feces of mice with endometriosis. Finally, we found one the altered metabolite, quinic acid promoted the survival of endometriotic epithelial cells in vitro and lesion growth in vivo, suggesting the disease-promoting potential of microbiota-derived metabolites. In summary, these data suggest that gut microbiota and microbiota-derived metabolome contribute to lesion growth in mice, possibly through immune cell adaptations. Of translational significance, these findings will aid in designing non-invasive diagnostics using stool metabolites for endometriosis.
Collapse
Affiliation(s)
- Sangappa B Chadchan
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Sumanta K Naik
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Pooja Popli
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Chandni Talwar
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Satwikreddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Chandrasekhar R Ambati
- Advanced Technology Core, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Michael A Lint
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Andrew L Kau
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Christina L Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ramakrishna Kommagani
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
35
|
Chen P, Wang K, Zhuang M, Fu X, Liu S, Chen M, Lei Y. An insight into gut microbiota and metabolites in the mice with adenomyosis. Front Cell Infect Microbiol 2023; 13:1075387. [PMID: 36923594 PMCID: PMC10008959 DOI: 10.3389/fcimb.2023.1075387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/07/2023] [Indexed: 03/02/2023] Open
Abstract
Background Adenomyosis (AM) is a benign uterine disease characterized pathologically by the invasion of endometrial tissue into the myometrium. The pathogenesis of AM is still far from clear. Although the gut microbiome and metabolomics are thought to contribute to a variety of diseases, the role of them in AM has not been revealed. Objective To investigate changes in the gut microbiota and derived metabolites in AM mice. Method Female ICR mice were randomly assigned to AM and control groups, and pituitary transplantation was employed to perform AM modeling. Then, the fecal samples were obtained for microbial (16S rRNA gene sequencing) and metabolomic (liquid chromatography mass spectrometry, LC-MS) analysis. Result The results of gut microbiota analysis showed that the intestinal microbiota composition of AM mice was altered. The ratio of Firmicutes/Bacteroidetes and the relative abundance of Lactobacillus in AM group increased compared with the control group. Sixty differential expressed metabolites were identified in intestinal metabolites, mainly involved in steroid hormone biosynthesis, cysteine and methionine metabolism, and alanine, aspartate, and glutamate metabolism. Further, correlation analysis verified that L-methionine and L-cystine were negatively correlated with Bacteroides and positively correlated with Desulfovibrio. The Pregnenolone, Androsterone glucuronide, and Testosterone glucuronide were negatively correlated with Unidentified_Ruminococcaceae and Alistipes, whereas they positively correlated with Bacteroides. Conclusion AM mice have a unique gut microbiome and intestinal metabolites.
Collapse
Affiliation(s)
- Peipei Chen
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Kun Wang
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Mingyan Zhuang
- Obstetrics and Gynecology Department of Maternity and Child Health Care Hospital, Three Gorges University, Yichang, Hubei, China
- *Correspondence: Mingyan Zhuang, ; Xianyun Fu,
| | - Xianyun Fu
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
- *Correspondence: Mingyan Zhuang, ; Xianyun Fu,
| | - Shidan Liu
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Minmin Chen
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Ya Lei
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
36
|
Qin R, Tian G, Liu J, Cao L. The gut microbiota and endometriosis: From pathogenesis to diagnosis and treatment. Front Cell Infect Microbiol 2022; 12:1069557. [PMID: 36506023 PMCID: PMC9729346 DOI: 10.3389/fcimb.2022.1069557] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Endometriosis is a common gynecological disease, that often leads to pain and infertility. At present, the specific pathogenesis of endometriosis has not been clarified, but it may be closely related to an imbalance of sex hormones in the body, ectopic hyperplasia stimulated by immune inflammation, and invasion and escape based on tumor characteristics. Gut microbiota is associated with many inflammatory diseases. With the further study of the gut microbiota, people are paying increasing attention to its relationship with endometriosis. Studies have shown that there is an association between the gut microbiota and endometriosis. The specific ways and mechanisms by which the gut microbiota participates in endometriosis may involve estrogen, immune inflammation, and tumor characteristics, among others. Therefore, in the future, regulating gut microbiota disorders in various ways can help in the treatment of endometriosis patients. This study reviewed the research on the gut microbiota and endometriosis in order to provide ideas for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Rui Qin
- Department of Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Gengren Tian
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Junbao Liu
- Department of Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Lu Cao
- Department of Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China,*Correspondence: Lu Cao,
| |
Collapse
|
37
|
Li Y, Wang K, Ding J, Sun S, Ni Z, Yu C. Influence of the gut microbiota on endometriosis: Potential role of chenodeoxycholic acid and its derivatives. Front Pharmacol 2022; 13:954684. [PMID: 36071850 PMCID: PMC9442031 DOI: 10.3389/fphar.2022.954684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022] Open
Abstract
The gut microbiota (GM) has received extensive attention in recent years, and its key role in the establishment and maintenance of health and in the development of diseases has been confirmed. A strong correlation between the GM and the progression of endometriosis (EMS) has been observed in emerging research. Alterations in the composition and function of the GM have been described in many studies on EMS. In contrast, the GM in the environment of EMS, especially the GM metabolites, such as bile acids and short-chain fatty acids that are related to the pathogenesis of EMS, can promote disease progression. Chenodeoxycholic acid (CDCA), as one of the primary bile acids produced in the liver, is metabolized by various enzymes derived from the GM and is critically important in maintaining intestinal homeostasis and regulating lipid and carbohydrate metabolism and innate immunity. Given that the complexity of CDCA as a signalling molecule and the interaction between the GM and EMS have not been clarified, the role of the CDCA and GM in EMS should be understood from a novel perspective. However, few articles on the relationship between CDCA and EMS have been reviewed. Therefore, we review the available and possible potential links between CDCA, the GM and EMS and put forward the hypothesis that CDCA and its derivative obeticholic acid can improve the symptoms of EMS through the GM.
Collapse
Affiliation(s)
- Yangshuo Li
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Kaili Wang
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jie Ding
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Shuai Sun
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Zhexin Ni
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
- *Correspondence: Zhexin Ni, ; Chaoqin Yu,
| | - Chaoqin Yu
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- *Correspondence: Zhexin Ni, ; Chaoqin Yu,
| |
Collapse
|
38
|
Talwar C, Singh V, Kommagani R. The Gut Microbiota: A Double Edge Sword in Endometriosis. Biol Reprod 2022; 107:881-901. [PMID: 35878972 PMCID: PMC9562115 DOI: 10.1093/biolre/ioac147] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/14/2022] Open
Abstract
Endometriosis that afflicts 1 in 10 women of reproductive age is characterized by growth of endometrial tissue in the extra-uterine sites and encompasses metabolic-, immunologic- and endocrine-disruption. Importantly, several comorbidities are associated with endometriosis, especially autoimmune disorders such as inflammatory bowel disease. Primarily thought of as a condition arising from retrograde menstruation, emerging evidence uncovered a functional link between the gut microbiota and endometriosis. Specifically, recent findings revealed altered gut microbiota profiles in endometriosis and in turn this altered microbiota appears to be causal in the disease progression, implying a bi-directional crosstalk. In this review, we discuss the complex etiology and pathogenesis of endometriosis emphasizing on this recently recognized role of gut microbiome. We review the gut microbiome structure and functions and its complex network of interactions with the host for maintenance of homeostasis that is crucial for disease prevention. We highlight the underlying mechanisms on how some bacteria promotes disease progression and others protects against endometriosis. Further, we highlight the areas that require future emphases in the gut microbiome-endometriosis nexus and the potential microbiome-based therapies for amelioration of endometriosis.
Collapse
Affiliation(s)
- Chandni Talwar
- Department of Pathology and Immunology, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Vertika Singh
- Department of Pathology and Immunology, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ramakrishna Kommagani
- Department of Pathology and Immunology, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
39
|
Iron-overloaded follicular fluid increases the risk of endometriosis-related infertility by triggering granulosa cell ferroptosis and oocyte dysmaturity. Cell Death Dis 2022; 13:579. [PMID: 35787614 PMCID: PMC9253011 DOI: 10.1038/s41419-022-05037-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 01/21/2023]
Abstract
Endometriosis (EMs) occurs in approximately 50% of women with infertility. The main causes of EMs-related infertility are follicle dysplasia and reduced oocyte quality. Iron overload occurs in ovarian follicular fluid (FF) of patients with EMs, and this condition is associated with oocyte maturation disorder. However, the underlying molecular mechanism remains largely unknown. In the present study, we identified the mechanism underlying ferroptosis in ovarian granulosa cells and oocyte maturation failure in EMs based on a retrospective review of in vitro fertilization/intracytoplasmic sperm injection-frozen embryo transfer outcomes in infertile patients with EMs. Mouse granulosa cells were treated with EMs-related infertile patients' follicular fluid (EMFF) in vitro. Western blot analysis, quantitative polymerase chain reaction, fluorescence staining, and transmission electron microscopy were used to assess granulosa cells ferroptosis. The effects of exosomes were examined by nanoparticle tracking analysis, RNA-seq, and Western blot analysis. Finally, the therapeutic values of vitamin E and iron chelator (deferoxamine mesylate) in vivo were evaluated in an EMs-related infertility model. Patients with ovarian EMs experienced poorer oocyte fertility than patients with non-ovarian EMs. We observed that EMFF with iron overload-induced granulosa cell ferroptosis in vitro and in vivo. Mechanically, nuclear receptor coactivator four-dependent ferritinophagy was involved in this process. Notably, granulosa cells undergoing ferroptosis further suppressed oocyte maturation by releasing exosomes from granulosa cells. In therapeutic studies, vitamin E and iron chelators effectively alleviated EMs-related infertility models. Our study indicates a novel mechanism through which EMFF with iron overload induces ferroptosis of granulosa cells and oocyte dysmaturity in EMs-related infertility, providing a potential therapeutic strategy for EMs-related infertility.
Collapse
|
40
|
Fecal metabolomic analysis of rabbits infected with Eimeria intestinalis and Eimeria magna based on LC-MS/MS technique. Microb Pathog 2021; 162:105357. [PMID: 34896546 DOI: 10.1016/j.micpath.2021.105357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/23/2021] [Accepted: 12/08/2021] [Indexed: 01/11/2023]
Abstract
Rabbit coccidiosis is a common parasitic disease leading to economic losses in the rabbit industry. The intestinal flora plays a key role in pathogenesis of coccidiosis, and fecal metabolome mediates host-microbiome interactions as a functional readout of the gut microbiome. In this study, the E. intestinalis-infected and E. magna-infected rabbit models were established to investigate metabolic alterations and metabolic pathways based on LC-MS/MS technique for the first time. Multivariate OPLS-DA analysis was performed to explore differential metabolites. In total, 288 metabolites were detected from infected and uninfected rabbits. The level of 33 metabolites increased and 4 decreased in rabbits infected with E. intestinalis. Eight pathways were significantly perturbed during E. intestinalis infection including biosynthesis of unsaturated fatty acids, fatty acid biosynthesis, etc. After rabbits infected with E. magna, 13 metabolites were altered and 7 metabolic pathways were dysregulated. These metabolites and metabolic pathways were mainly involved in tuberculosis, parathyroid hormone synthesis, etc. Besides, 25 metabolites differed in abundance between E. intestinalis infection group and E. magna infection group, the major perturbed metabolic pathways were lipid metabolism and endocrine system, respectively. In general, it is confirmed that E. intestinalis and E. magna infection destroyed the intestinal flora, which caused corresponding changes in metabolites, and provide novel insights into the molecular mechanisms of rabbit-parasite interactions.
Collapse
|
41
|
Huang L, Liu B, Liu Z, Feng W, Liu M, Wang Y, Peng D, Fu X, Zhu H, Cui Z, Xie L, Ma Y. Gut Microbiota Exceeds Cervical Microbiota for Early Diagnosis of Endometriosis. Front Cell Infect Microbiol 2021; 11:788836. [PMID: 34950610 PMCID: PMC8688745 DOI: 10.3389/fcimb.2021.788836] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022] Open
Abstract
The diagnosis of endometriosis is typically delayed by years for the unexclusive symptom and the traumatic diagnostic method. Several studies have demonstrated that gut microbiota and cervical mucus potentially can be used as auxiliary diagnostic biomarkers. However, none of the previous studies has compared the robustness of endometriosis classifiers based on microbiota of different body sites or demonstrated the correlation among microbiota of gut, cervical mucus, and peritoneal fluid of endometriosis, searching for alternative diagnostic approaches. Herein, we enrolled 41 women (control, n = 20; endometriosis, n = 21) and collected 122 well-matched samples, derived from feces, cervical mucus, and peritoneal fluid, to explore the nature of microbiome of endometriosis patients. Our results indicated that microbial composition is remarkably distinguished between three body sites, with 19 overlapped taxa. Moreover, endometriosis patients harbor distinct microbial communities versus control group especially in feces and peritoneal fluid, with increased abundance of pathogens in peritoneal fluid and depletion of protective microbes in feces. Particularly, genera of Ruminococcus and Pseudomonas were identified as potential biomarkers in gut and peritoneal fluid, respectively. Furthermore, novel endometriosis classifiers were constructed based on taxa selected by a robust machine learning method. These results demonstrated that gut microbiota exceeds cervical microbiota in diagnosing endometriosis. Collectively, this study reveals important insights into the microbial profiling in different body sites of endometriosis, which warrant future exploration into the role of microbiota in endometriosis and highlighted values on gut microbiota in early diagnosis of endometriosis.
Collapse
Affiliation(s)
- Liujing Huang
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Bingdong Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhihong Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Wanqin Feng
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Minjuan Liu
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yifeng Wang
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Dongxian Peng
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiafei Fu
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Honglei Zhu
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zongbin Cui
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Liwei Xie
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- College of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Ying Ma
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
42
|
Feng WW, Liu J, Cheng H, Peng C. Integration of Gut Microbiota and Metabolomics for Chinese Medicines Research: Opportunities and Challenges. Chin J Integr Med 2021; 28:1032-1039. [PMID: 34755290 DOI: 10.1007/s11655-021-3305-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2021] [Indexed: 12/15/2022]
Abstract
Chinese medicines (CM) are gaining more attentions from all over the world. However, there are a large body of questions to be answered because of the chemical complexity of CM and intricate molecular reactions within human body. In recent years, gut microbiota and metabolomics have emerged as two cynosures in deciphering the mechanisms of how our body is functioning. Since gut microbiota and host is a closely interrelated system, paying attention only to gut microbiota or metabolites may omit the interplays among CM, gut microbiota, and hosts. To systemically study these interplays, a network understanding of CM components, gut microbiota, metabolites of gut microbiota, metabolites in human body is necessary. Although there are some obstacles impeding the application of this integrative approach, the potential areas for implementation of the integrative approach is vast. These areas include, but not limited to, elucidating the mechanisms of CM at system level, screening bioactive compounds in CM, and guiding quality control of CM.
Collapse
Affiliation(s)
- Wu-Wen Feng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Juan Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hao Cheng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
43
|
Salliss ME, Farland LV, Mahnert ND, Herbst-Kralovetz MM. The role of gut and genital microbiota and the estrobolome in endometriosis, infertility and chronic pelvic pain. Hum Reprod Update 2021; 28:92-131. [PMID: 34718567 DOI: 10.1093/humupd/dmab035] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/25/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Endometriosis is a chronic, burdensome condition that is historically understudied. Consequently, there is a lack of understanding of the etiology of the disease and its associated symptoms, including infertility and chronic pelvic pain (CPP). Endometriosis development is influenced by estrogen metabolism and inflammation, which are modulated by several factors including the microbiome and the estrobolome (the collection of genes encoding estrogen-metabolizing enzymes in the gut microbiome). Therefore, there is increasing interest in understanding the role of microbiota in endometriosis etiology. OBJECTIVE AND RATIONALE To date, there is no cure for endometriosis and treatment options often are ineffective. This manuscript will review the potential relationship between the microbiome and endometriosis, infertility and CPP and highlight the available data on the microbiome in relation to endometriosis and its related symptoms. The overarching goal of this manuscript is to inform future microbiome research that will lead to a deeper understanding of the etiology of the disease and possible diagnostic modalities and treatments. The potential impact of the microbiome on estrogen regulation modulated by the estrobolome, as well as inflammation and other endometriosis-promoting mechanisms within the genital tract, will be reviewed. The methodological limitations of microbiome-related studies will be critically assessed to provide improved guidelines for future microbiome and clinical studies. SEARCH METHODS PubMed databases were searched using the following keywords: endometriosis AND microbiome, infertility AND microbiome, pelvic pain AND microbiome, IVF (in-vitro fertilization) AND microbiome, endometriosis AND infertility. Clinical and preclinical animal trials that were eligible for review, and related to microbiome and endometriosis, infertility or CPP were included. All available manuscripts were published in 2002-2021. OUTCOMES In total, 28 clinical and 6 animal studies were included in the review. In both human and animal studies, bacteria were enriched in endometriosis groups, although there was no clear consensus on specific microbiota compositions that were associated with endometriosis, and no studies included infertility or CPP with endometriosis. However, bacterial vaginosis-associated bacteria and Lactobacillus depletion in the cervicovaginal microbiome were associated with endometriosis and infertility in the majority (23/28) of studies. Interpretation of endometrial studies is limited owing to a variety of methodological factors, discussed in this review. In addition, metadata outlining antibiotic usage, age, race/ethnicity, menopausal status and timing of sample collection in relation to diagnosis of endometriosis was not consistently reported. Animal studies (6/6) support a bidirectional relationship between the gut microbiota and endometriosis onset and progression. WIDER IMPLICATIONS There is evidence that a dysbiotic gut or genital microbiota is associated with multiple gynecologic conditions, with mounting data supporting an association between the microbiome and endometriosis and infertility. These microbiomes likely play a role in the gut-brain axis, which further supports a putative association with the spectrum of symptoms associated with endometriosis, including infertility and CPP. Collectively, this review highlights the demand for more rigorous and transparent methodology and controls, consistency across the field, and inclusion of key demographic and clinical characteristics of disease and comparison participants. Rigorous study designs will allow for a better understanding of the potential role of the microbiome in endometriosis etiology and the relationship to other disorders of the female reproductive tract.
Collapse
Affiliation(s)
- Mary E Salliss
- Department of Obstetrics and Gynecology, University of Arizona-College of Medicine, Phoenix, AZ, USA.,Department of Biology and Biochemistry, Bath University, Bath, UK
| | - Leslie V Farland
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA.,Department of Obstetrics and Gynecology, University of Arizona-College of Medicine Tucson, Tucson, AZ, USA
| | - Nichole D Mahnert
- Department of Obstetrics and Gynecology, University of Arizona-College of Medicine, Phoenix, AZ, USA.,Department of Obstetrics and Gynecology, Banner-University Medical Center Phoenix, Phoenix, AZ, USA
| | - Melissa M Herbst-Kralovetz
- Department of Obstetrics and Gynecology, University of Arizona-College of Medicine, Phoenix, AZ, USA.,Department of Basic Medical Sciences, University of Arizona-College of Medicine, Phoenix, AZ, USA
| |
Collapse
|
44
|
Chadchan SB, Popli P, Ambati CR, Tycksen E, Han SJ, Bulun SE, Putluri N, Biest SW, Kommagani R. Gut microbiota-derived short-chain fatty acids protect against the progression of endometriosis. Life Sci Alliance 2021; 4:4/12/e202101224. [PMID: 34593556 PMCID: PMC8500332 DOI: 10.26508/lsa.202101224] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/11/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Worldwide, ∼196 million are afflicted with endometriosis, a painful disease in which endometrial tissue implants and proliferates on abdominal peritoneal surfaces. Theories on the origin of endometriosis remained inconclusive. Whereas up to 90% of women experience retrograde menstruation, only 10% develop endometriosis, suggesting that factors that alter peritoneal environment might contribute to endometriosis. Herein, we report that whereas some gut bacteria promote endometriosis, others protect against endometriosis by fermenting fiber to produce short-chain fatty acids. Specifically, we found that altered gut microbiota drives endometriotic lesion growth and feces from mice with endometriosis contained less of short-chain fatty acid and n-butyrate than feces from mice without endometriosis. Treatment with n-butyrate reduced growth of both mouse endometriotic lesions and human endometriotic lesions in a pre-clinical mouse model. Mechanistic studies revealed that n-butyrate inhibited human endometriotic cell survival and lesion growth through G-protein-coupled receptors, histone deacetylases, and a GTPase activating protein, RAP1GAP. Our findings will enable future studies aimed at developing diagnostic tests, gut bacteria metabolites and treatment strategies, dietary supplements, n-butyrate analogs, or probiotics for endometriosis.
Collapse
Affiliation(s)
- Sangappa B Chadchan
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO, USA,Center for Reproductive Health Sciences, Washington University School of Medicine, St Louis, MO, USA
| | - Pooja Popli
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO, USA,Center for Reproductive Health Sciences, Washington University School of Medicine, St Louis, MO, USA
| | - Chandrasekhar R Ambati
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Eric Tycksen
- Genome Technology Access Center, McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA
| | - Sang Jun Han
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Serdar E Bulun
- Department of Obstetrics and Gynecology, Fienberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Scott W Biest
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO, USA,Division of Minimally Invasive Gynecologic Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - Ramakrishna Kommagani
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO, USA .,Center for Reproductive Health Sciences, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
45
|
Wessels JM, Domínguez MA, Leyland NA, Agarwal SK, Foster WG. Endometrial microbiota is more diverse in people with endometriosis than symptomatic controls. Sci Rep 2021; 11:18877. [PMID: 34556738 PMCID: PMC8460742 DOI: 10.1038/s41598-021-98380-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/02/2021] [Indexed: 02/08/2023] Open
Abstract
Endometriosis is a chronic, estrogen-dependent gynecological condition affecting approximately 10% of reproductive age women. The most widely accepted theory of its etiology includes retrograde menstruation. Recent reports suggest the uterus is not sterile. Thus, the refluxed menstrual effluent may carry bacteria, and contribute to inflammation, the establishment and growth of endometriotic lesions. Here, we compared and contrasted uterine bacteria (endometrial microbiota) in people with surgically confirmed presence (N = 12) or absence of endometriosis (N = 9) using next-generation 16S rRNA gene sequencing. We obtained an average of > 9000 sequence reads per endometrial biopsy, and found the endometrial microbiota of people with endometriosis was more diverse (greater Shannon Diversity Index and proportion of 'Other' taxa) than symptomatic controls (with pelvic pain, surgically confirmed absence of endometriosis; diagnosed with other benign gynecological conditions). The relative abundance of bacterial taxa enriched in the endometrial microbiota of people with endometriosis belonged to the Actinobacteria phylum (Gram-positive), Oxalobacteraceae (Gram-negative) and Streptococcaceae (Gram-positive) families, and Tepidimonas (Gram-negative) genus, while those enriched in the symptomatic controls belonged to the Burkholderiaceae (Gram-negative) family, and Ralstonia (Gram-negative) genus. Taken together, results suggest the endometrial microbiota is perturbed in people with endometriosis.
Collapse
Affiliation(s)
- Jocelyn M Wessels
- Department of Obstetrics & Gynaecology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Miguel A Domínguez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, 87000, Cd. Victoria, TAMPS, Mexico
| | - Nicholas A Leyland
- Department of Obstetrics & Gynaecology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Sanjay K Agarwal
- Department of Reproductive Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Warren G Foster
- Department of Obstetrics & Gynaecology, McMaster University, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
46
|
Xi L, Song Y, Han J, Qin X. Microbiome analysis reveals the significant changes in gut microbiota of diarrheic Baer's Pochards (Aythya baeri). Microb Pathog 2021; 157:105015. [PMID: 34062226 DOI: 10.1016/j.micpath.2021.105015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 02/08/2023]
Abstract
Gut microbiota has been demonstrated to play multiple crucial roles in immunity, physiology, metabolism, and health maintenance. Diarrhea was closely related to the gut microbiota, but information regarding the alterations in gut microbial composition and structure in Baer's Pochard (Aythya baeri) with diarrhea remains scarce. Here, 16S rDNA amplicon sequencing was performed to investigate the gut microbial variability between diarrheic and healthy Baer's Pochard. Results indicated that the gut bacterial community of diarrheic Baer's Pochard showed a distinct decrease in alpha diversity, accompanied by evident changes in taxonomic compositions. Microbial taxonomic analysis revealed that Firmicutes, Proteobacteria and Bacteroidetes were the most dominant phyla in all the fecal samples regardless of health status. At the genus level, the differences in gut bacterial abundance between healthy and diarrheic populations were gradually observed. Specifically, the proportion of Elusimicrobia in the diarrheic Baer's Pochard was increased in comparison with healthy populations, while Acidobacteria, Rokubacteria, Cyanobacteria and Patescibacteria were dramatically decreased. Additionally, the relative proportion of 23 bacterial genera significantly decreased in diarrheic Baer's Pochard, whereas the relative percentage of 4 bacterial genera (Alkanindiges, Elusimicrobium, Spirosoma and Exiguobacterium) observably increased as compared to healthy populations. Taken together, the present study revealed that there were distinct differences in the gut microbial composition and diversity between the healthy and diarrheic Baer's Pochard. Remarkably, this is the first report on the differences in the gut microbiota of Baer's Pochard under different health states and may contribute to provide better insight into gut microbial composition and diversity of Baer's Pochard.
Collapse
Affiliation(s)
- Li Xi
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China; Henan Engineering Research Center of Development and Application of Green Feed Additives, College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China.
| | - Yumin Song
- Linyi Agricultural Science and Technology Career Academy, Linyi, 276000, China
| | - Jincheng Han
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China; Henan Engineering Research Center of Development and Application of Green Feed Additives, College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
| | - Xinxi Qin
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China.
| |
Collapse
|
47
|
Ni Z, Ding J, Zhao Q, Cheng W, Yu J, Zhou L, Sun S, Yu C. Alpha-linolenic acid regulates the gut microbiota and the inflammatory environment in a mouse model of endometriosis. Am J Reprod Immunol 2021; 86:e13471. [PMID: 34022075 DOI: 10.1111/aji.13471] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/20/2021] [Accepted: 05/18/2021] [Indexed: 01/08/2023] Open
Abstract
PROBLEM This study aims to investigate the effects of alpha-linolenic acid (ALA) on the gut microbiota (GM) and the abdominal environment in mice with endometriosis (EMS). METHODS The effects of faecal microbiota transplantation (FMT) from EMS mice on mice treated with antibiotic cocktail were conducted. The 16S rRNA sequencing and PICRUSt software were used to detect the structure and function of GM respectively. The protein levels of Claudin 4 and ZO-2 in the intestinal wall were detected using the western blotting. The level of LPS in the abdominal cavity was detected using enzyme-linked immunosorbent assay (ELISA). The content of macrophages in the abdominal cavity was detected using flow cytometry. RESULTS The exogenous supplementation of ALA could restore the abundance of Firmicutes and Bacteroidota in EMS mice. After the ALA treatment, the abundance of 125 functional pathways and 50 abnormal enzymes related to GM in EMS mice was significantly improved (p < .05). The expression of the ZO-2 protein in the intestinal wall was decreased, and the level of LPS in the abdominal cavity was significantly increased after FMT from EMS mice (p < .05). ALA could increase the expression of the ZO-2 protein in the intestinal wall of EMS mice, reduce the level of LPS in the abdominal cavity (p < .05) and reduce the aggregation of peritoneal macrophages (p < .05). CONCLUSION Alpha-linolenic acid can improve the GM, intestinal wall barrier and abdominal inflammatory environment and reduce the level of LPS in mice with EMS.
Collapse
Affiliation(s)
- Zhexin Ni
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jie Ding
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qianqian Zhao
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wen Cheng
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jin Yu
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Ling Zhou
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Shuai Sun
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chaoqin Yu
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
48
|
Svensson A, Brunkwall L, Roth B, Orho-Melander M, Ohlsson B. Associations Between Endometriosis and Gut Microbiota. Reprod Sci 2021; 28:2367-2377. [PMID: 33660232 PMCID: PMC8289757 DOI: 10.1007/s43032-021-00506-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/21/2021] [Indexed: 02/06/2023]
Abstract
The gut microbiota has been associated with many diseases, including endometriosis. However, very few studies have been conducted on this topic in human. This study aimed to investigate the association between endometriosis and gut microbiota. Women with endometriosis (N=66) were identified at the Department of Gynaecology and each patient was matched with three controls (N=198) from the general population. All participants answered questionnaires about socioeconomic data, medical history, and gastrointestinal symptoms and passed stool samples. Gut bacteria were analyzed using 16S ribosomal RNA sequencing, and in total, 58 bacteria were observed at genus level in both patients with endometriosis and controls. Comparisons of the microbiota between patients and controls and within the endometriosis cohort were performed. Both alpha and beta diversities were higher in controls than in patients. With the false discovery rate q<0.05, abundance of 12 bacteria belonging to the classes Bacilli, Bacteroidia, Clostridia, Coriobacteriia, and Gammaproteobacter differed significantly between patients and controls. Differences observed between patients with or without isolated ovarian endometriosis, involvement of the gastrointestinal tract, gastrointestinal symptoms, or hormonal treatment disappeared after calculation with false discovery rate. These findings indicate that the gut microbiota may be altered in endometriosis patients.
Collapse
Affiliation(s)
- Agnes Svensson
- Department of Internal Medicine, Skåne University Hospital, Lund University, Jan Waldenströms street 15, floor 5, 20502, Malmö, Sweden
| | - Louise Brunkwall
- Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | - Bodil Roth
- Department of Internal Medicine, Skåne University Hospital, Lund University, Jan Waldenströms street 15, floor 5, 20502, Malmö, Sweden
| | | | - Bodil Ohlsson
- Department of Internal Medicine, Skåne University Hospital, Lund University, Jan Waldenströms street 15, floor 5, 20502, Malmö, Sweden.
| |
Collapse
|