1
|
Turlej E, Domaradzka A, Radzka J, Drulis-Fajdasz D, Kulbacka J, Gizak A. Cross-Talk Between Cancer and Its Cellular Environment-A Role in Cancer Progression. Cells 2025; 14:403. [PMID: 40136652 PMCID: PMC11940884 DOI: 10.3390/cells14060403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
The tumor microenvironment is a dynamic and complex three-dimensional network comprising the extracellular matrix and diverse non-cancerous cells, including fibroblasts, adipocytes, endothelial cells and various immune cells (lymphocytes T and B, NK cells, dendritic cells, monocytes/macrophages, myeloid-derived suppressor cells, and innate lymphoid cells). A constantly and rapidly growing number of studies highlight the critical role of these cells in shaping cancer survival, metastatic potential and therapy resistance. This review provides a synthesis of current knowledge on the modulating role of the cellular microenvironment in cancer progression and response to treatment.
Collapse
Affiliation(s)
- Eliza Turlej
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Aleksandra Domaradzka
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Justyna Radzka
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Dominika Drulis-Fajdasz
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Julita Kulbacka
- Departament of Molecular and Cellular Biology, Faculty of Pharmacy, Wrocław Medical University, Borowska 211A, 50-556 Wrocław, Poland;
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| | - Agnieszka Gizak
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| |
Collapse
|
2
|
Gingell L, Hrinczenko B. Characterizing the Immature Immunophenotype of Sickle Cell Disease Monocytes. Cureus 2024; 16:e60703. [PMID: 38899253 PMCID: PMC11186669 DOI: 10.7759/cureus.60703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Sickle cell disease (SCD) is marked by episodic vaso-occlusive crisis (VOC). Recurrent VOC creates a pro-inflammatory state that induces phenotypic alterations in innate immune cells. Monocytes are of particular interest to VOC pathophysiology because they are especially malleable to inflammatory signaling. Indeed, inflammatory disease states such as chronic obstructive pulmonary disease (COPD), obesity and atherosclerosis are known to influence monocyte development and alter monocyte subpopulations. In this study, we describe SCD monocyte subsets by performing immunophenotypic flow cytometric, enzymatic, and morphologic analysis on peripheral blood. Herein, we add to the growing body of evidence suggesting aberrant monocyte populations underpin VOC pathophysiology. We found that SCD monocytes possess an immature phenotype as demonstrated by 1) decreased CD4 positivity (p < .01), 2) low α-naphthyl butyrate esterase (ANBE) expression, and 3) naïve morphologic features. We additionally found an increase in CD14+CD16-CD4- monocytes (p < .01), a subset associated with the impaired immune response of post-trauma patients. Interestingly, we also found a large proportion of CD14+CD4-HLA-DR- monocytes which, under normal circumstances, are exclusively found in neonates (p < .01). Finally, we report an increase in nonclassical monocytes (CD14dimCD16+), a subset recently shown to have a critical role in prevention and recovery from VOC.
Collapse
Affiliation(s)
- Luke Gingell
- Medical School, Michigan State University, Grand Rapids, USA
| | - Borys Hrinczenko
- Hematology/Oncology, Michigan State University, East Lansing, USA
| |
Collapse
|
3
|
Wang Y, Yang X, Ma J, Chen S, Gong P, Dai P. Thyroid dysfunction (TD) induced by PD-1/PD-L1 inhibitors in advanced lung cancer. Heliyon 2024; 10:e27077. [PMID: 38449616 PMCID: PMC10915392 DOI: 10.1016/j.heliyon.2024.e27077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/29/2024] [Accepted: 02/23/2024] [Indexed: 03/08/2024] Open
Abstract
Background Thyroid Dysfunction (TD) is a common immune-related adverse events (irAEs) in the treatment of advanced lung cancer with programmed cell death protein 1 (PD-1) and programmed death 1 ligand (PD-L1) inhibitors, with incidence accounting for 6-8% of all irAEs. The incidence of TD is receiving increasing attention from clinicians, given its potential impact on clinical efficacy. However, the molecular mechanisms, biomarkers, and clinical impact of TD resulting from PD-1/PD-L1 inhibitor treatment in advanced lung cancer are unclear. Objective To present a comprehensive review of current advancements in research about the molecular mechanisms, influential factors, and clinical manifestations in the treatment of advanced lung cancer with PD-1 and PD-L1 inhibitors, as well as the correlation between TD and the efficacy of PD-1 and PD-L1 inhibitors. Methods A systematic search was conducted using PubMed, Web of Science, Cochrane Library, Embase and Google Scholar databases, with the keywords including thyroid dysfunction, efficacy, mechanisms, immune checkpoint inhibitors, PD-1/PD-L1 inhibitors, and advanced lung cancer. Results PD-1/PD-L1 inhibitors can induce T cell-mediated destructive thyroiditis, thyroid autoantibody-mediated autoimmunity, and a decrease in the number of immunosuppressive monocytes (circulating cluster of differentiation (CD)14+ human leukocyte antigen (HLA)-DRlow/negatives monocytes, CD14+ HLA-DR + lo/neg), leading to TD. Several factors, including peripheral blood inflammatory markers, body mass index (BMI), baseline thyroid-stimulating hormone (TSH) level, gender, smoking history, hypertension, and previous opioid use, may also contribute to the development of TD. However, there is currently a lack of reliable predictive biomarkers for TD, although anti-thyroid antibodies, TSH levels, and peripheral blood inflammatory markers are expected to be predictive.Interestingly, some studies suggested a positive correlation between TD and clinical efficacy, i.e., patients experiencing TD showed better outcomes in objective response rate (ORR), disease control rate (DCR), progression-free survival (PFS), and overall survival (OS), compared with those without TD. However, most of these studies were single-center and had small sample sizes, so more multi-center studies are needed to provide further data support. Conclusion TD resulting from PD-1/PD-L1 inhibitor treatment in advanced lung cancer may be associated with good clinical outcomes. The clarification of the molecular mechanisms underlying TD and the identification of reliable predictive biomarkers will guide clinicians in managing TD in this patient population.
Collapse
Affiliation(s)
- Yanling Wang
- School of Medicine, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Xiaoxuan Yang
- School of Medicine, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Jia Ma
- Department of General Surgery, Shanghai Jian Gong Hospital, Shanghai, 200434, People's Republic of China
| | - Shenglan Chen
- School of Medicine, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Ping Gong
- School of Medicine, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
- Department of Oncology, The Third Affiliated Hospital of School of Medicine of Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Ping Dai
- Department of Radiotherapy, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, People's Republic of China
- Department of Molecular Radiation Oncology, German Cancer Research Center (DKFZ), Neuenheimer Feld 280, 69120, Heidelberg, Germany
| |
Collapse
|
4
|
Chen X, Li Y, Xia H, Chen YH. Monocytes in Tumorigenesis and Tumor Immunotherapy. Cells 2023; 12:1673. [PMID: 37443711 PMCID: PMC10340267 DOI: 10.3390/cells12131673] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 07/15/2023] Open
Abstract
Monocytes are highly plastic innate immune cells that display significant heterogeneity during homeostasis, inflammation, and tumorigenesis. Tumor-induced systemic and local microenvironmental changes influence the phenotype, differentiation, and distribution of monocytes. Meanwhile, monocytes and their related cell subsets perform an important regulatory role in the development of many cancers by affecting tumor growth or metastasis. Thanks to recent advances in single-cell technologies, the nature of monocyte heterogeneity and subset-specific functions have become increasingly clear, making it possible to systematically analyze subset-specific roles of monocytes in tumorigenesis. In this review, we discuss recent discoveries related to monocytes and tumorigenesis, and new strategies for tumor biomarker identification and anti-tumor immunotherapy.
Collapse
Affiliation(s)
| | | | - Houjun Xia
- Center for Cancer Immunology, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518000, China; (X.C.); (Y.L.)
| | - Youhai H. Chen
- Center for Cancer Immunology, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518000, China; (X.C.); (Y.L.)
| |
Collapse
|
5
|
Patysheva M, Frolova A, Larionova I, Afanas'ev S, Tarasova A, Cherdyntseva N, Kzhyshkowska J. Monocyte programming by cancer therapy. Front Immunol 2022; 13:994319. [PMID: 36341366 PMCID: PMC9631446 DOI: 10.3389/fimmu.2022.994319] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/27/2022] [Indexed: 08/27/2023] Open
Abstract
Monocytes in peripheral blood circulation are the precursor of essential cells that control tumor progression, that include tumor-associated macrophages (TAMs), dendritic cells (DCs) and myeloid-derive suppressor cells (MDSC). Monocytes-derived cells orchestrate immune reactions in tumor microenvironment that control disease outcome and efficiency of cancer therapy. Four major types of anti-cancer therapy, surgery, radiotherapy, chemotherapy, and most recent immunotherapy, affect tumor-associated macrophage (TAM) polarization and functions. TAMs can also decrease the efficiency of therapy in a tumor-specific way. Monocytes is a major source of TAMs, and are recruited to tumor mass from the blood circulation. However, the mechanisms of monocyte programming in circulation by different therapeutic onsets are only emerging. In our review, we present the state-of-the art about the effects of anti-cancer therapy on monocyte progenitors and their dedifferentiation, on the content of monocyte subpopulations and their transcriptional programs in the circulation, on their recruitment into tumor mass and their potential to give origin for TAMs in tumor-specific microenvironment. We have also summarized very limited available knowledge about genetics that can affect monocyte interaction with cancer therapy, and highlighted the perspectives for the therapeutic targeting of circulating monocytes in cancer patients. We summarized the knowledge about the mediators that affect monocytes fate in all four types of therapies, and we highlighted the perspectives for targeting monocytes to develop combined and minimally invasive anti-cancer therapeutic approaches.
Collapse
Affiliation(s)
- Marina Patysheva
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
- Laboratory of Tumor Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Anastasia Frolova
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
- Laboratory of Tumor Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
- Laboratory of Genetic Technologies, Siberian State Medical University, Tomsk, Russia
| | - Sergey Afanas'ev
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
- Department of Abdominal Oncology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Anna Tarasova
- Department of Abdominal Oncology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Nadezhda Cherdyntseva
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
- Laboratory of Genetic Technologies, Siberian State Medical University, Tomsk, Russia
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
- Laboratory of Genetic Technologies, Siberian State Medical University, Tomsk, Russia
- Institute of Transfusion Medicine and Immunology, Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg – Hessen, Mannheim, Germany
| |
Collapse
|
6
|
Ma T, Renz BW, Ilmer M, Koch D, Yang Y, Werner J, Bazhin AV. Myeloid-Derived Suppressor Cells in Solid Tumors. Cells 2022; 11:cells11020310. [PMID: 35053426 PMCID: PMC8774531 DOI: 10.3390/cells11020310] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/03/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are one of the main suppressive cell population of the immune system. They play a pivotal role in the establishment of the tumor microenvironment (TME). In the context of cancers or other pathological conditions, MDSCs can differentiate, expand, and migrate in large quantities during circulation, inhibiting the cytotoxic functions of T cells and NK cells. This process is regulated by ROS, iNOS/NO, arginase-1, and multiple soluble cytokines. The definition of MDSCs and their phenotypes in humans are not as well represented as in other organisms such as mice, owing to the absence of the cognate molecule. However, a comprehensive understanding of the differences between different species and subsets will be beneficial for clarifying the immunosuppressive properties and potential clinical values of these cells during tumor progression. Recently, experimental evidence and clinical investigations have demonstrated that MDSCs have a close relationship with poor prognosis and drug resistance, which is considered to be a leading marker for practical applications and therapeutic methods. In this review, we summarize the remarkable position of MDSCs in solid tumors, explain their classifications in different models, and introduce new treatment approaches to target MDSCs to better understand the advancement of new approaches to cancer treatment.
Collapse
Affiliation(s)
- Tianmiao Ma
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (T.M.); (B.W.R.); (M.I.); (D.K.); (J.W.)
| | - Bernhard W. Renz
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (T.M.); (B.W.R.); (M.I.); (D.K.); (J.W.)
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
| | - Matthias Ilmer
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (T.M.); (B.W.R.); (M.I.); (D.K.); (J.W.)
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
| | - Dominik Koch
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (T.M.); (B.W.R.); (M.I.); (D.K.); (J.W.)
| | - Yuhui Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China;
| | - Jens Werner
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (T.M.); (B.W.R.); (M.I.); (D.K.); (J.W.)
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Alexandr V. Bazhin
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (T.M.); (B.W.R.); (M.I.); (D.K.); (J.W.)
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
- Correspondence:
| |
Collapse
|